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1 Introduction and preliminaries
In the last two decades, there has been intensive research on the approximation of func-
tions by positive linear operators introduced by using q-calculus. Lupas [] was the
first who used q-calculus to define q-Bernstein polynomials, and later Phillips [] pro-
posed a generalization of Bernstein polynomials based on q-integers. Very recently, Mur-
saleen et al. applied (p, q)-calculus in approximation theory and introduced the first (p, q)-
analogue of Bernstein operators []. They investigated the uniform convergence and con-
vergence rate of the operators and also obtained a Voronovskaya-type theorem. Also,
(p, q)-analogues of Bernstein-Stancu operators [], Bleimann-Butzer-Hahn operators [],
and Bernstein-Schurer operarors [] were defined and their approximation properties
were investigated. Most recently, the (p, q)-analogues of some more operators were de-
fined and their approximation properties were studied in [–], and []. In this paper,
we introduce a (p, q)-analogue of Szász-Mirakyan operators. Let us recall some notation
and definitions of (p, q)-calculus. Let  < q < p ≤ . For nonnegative integers k and n such
that n ≥ k ≥ , the (p, q)-integer, (p, q)-factorial, and (p, q)-binomial are respectively de-
fined by

[k]p,q :=
pk – qk

p – q
,

[k]p,q! :=

{
[k]p,q[k – ]p,q · · · , k ≥ ,
, k = ,

and [
n
k

]
p,q

:=
[n]p,q!

[k]p,q![n – k]p,q!
.
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In the case of p = , these notations reduce to q-analogues, and we can easily see that
[n]p,q = pn–[n]q/p. Further, the (p, q)-power basis is defined by

(x ⊕ a)n
p,q := (x + a)(px + qa)

(
px + qa

) · · · (pn–x + qn–a
)

and

(x � a)n
p,q := (x – a)(px – qa)

(
px – qa

) · · · (pn–x – qn–a
)
.

Also the (p, q)-derivative of a function f , denoted by Dp,qf , is defined by

(Dp,qf )(x) :=
f (px) – f (qx)

(p – q)x
, x �= , (Dp,qf )() := f ′()

provided that f is differentiable at . The formula for the (p, q)-derivative of a product is

Dp,q
(
u(x)v(x)

)
:= Dp,q

(
u(x)

)
v(qx) + Dp,q

(
v(x)

)
u(qx).

For more details on (p, q)-calculus, we refer the readers to [, ] and the references
therein. There are two (p, q)-analogues of the exponential function:

ep,q(x) =
∞∑

n=

p
n(n–)

 xn

[n]p,q!
(.)

and

Ep,q(x) =
∞∑

n=

q
n(n–)

 xn

[n]p,q!

which satisfy the equality ep,q(x)Ep,q(–x) = . For p = , ep,q(x) and Ep,q(x) reduce to the
q-exponential functions. Here we note that the interval of convergence of ep,q(x) is |x| <
/(p – q) for |p| <  and |q| < , and series (.) converges for all x ∈ R, |p| < , and |q| < .

2 Construction of operators and auxiliary results
We first define the analogue of Szász-Mirakyan operators via (p, q)-calculus as follows.

Definition . Let  < q < p ≤  and n ∈ N. For f : [,∞) → R, we define the (p, q)-
analogue of Szász-Mirakyan operators by

Sn,p,q(f ; x) =
∞∑

k=

p
k(k–)



q
k(k–)



([n]p,qx)k

[k]p,q!
ep,q

(
–[n]p,qq–kx

)
f
(

[k]p,q

pk–[n]p,q

)
. (.)

Operators (.) are linear and positive. For p = , they turn out to be the q-Szász-
Mirakyan operators defined in [].

Lemma . Let  < q < p ≤  and n ∈N. We have

Sn,p,q
(
tm+; x

)
=

m∑
j=

(
m
j

)
qjx

pj[n]m–j
p,q

Sn,p,q
(
tj; q–x

)
. (.)
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Proof Using the identity

[k + ]p,q = pk + q[k]p,q,

we can write

Sn,p,q
(
tm+; x

)
=

∞∑
k=

p
k(k–)



q
k(k–)



([n]p,qx)k

[k]p,q!

(
[k]p,q

pk–[n]p,q

)m+

ep,q
(
–[n]p,qq–kx

)

=
∞∑

k=

pkp
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
[k + ]m

p,qx
pk(m+)[n]m

p,q
ep,q

(
–[n]p,qq–(k+)x

)

=
∞∑

k=

pkp
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
[k + ]m

p,qx
pkm+k[n]m

p,q
ep,q

(
–[n]p,qq–(k+)x

)

=
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
(pk + q[k]p,q)mx

pkm[n]m
p,q

ep,q
(
–[n]p,qq–(k+)x

)

=
∞∑

k=

x
pkm[n]m

p,q

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!

×
m∑

j=

(
m
j

)
pk(m–j)qj[k]j

p,qep,q
(
–[n]p,qq–(k+)x

)

=
m∑

j=

(
m
j

)
qjx

pj[n]m–j
p,q

×
∞∑

k=

[k]j
p,q

pj(k–)[n]j
p,q

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
ep,q

(
–[n]p,qq–(k+)x

)

=
m∑

j=

(
m
j

)
qjx

pj[n]m–j
p,q

Sn,p,q
(
tj; q–x

)
,

as desired. �

Lemma . Let  < q < p ≤  and n ∈N. We have
(i) Sn,p,q(; x) = ,

(ii) Sn,p,q(t; x) = x,
(iii) Sn,p,q(t; x) = x

p + x
[n]p,q

,

(iv) Sn,p,q(t; x) = x

p + p+q
p[n]p,q

x + x
[n]

p,q
,

(v) Sn,p,q(t; x) = x

p + p+pq+q

p[n]p,q
x + p+pq+q

p[n]
p,q

x + x
[n]

p,q
.

Proof Since the proof of each equality uses the same method, we give the proof for only
last three equalities. Using (.), we get
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(iii)

Sn,p,q
(
t; x

)
=

∞∑
k=

p
k(k–)



q
k(k–)



([n]p,qx)k

[k]p,q!
[k]

p,q

pk–[n]
p,q

ep,q
(
–[n]p,qq–kx

)

=
∞∑

k=

pkp
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
[k + ]p,qx
pk[n]p,q

ep,q
(
–[n]p,qq–(k+)x

)

=
∞∑

k=

pkp
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
pkx

pk[n]p,q
ep,q

(
–[n]p,qq–(k+)x

)

+
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
q[k]p,qx
pk[n]p,q

ep,q
(
–[n]p,qq–(k+)x

)

=
x

[n]p,q
+

∞∑
k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
x

p
ep,q

(
–[n]p,qq–(k+)x

)

=
x

p
+

x
[n]p,q

.

(iv)

Sn,p,q
(
t; x

)
=

∞∑
k=

p
k(k–)



q
k(k–)



([n]p,qx)k

[k]p,q!
[k]

p,q

pk–[n]
p,q

ep,q
(
–[n]p,qq–kx

)

=
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
(pk + pkq[k]p,q + q[k]

p,q)
pk[n]

p,q

× xep,q
(
–[n]p,qq–(k+)x

)

=
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
x

[n]
p,q

ep,q
(
–[n]p,qq–(k+)x

)

+
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
q[k]p,q

pk[n]
p,q

xep,q
(
–[n]p,qq–(k+)x

)

+
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
q[k]

p,q

pk[n]
p,q

xep,q
(
–[n]p,qq–(k+)x

)

=
x

[n]
p,q

+
x

p[n]p,q

+
∞∑

k=

pkp
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
qx(pk + q[k]p,q)

pk+[n]p,q
ep,q

(
–[n]p,qq–(k+)x

)

=
x

[n]
p,q

+
x

p[n]p,q
+

qx

p[n]p,q

+
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
qx[k]p,q

pk+[n]p,q
ep,q

(
–[n]p,qq–(k+)x

)

=
x

p +
p + q

p[n]p,q
x +

x
[n]

p,q
.
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(v)

Sn,p,q
(
t; x

)
=

∞∑
k=

p
k(k–)



q
k(k–)



([n]p,qx)k

[k]p,q!
[k]

p,q

pk–[n]
p,q

ep,q
(
–[n]p,qq–kx

)

=
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
(pk + pkq[k]p,q + pkq[k]

p,q + q[k]
p,q)

pk[n]
p,q

× xep,q
(
–[n]p,qq–(k+)x

)
=

x
[n]

p,q
+

x

p[n]
p,q

+
qx

p[n]
p,q

+
x

p[n]p,q

+
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
qx(pk + pkq[k]p,q + q[k]

p,q)
pk+[n]

p,q

× ep,q
(
–[n]p,qq–(k+)x

)
=

x
[n]

p,q
+

x

p[n]
p,q

+
qx

p[n]
p,q

+
x

p[n]p,q
+

qx

p[n]
p,q

+
qx

p[n]p,q

+
∞∑

k=

p
k(k–)



qkq
k(k–)



([n]p,qx)k

[k]p,q!
qx(pk + q[k]p,q)

pk+[n]p,q
ep,q

(
–[n]p,qq–(k+)x

)

=
x

p +
p + pq + q

p[n]p,q
x +

p + pq + q

p[n]
p,q

x +
x

[n]
p,q

. �

Corollary . Using Lemma ., we immediately have the following explicit formulas for

the central moments:

Sn,p,q
(
(t – x); x

)
=

x
[n]p,q

+
(


p

– 
)

x, (.)

Sn,p,q
(
(t – x); x

)
=

x
[n]

p,q
+

p + q – p

p[n]p,q
x +

 – p + p

p x, (.)

Sn,p,q
(
(t – x); x

)
=

x
[n]

p,q
+

p + pq + q – p

p[n]
p,q

x

+
p + pq + q – p – pq + p

p[n]p,q
x

+
 – p + p – p

p x. (.)

Remark . For q ∈ (, ) and p ∈ (q, ] we easily see that limn→∞[n]p,q = 
p–q . Hence, op-

erators (.) are not approximation process with above form. To study convergence prop-

erties of the sequence of (p, q)-Szász operators, we assume that q = (qn) and p = (pn) are

such that  < qn < pn ≤  and qn → , pn → , qn
n → a, pn

n → b as n → ∞. We also assume
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that

lim
n→∞[n]pn ,qn

(


pn
– 

)
= α,

lim
n→∞[n]pn ,qn

 – p
n + p

n
p

n
= γ ,

lim
n→∞[n]pn ,qn

 – p
n + p

n – p
n

p
n

= β .

It is natural to ask whether such sequences (qn) and (pn) exist. For example, let c, d ∈ R
+

be such that c > d. If we choose qn = n
n+c and pn = n

n+d , then qn → , pn → , qn
n → e–c,

pn
n → e–d , and limn→∞[n]p,q = ∞ as n → ∞. Also, we have α = a(e–d–e–c)

d–c , γ = e–d – e–c,
β = .

Corollary . According to Remark ., we immediately have

lim
n→∞[n]pn ,qn Sn,pn ,qn

(
(t – x); x

)
= x + αx, (.)

lim
n→∞[n]pn ,qn Sn,pn ,qn

(
(t – x); x

)
= γ x, (.)

lim
n→∞[n]pn ,qn Sn,pn ,qn

(
(t – x); x

)
= βx. (.)

3 Direct results
In this section, we present a local approximation theorem for the operators Sn,p,q. By
CB[,∞) we denote the space of real-valued continuous and bounded functions f defined
on the interval [,∞). The norm ‖ · ‖ on the space CB[,∞) is given by

‖f ‖ = sup
≤x<∞

∣∣f (x)
∣∣.

Further, let us consider the following K-functional:

K(f , δ) = inf
g∈W 

{‖f – g‖ + δ
∥∥g ′′∥∥}

,

where δ >  and W  = {g ∈ CB[,∞) : g ′, g ′′ ∈ CB[,∞)}. By Theorem . of [] there
exists an absolute constant C >  such that

K(f , δ) ≤ Cω(f ,
√

δ), (.)

where

ω(f ,
√

δ) = sup
<h≤√

δ

sup
x∈[,∞)

∣∣f (x + h) – f (x + h) + f (x)
∣∣

is the second-order modulus of smoothness of f ∈ CB[,∞). The usual modulus of conti-
nuity of f ∈ CB[,∞) is defined by

ω(f , δ) = sup
<h≤δ

sup
x∈[,∞)

∣∣f (x + h) – f (x)
∣∣.
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Theorem . Let p, q ∈ (, ) be such that q < p. Then we have

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ Cω

(
f ; δn(x)

)
for every x ∈ [,∞) and f ∈ CB[,∞), where

δ
n(x) =

x
[n]p,q

+
(


p

– 
)

x.

Proof Let g ∈W. Then from the Taylor expansion we get

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – u)g ′′(u) du, t ∈ [,A],A > .

Now by Corollary . we have

Sn,p,q(g; x) = g(x) + Sn,p,q

(∫ t

x
(t – u)g ′′(u) du; x

)
,

∣∣Sn,p,q(g; x) – g(x)
∣∣ ≤ Sn,p,q

(∣∣∣∣
∫ t

x

∣∣(t – u)
∣∣∣∣g ′′(u)

∣∣du; x
∣∣∣∣
)

≤ Sn,p,q
(
(t – x); x

)∥∥g ′′∥∥.

Hence we get

∣∣Sn,p,q(g; x) – g(x)
∣∣ ≤ ∥∥g ′′∥∥(

x
[n]p,q

+
(


p

– 
)

x
)

.

On the other hand, we have

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ ∣∣Sn,p,q

(
(f – g); x

)
– (f – g)(x)

∣∣ +
∣∣Sn,p,q(g; x) – g(x)

∣∣.
Since

∣∣Sn,p,q(f ; x)
∣∣ ≤ ‖f ‖,

we have

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ ‖f – g‖ +

∥∥g ′′∥∥(
x

[n]p,q
+

(

p

– 
)

x
)

.

Now taking the infimum on the right-hand side over all g ∈W, we get

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ CK

(
f , δ

n(x)
)
.

By the property of a K-functional we get

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ Cω

(
f , δn(x)

)
.

This completes the proof. �
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4 Weighted approximation by Sn,p,q

Now we give approximation properties of the operators Sn,p,q on the interval [,∞). Since

Sn,p,q
(
 + t; x

)
=  +

(

p

– 
)

x +
x

[n]p,q

≤  + x + x,

x ≤  for x ∈ [, ], and x ≤ x for x ∈ (,∞), we have

Sn,p,q
(
 + t; x

) ≤ 
(
 + x),

which says that Sn,p,q are linear positive operators acting from C[,∞) to B[,∞). For
more details, see [, ], and [].

Theorem . Let the sequence of linear positive operators (Ln) acting from C[,∞) to
B[,∞) satisfy the condition

lim
n→∞‖Lnei – ei‖ = , i = , , .

Then, for any function f ∈ C∗
 [,∞),

lim
n→∞‖Lnf – f ‖ = .

Theorem . Let q = qn ∈ (, ) and p = pn ∈ (q, ) be such that qn →  and pn →  as
n → ∞. Then, for each function f ∈ C∗

 [,∞), we get

lim
n→∞‖Sn,pn ,qn f – f ‖ = .

Proof According to Theorem ., it is sufficient to verify the condition

lim
n→∞‖Sn,pn ,qn ei – ei‖ = , i = , , . (.)

By Lemma .(i), (ii) it is clear that

lim
n→∞

∥∥Sn,pn ,qn (; x) – 
∥∥

 = ,

lim
n→∞

∥∥Sn,pn ,qn (t; x) – x
∥∥

 = ,

and by Lemma .(iii) we have

lim
n→∞

∥∥Sn,pn ,qn

(
t; x

)
– x∥∥

 = sup
x≥

( 
pn

– )x + x
[n]pn ,qn

 + x

≤
(


pn

– 
)

+


[n]pn ,qn
.

The last inequality means that (.) holds for i = . By Theorem . the proof is complete.�
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The weighted modulus of continuity is given by

�(f ; δ) = sup
≤h<δ,x∈[,∞)

|f (x + h) – f (x)|
( + h) + ( + x)

(.)

for f ∈ C[,∞). We know that, for every f ∈ C∗
 [,∞), �(·; δ) has the properties

lim
δ→

�(f ; δ) = 

and

�(f ;λδ) ≤ ( + λ)
(
 + δ)�(f ; δ), λ > . (.)

For f ∈ C[,∞), from (.) and (.) we can write

∣∣f (t) – f (x)
∣∣ ≤ (

 + (t – x))( + x)�(
f ; |t – x|)

≤ 
(

 +
|t – x|

δ

)(
 + δ)�(f ; δ)

(
 + (t – x))( + x). (.)

All concepts mentioned can be found in [].

Theorem . Let  < q = qn < p = pn ≤  be such that qn →  and pn →  as n → ∞. Then,
for each function f ∈ C∗

 [,∞), there exists a positive constant A such that

sup
x∈[,∞)

|Sn,p,q(f ; x) – f (x)|
( + x) 


≤ A�

(
f ;

√
βp,q(n)

)
,

where βp,q(n) = max{ 
p – , 

[n]p,q
}, and A is a positive constant.

Proof Since Sn,p,q(; x) = , using the monotonicity of Sn,p,q, we can write

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ Sn,p,q

(∣∣f (t) – f (x)
∣∣; x

)
.

On the other hand, from (.) we have that

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ 

(
 + δ)�(f ; δ)

(
 + x)[Sn,p,q

((
 +

|t – x|
δ

)(
 + (t – x)); x

)]

≤ 
(
 + δ)�(f ; δ)

(
 + x){Sn,p,q(; x) + Sn,p,q

(
(t – x); x

)

+

δ

Sn,p,q
(|t – x|; x

)
+


δ

Sn,p,q
(|t – x|(t – x); x

)}
.

Using the Cauchy-Schwarz inequality, we can write

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ 

(
 + δ)�(f ; δ)

(
 + x){Sn,p,q(; x) + Sn,p,q

(
(t – x); x

)

+

δ

√
Sn,p,q

(
(t – x); x

)
+


δ

√
Sn,p,q

(
(t – x); x

)√
Sn,p,q

(
(t – x); x

)}
.
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On the other hand, using (.), we have

Sn,p,q
(
(t – x); x

) ≤ x
[n]p,q

+
(


p

– 
)

x

≤ CO
(
βp,q(n)

)(
 + x),

where C >  and βp,q(n) = max{ 
p – , 

[n]p,q
}. Since limn→∞ 

pn
=  and limn→∞ 

[n]p,q
= ,

there exists a positive constant A such that

Sn,p,q
(
(t – x); x

) ≤ A
(
 + x).

Also, using (.), we get

Sn,p,q
(
(t – x); x

) 
 ≤ A

(
 + x)

and

Sn,p,q

(
(t – x)

δ ; x
) 

 ≤ A

δ
O

(
βp,q(n)

) 

(
 + x) 



for A >  and A > . So we have

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ 

(
 +


βp,q(n)

)
�

(
f ;

√
βp,q(n)

)(
 + x){ + A

(
 + x)

+
A

δ
O

(
βp,q(n)

) 

(
 + x) 



+ A
(
 + x)A

δ
O

(
βp,q(n)

) 

(
 + x) 



}
.

Choosing δ = βp,q(n) 
 , we obtain

∣∣Sn,p,q(f ; x) – f (x)
∣∣ ≤ 

(
 + βp,q(n)

)
�

(
f ;

√
βp,q(n)

)(
 + x){ + A

(
 + x)

+ CA
(
 + x) 

 + CAA
(
 + x) 


}

.

For  < q < p ≤ , we have βp,q(n) ≤ . Hence we can write

sup
x∈[,∞)

|Sn,p,q(f ; x) – f (x)|
( + x) 


≤ A�

(
f ;

√
βp,q(n)

)
,

where A = ( + A + CA + CAA), and the result follows. �

5 Voronovskaya-type theorem for Sn,p,q

Here we give a Voronovskaya-type theorem for Sn,p,q.

Theorem . Let  < qn < pn ≤  be such that qn → , pn → , qn
n → a, and pn

n → b as
n → ∞. Then, for each function f ∈ C∗

 [,∞) such that f ′, f ′′ ∈ C∗
 [,∞), we have

lim
n→∞[n]pn ,qn

(
Sn,pn ,qn (f ; x) – f (x)

)
=

(
x + αx)f ′′(x)

uniformly on any [, A], A > .
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Proof Let f , f ′, f ′′ ∈ C∗
 [,∞) and x ∈ [,∞). By the Taylor formula we can write

f (t) = f (x) + f ′(x)(t – x) +



f ′′(x)(t – x) + h(t, x)(t – x), (.)

where h(t, x) is the remainder of the Peano form. Then h(·, x) ∈ C∗
 [,∞) and

limt→x h(t, x) =  for n large enough. Applying operators (.) to both sides of (.), we
get

pn ,qn

(
Sn,pn ,qn (f ; x) – f (x)

)
= [n]pn ,qn f ′(x)Sn,pn ,qn

(
(t – x); x

)
+ [n]pn ,qn f ′′(x)Sn,pn ,qn

(
(t – x); x

)
+ Sn,pn ,qn

(
h(t, x)(t – x); x

)
.

By the Cauchy-Schwarz inequality we have

Sn,pn ,qn

(
h(t, x)(t – x); x

) ≤
√

Sn,pn ,qn

(
h(t, x); x

)√
Sn,pn ,qn

(
(t – x); x

)
. (.)

Observe that h(x, x) =  and h(·, x) ∈ C∗
 [,∞). Then it follows from Theorem . that

lim
n→∞ Sn,pn ,qn

(
h(t, x); x

)
= h(x, x) =  (.)

uniformly with respect to x ∈ [, A]. Hence, from (.), (.), and (.) we obtain

lim
n→∞[n]pn ,qn Sn,pn ,qn

(
h(t, x)(t – x); x

)
=  (.)

and

Sn,p,q
(
(t – x); x

)
= .

Then using (.) and (.), we have

lim
n→∞[n]pn ,qn

(
Sn,pn ,qn (f ; x) – f (x)

)
= f ′(x) lim

n→∞[n]pn ,qn Sn,pn ,qn

(
(t – x); x

)
+ f ′′(x) lim

n→∞[n]pn ,qn Sn,pn ,qn

(
(t – x); x

)
+ lim

n→∞[n]pn ,qn Sn,pn ,qn

(
h(t, x)(t – x); x

)
=

(
x + αx)f ′′(x),

as desired. �

6 Conclusion
In this paper, we have constructed a new modification of Szász-Mirakyan operators based
on (p, q)-integers and investigated their approximation properties. We have obtained a
weighted approximation and Voronovskaya-type theorem for our new operators.
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