- Research
- Open Access
- Published:
Remark on the Cauchy problem for the evolution p-Laplacian equation
Journal of Inequalities and Applications volume 2017, Article number: 175 (2017)
Abstract
In this paper, we prove that the semigroup \(S(t)\) generated by the Cauchy problem of the evolution p-Laplacian equation \(\frac{\partial u}{\partial t}-\operatorname{div}(|\nabla u|^{p-2}\nabla u)=0\) (\(p>2\)) is continuous form a weighted \(L^{\infty}\) space to the continuous space \(C_{0}(\mathbb{R}^{N})\). Then we use this property to reveal the fact that the evolution p-Laplacian equation generates a chaotic dynamical system on some compact subsets of \(C_{0}(\mathbb{R}^{N})\). For this purpose, we need to establish the propagation estimates and the space-time decay estimates for the solutions first.
1 Introduction
In this paper, we consider the Cauchy problems of the evolution p-Laplacian equation
where \(p>2\) and the nonnegative initial value \(u_{0}\) belongs to the weighted \(L^{\infty}\) space \(W_{\sigma}(\mathbb{R}^{N})\equiv\{\varphi; |x|^{\sigma}\varphi(x)\in L^{\infty}(\mathbb{R}^{N})\}\) with the norm \(\| \varphi(\cdot)\|_{W_{\sigma}(\mathbb{R}^{N})}=\||\cdot|^{\sigma}\varphi (\cdot)\|_{L^{\infty}(\mathbb{R}^{N})}\).
The evolution p-Laplacian equation, as an important class of parabolic equations, comes from the compressible fluid flows in a homogeneous isotropic rigid porous medium. Comparing to the classical linear heat equation, this equation, to a certain extent, reflects even more exactly physical reality [1, 2]. So the studies of this equation have attracted a large number of mathematicians and remarkable progress has been achieved [3]. Among all of the progress, the semigroup method given by Bénilan and Véron [4, 5] is a successful and effective method to treat the evolution p-Laplacian equation.
Using the concepts of dynamical systems to study partial differential equations has also attracted much attention in recent decades. Such concepts, like orbit, ω-limit, attractor and chaos, were introduced to investigate the finite dimensional instances of dynamical systems of ordinary differential equations. In 2002, it was Vázquez and Zuazua [6] who first successfully used the ω-limit set of the rescaled solutions \(u(t^{\frac{1}{2}}\cdot,t)\) to study the complicated asymptotic behavior of solutions for the problem (1.1)-(1.2). Subsequently, we [7–10] investigated the complicated asymptotic behavior of solutions of the porous medium equation by using the ω-limit set of the rescaled solutions \(t^{\frac{\mu}{2}}u(t^{\beta}\cdot,t)\) with \(0<\mu, \beta <\infty\). Using ω-limit set to research other partial differential equations, one can refer to [11–14].
The theory of chaos on some partial differential equations has also been well developed since the pioneering work of Li, Wiggins, Shatah and McLaughlin; see [15, 16]. Li [17] revealed the fact that around the Silnikov homoclinic orbits, the existence of chaos on Euler equations can be proved by constructing horseshoe. Cazenave, Dickstein and Weisslerit [18] found that the discrete dynamical system generated by the heat equation in some sense is an example of chaos. In 2005, Battellia and Fečkan proved the existence of homoclinic and chaotic solutions of beam equations in [19]. In 2008, Lan and Li [20] found that the numerical Melnikov integral can be used as a tool for both predicting and controlling chaos on Euler equations. The chaos theory on other partial differential equations, one can see [21–24].
Inspired by the above papers, especially by [18], we focus our attention on the semigroup and the chaos theory for the evolution p-Laplacian equation. To overcome the difficulties caused by the degeneracy and nonlinearity of this equation, we first establish the propagation estimate and the decay estimate for the solutions of the problem of (1.1)-(1.2). By using the propagation estimate and the decay estimate of the solutions \(u(x,t)\), we see that the semigroup \(S(t)\) generated by the evolution p-Laplacian equation is continuous from the compact set \(B^{\sigma,+}_{M}\) to the space \(C_{0}(\mathbb{R}^{N})\), where
with the weak-star topology of \(W_{\sigma}(\mathbb{R}^{N})\). Then using the definition of chaos, the commutative relation between the delation operator \(D^{\sigma }_{\lambda}\) and the semigroup \(S(t)\), we find that, for any fixed \(\lambda>1\), the map
defined on compact set \(S(1)B^{\sigma,+}_{M}\) is chaotic. Here the delation operator \(D^{\sigma}_{\lambda}\) is defined as
for \(\varphi\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})\).
The rest of this paper is organized as follows. In the next section, we give some definitions and some propositions of the solutions for the problem (1.1)-(1.2). Section 3 is devoted to giving the propagation speed estimate and decay estimate for the solutions of problem (1.1)-(1.2). The continuity of the semigroup \(S(t)\) is consider in Section 4. We reveal the fact that the problem (1.1)-(1.2) generates a chaotic dynamical system on certain compact subsets of \(C_{0}(\mathbb{R}^{N})\) in Section 5.
2 Preliminaries
In this section, we give some definitions and present some propositions of solutions for the problem (1.1)-(1.2). We first present the definition of chaos. Although there has been no universally accepted mathematical definition of chaos, the popular text by Devaney [25] isolates three components as being the essential features of chaos. They are formulated for a continuous map \(F: X\rightarrow X\) on some metric space \((X,d)\). The first of Devaney’s three conditions is that F is transitive; that is, for all non-empty open subsets U and V of X there exists a natural number k such that
In a certain sense, transitivity is an irreducibility condition. The second of Devaney’s conditions is that the periodic points of F form a dense subset of X. The final condition is called sensitive dependence on initial conditions; F verifies this property if there is a \(\delta>0\) such that, for every point \(x \in X\) and every neighborhood Ω of x, there exist a point \(y\in\Omega\) and a nonnegative integer k such that
This sensitivity condition captures the idea that in chaotic systems minute errors in experimental readings eventually lead to large scale divergence. Sensitive dependence on initial conditions is thus widely understood as being the central idea in chaos.
Definition 2.1
Devaney’s definition of chaos [25]
Let \((X,d)\) be a metric space. A continuous map
is said to be chaotic on X if
-
1.
F is transitive;
-
2.
the periodic points of F are dense in X;
-
3.
F has sensitive dependence on initial conditions.
To discuss chaotic dynamical system in the evolution p-Laplacian equation, we need to adopt some concepts as that in [3, 26, 27]. For \(f\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})\), we define
and
The space X is given by
with the norm \(|\!|\!|\cdot|\!|\!|_{1}\). Hence it is a Banach space. The space \(X_{0}\) is defined as
The weak solutions of the problem (1.1)-(1.2) is defined as follows.
Definition 2.2
For \(u_{0}\in X\), a measurable function \(u=u(x,t)\) defined in \(Q_{T}=\mathbb {R}^{N}\times (0,T)\), \(T>0\), is a weak solution of the problem (1.1)-(1.2) if
and for every test function \(\varphi\in C_{0}^{\infty}(Q_{T})\), the following identity holds:
and \(u(x,t)\) satisfies the initial-value equation (1.2) in the following sense:
as \(t\rightarrow0\).
The existence and uniqueness of weak solution of the problem (1.1)-(1.2) for the initial value \(u_{0}\in X\) is shown in [3, 26], and these solutions satisfy the following proposition.
Proposition 2.1
For every \(u_{0}\in X\), there exist a time \(T=T(u_{0})\) and a weak solution \(u(x,t)\) of the problem (1.1)-(1.2) in \(Q_{T}\). Moreover, for
the solutions \(u(x,t)\) are Hölder continuous in \(Q_{T}\equiv(0, T)\times\mathbb{R}^{N}\) and satisfy the following estimates:
and
where \(B_{R}\) is the closed ball in \(\mathbb{R}^{N}\) with the radius R.
From the above proposition, the following proposition can easily been proved; see [26, 29].
Proposition 2.2
Let \(u(x,t)\) be the nonnegative weak solution of the problem (1.1)–(1.2). Given \(x_{0}\in\mathbb{R}^{N}\), if
then, for all \(0< t\leq C B(x_{0})^{-(p-2)}\),
Proposition 2.3
[27]
If the initial value \(u_{0}\in X_{0}\), one can easily see that \(T(u_{0})=\infty\) and thus these solutions are global. Moreover, the evolution p-Laplacian equation generates a bound semigroup in \(X_{0}\) given by
Moreover, if \(1\leq q\leq\infty\) and \(u_{0}\in L^{q}(\mathbb{R}^{N})\subset X_{0}\), then \(S(t)\) is a contraction bounded semigroup in \(L^{q}(\mathbb{R}^{N})\).
For \(0<\sigma<N\), \(\lambda>0\) and \(u_{0}\in X_{0}\), the space-time dilation \(\Gamma^{\sigma}_{\lambda}\) is defined as
where \(S(t)\) is the semigroup given by (2.4) and the dilation \(D^{\sigma}_{\lambda}\) is given by
for \(\varphi\in L^{1}_{\mathrm{loc}}(\mathbb{R}^{N})\). In this paper, we consider our problem in the \(L^{\infty}\) weight space \(W_{\sigma}(\mathbb{R}^{N})\equiv\{\varphi\in L^{1}_{\mathrm{loc}}(\mathbb {R}^{N}); |x|^{\sigma}\varphi(x)\in L^{\infty}(\mathbb{R}^{N})\} \) with \(0<\sigma<N\). We equip this space with the norm \(\|\varphi\|_{W_{\sigma}(\mathbb {R}^{N})}=\||\cdot|^{\sigma}\varphi(\cdot)\|_{L^{\infty}(\mathbb{R}^{N})}\). Hence it is a Banach space. Meanwhile, one easily verifies that, for \(0<\sigma<N\), \(W_{\sigma}(\mathbb{R}^{N})\subset X_{0}\). The closed convex set
with the weak-star topology of \(W_{\sigma}(\mathbb{R}^{N})\) is compact and separable. Thus it can be meterizable. We use the symbol \(d^{\sigma ,*}_{M}\) to denote this metric. So, for all \(M\geq0\), the metric space \((B_{M}^{\sigma,+}, d^{\sigma,*}_{M})\) is compact, hence complete and separable.
In the rest of this section, we study the relation between the semigroup operator \(S(t)\) and the dilation operator \(D^{\sigma}_{\lambda}\). Suppose \(u(x,t)\) is a weak solution of the problem (1.1)-(1.2) with initial value \(u_{0}\in X_{0}\). Let
So
This mean that \(v(x,t)\) is a weak solution of the following Cauchy problem:
Note that
So, \(u_{0}\in W^{\sigma}(\mathbb{R}^{N})\), hence
Then we get the following commutative relation between the semigroup operator \(S(t)\) and the dilation operator \(D^{\sigma}_{\lambda}\):
For any fixed \(\lambda>1\) and \(0<\sigma<N\), we now define the map \(F^{\sigma}_{\lambda}: S(1)B^{\sigma,+}_{M}\to S(1)B^{\sigma,+}_{M}\) as
3 Some estimates
In this section, we first estimate the propagation speed of solutions for Problem (1.1)-(1.2) with the nonnegative initial value \(u_{0}\in W_{\sigma}(\mathbb{R}^{N})\). For this purpose, we need some concepts. Let
be the distance from x to the support of \(u_{0}\) and let us introduce the following symbol to denote the positive set of \(u(x,t)\) at time t:
We also define the ρ-neighborhood of the set \(\Omega(t)\) as
where \(d(x,\Omega(t))\) is the distance from x to \(\Omega(t)\).
Theorem 3.1
Propagation estimate
Suppose \(0<\sigma<N\) and the initial value \(u_{0}\in W_{\sigma}^{+}(\mathbb{R}^{N})\), i.e., \(u_{0}\geq0\) and \(u_{0}\in W_{\sigma}(\mathbb{R}^{N})\). Let \(u(x,t)\) be a nonnegative weak solution of the problem (1.1)-(1.2). For any \(0\leq t_{1}< t_{2}<\infty\), then
where \(\rho(t_{2}-t_{1})=C(t_{2}-t_{1})^{\frac{1}{\sigma(p-2)+p}}\|u_{0}\|_{W_{\sigma}(\mathbb{R}^{N})}^{\frac{p-2}{\sigma(p-2)+p}}\).
Proof
Without loss of generality, we restrict our consideration to the case \(t_{1}=0\). Assume \(x_{0}\in\mathbb{R}^{N}\) with \(d(x_{0})>0\). Note first that, if \(R< d(x_{0})\), then
For any \(r\geq0\), let \(R=d(x_{0})+r\geq d(x_{0})\). If \(|x_{0}|<2R\), then
Therefore,
If \(|x_{0}|\geq2R\), then, for any \(y\in B_{R}(x_{0})\),
So for \(0<\sigma<N\), we have
Therefore,
Combining this with (3.1) and (3.2), we have
Therefore, Proposition 2.2 implies
This means
where \(\rho(t)=C\|u_{0}\|_{W_{\sigma}(\mathbb{R}^{N})}^{\frac{p-2}{\sigma(p-2) +p}}t^{\frac{1}{(p-2)\sigma+p}}\). So we complete the proof of this theorem. □
In the rest of this section, we pay our attention on the properties of the semigroup \(S(t)\).
Theorem 3.2
Let \(\omega\in C(\mathbb{R}^{N}\setminus\{0\})\) be a homogeneous function of degree 0. Suppose \(0<{\sigma<N}\) and set \(u_{0}(x)=|x|^{-\sigma}\omega(x)\). It follows that
where \(g(x)\in C^{\alpha}(\mathbb{R}^{N})\) and \(|x|^{\sigma}g(x)-\omega (x)\rightarrow0\) as \(|x|\rightarrow\infty\).
Proof
From (2.6) and the definition of the initial value \(u_{0}\), we have
First notice that, for \(0<\sigma<N\),
So,
Therefore,
for some \(0<\alpha<1\); see [26, 27]. In particular,
Now taking \(s=1\), \(\lambda=t^{\frac{1}{2}}\) and \(g(x)=S(1)u_{0}(x)\) in the expression (3.4), we obtain
and
The fact \(S(t)u_{0}(x)\in C([0,\infty)\times\mathbb{R}^{N}\setminus\{0,0\} )\) [26, 29] clearly implies that, for \(|x|=1\),
as \(t\to0\). Let
So
Therefore,
as \(|y|\rightarrow\infty\). We complete the proof of this theorem. □
Theorem 3.3
Space-time decay estimates
Given \(0<\sigma<N\) and a constant \(M>0\), there exists a constant C such that if \(u_{0}\in B^{\sigma,+}_{M}(\mathbb{R}^{N})\), then
for all \(t>0\) and all \(x\in\mathbb{R}^{N}\).
Proof
Let
and
It follows from Theorem 3.2 that there exists a constant C such that
So by (3.3),
By the comparison principle [3, 27], we get
So the proof of this theorem is complete. □
4 Continuity of the semigroup
In this section, we first present the fact that the semigroup operator \(S(t)\) are continuous from the metric space \(B^{\sigma,+}_{M}\) to the space \(C_{0}(\mathbb{R}^{N})\), which is the basis of the proof of our main result.
Theorem 4.1
For any fixed \(\tau>0\), let \(0 <\sigma< N\) and \(M >0\), then, for any \(t >\tau\), \(S(t): (B^{\sigma,+}_{M}, d_{M}^{\sigma,*})\rightarrow C_{0}(\mathbb {R}^{N})\) is continuous. In particular, \(S(1)\) is a continuous map from the metric space \((B^{\sigma,+}_{M}, d_{M}^{\sigma,*})\) to the space \(C_{0}(\mathbb{R}^{N})\).
Proof
Let \(\{u_{n}\}_{n\geq1}\subset B^{\sigma,+}_{M}\) and \(u_{0}\in B^{\sigma,+}_{M}\) such that
Therefore,
Notice also that
For any \(t, R>0\), let
So, for all \(n\geq0\),
where \(\chi_{R_{1}(t)}\) is the cut-off function defined on the ball \(B_{R_{1}(t)+1}\equiv\{x\in\mathbb{R}^{N}; |x|\leq R_{1}(t)+1\}\) relative to the ball \(B_{R_{1}(t)}\equiv\{x\in\mathbb{R}^{N}; |x|\leq R_{1}(t)\}\), i.e.,
and
By Lemma 3.1, we get
This means that the value of \(S(t)u_{n}(x)\) in \(B_{R}\) is only dependent on the initial value \(u_{n}\) in \(B_{R_{1}(t)}\). In other words, for \(x\in B_{R}\),
For any \(\epsilon>0\), taking the above R large enough, the inequality (3.5) clearly implies that, if \(|x|\geq R\), then
By (4.1) and the hypothesis \(u_{n}, u_{0}\in W_{\sigma}(\mathbb {R}^{N})\), we get, for \(1< q<\frac{N}{\sigma}\),
So,
In particular,
From (3.5), we know that there exists a constant \(C(\tau)\) such that
Therefore,
From the regularity of the semigroup operator \(S(t)\), we obtain, for any fixed \(t>\tau>0\),
as \(n\rightarrow\infty\). This implies, via (4.2), that
By (4.3), there exists an integer N such that if \(n>N\), then
So we complete the proof of this theorem. □
5 Chaotic dynamical system
For any \(\lambda> 1\) and \(M > 0\), we recall that the map \(F^{\sigma }_{\lambda}: S(1)B^{\sigma,+}_{M}\mapsto S(1)B^{\sigma,+}_{M}\) is defined as
The ideas of the following theorem come from [18]. We also need a lemma which appeared in [30].
Lemma 5.1
If \(f: X\rightarrow X\) is transitive and has dense periodic points, then F has sensitive dependence on initial conditions.
Theorem 5.1
If \(\lambda> 1\) and \(M > 0\), then the map \(F^{\sigma}_{\lambda}: S(1)B^{\sigma,+}_{M}\mapsto S(1)B^{\sigma,+}_{M}\) is chaotic.
Proof
We first verify that the map \(F^{\sigma}_{\lambda}\) is well defined. By Theorem 4.1, the uniqueness theorem for the solution of (1.1)-(1.2) with \(u_{0}\in X_{0}\), we see that \(S(1)\) is a continuous, injective, surjective map from the compact Hausdorff space \(B^{\sigma,+}_{M}\) onto the Hausdorff space \(S(1)B^{\sigma,+}_{M}\). So we see that \(S(1)\) is a homeomorphism from the compact set \(B^{\sigma,+}_{M}\) to \(S(1)B^{\sigma,+}_{M}\) by the fact that a continuous, injective, surjective map of the compact Hausdorff space onto the Hausdorff space is a homeomorphism. This means that \(S(1)B^{\sigma,+}_{M}\) is a compact set. For any \(\varphi\in B^{\sigma ,+}_{M}\), we have
So, \(F^{\sigma}_{\lambda}\) is well defined. We will divide the rest proof into four steps.
1. The map \(F^{\sigma}_{\lambda}\) is a continuous map on the compact set \(S(1)B_{M}^{\sigma,+}\) .
For any sequence \(\{v_{k}\}_{k\geq1}\subset B_{M}^{\sigma,+}\) and \(v_{0}\in B_{M}^{\sigma,+}\), if
then
as \(k\rightarrow\infty\). Here we have used the facts that \(\lambda>1\) and \(S(t)\) is a bounded contractive continuous semigroup in \(L^{\infty}(\mathbb{R}^{N})\) for \(t>0\) (Proposition 2.3). Therefore,
as \(k\rightarrow\infty\). This means that the map \(F^{\sigma}_{\lambda}\) is a continuous map on the compact set \(S(1)B_{M}^{\sigma,+}\).
2. The periodic points of \(F_{\lambda}^{\sigma}\) are dense in \(S(1)B^{\sigma,+}_{M}\) .
For any \(k\in\mathbb{Z}^{+}\), \(v\in B^{\sigma,+}_{M}\) and \(\lambda>1\), let \(v_{k}\) be defined as
where
Note that, for all \(k>0\),
and
So
and
Therefore, \(S(1)v_{k}\) is a periodic point of \(F_{\lambda}^{\sigma}\). Note also that
This means that
hence
Using Theorem 4.1, we get
This proves that the periodic points of \(F_{\lambda}^{\sigma}\) are dense in \(S(1)B^{\sigma,+}_{M}\).
3. The map \(F_{\lambda}^{\sigma}\) is topologically transitive.
For any open subsets U and V of \(S(1)B^{\sigma,+}_{M}\), there exist a constant \(\varepsilon>0\) and two functions φ, \(\phi\in B^{\sigma ,+}_{M}\) such that
and
Now let
where
and \(\chi_{n}(x)\) is the cut-off function defined on the set \(A_{n}\equiv \{x\in\mathbb{R}^{N}; \lambda^{\frac{-n}{4\sigma(p-2)+4p}}< |x|<\lambda^{\frac{n}{\sigma(p-2)+p}}\}\) relative to the set \(A_{n-1}\equiv\{x\in\mathbb{R}^{N}; \lambda^{\frac{-n+1}{\sigma(p-2)+p}}< |x|<\lambda^{\frac{n-1}{\sigma(p-2)+p}}\}\). Notice that, for all \(n\geq1\),
and
So, for \(n\geq1\), from (5.4) and (5.5), we have
and
Here we have used the fact that, if \(i>j\geq1\), then
So
Note also that
and
for \(n\geq1\). So
and
It follows from Theorem 4.1 that
and
Then we conclude from the definition of \(F^{\sigma}_{\lambda}\) that
and
So for the above \(\varepsilon>0\), there exists \(N\in\mathbb{N}\) such that if \(n\geq N\), then
and
These results mean that
So we complete the proof of that \(F^{\sigma}_{\lambda}\) is topologically transitive.
So the map \(F^{\sigma}_{\lambda}\) is chaotic by Devaney’s definition of chaos and Lemma 5.1, and the proof of this theorem is complete. □
6 Conclusion
In this paper, our concern here is the properties of the solutions to the Cauchy problem of the evolution p-Laplacian equation with the initial value \(u_{0}\) belonging to a weighted \(L^{\infty}\) spaces, and we get the following results:
-
I.
The propagation estimate and the decay estimate for the solutions of the problem of (1.1)-(1.2) have been established.
-
II.
The semigroup \(S(t)\) generated by the evolution p-Laplacian equation is continuous from the compact set \(B^{\sigma ,+}_{M}\) to the space \(C_{0}(\mathbb{R}^{N})\).
-
III.
The map \(F^{\sigma}_{\lambda}\) generated by the evolution p-Laplacian equation is chaotic on the compact subset \(S(1)B^{\sigma ,+}_{M}\) of \(C_{0}(\mathbb{R}^{N})\).
In future work, we hope to continue to study the properties of solutions for the Cauchy problem of the evolution p-Laplacian equation with the initial value \(u_{0}\) belonging to other Banach spaces, especially the unbounded spaces.
References
Ladyzhenskaya, OA: The mathematical theory of viscous incompressible flow. Phys. Today 17(2), 57-58 (1964)
Hutter, K: Mathematical foundation of ice sheet and ice shelf dynamics. A physicist’s view. In: Free Boundary Problems: Theory and Applications, pp. 192-203. Chapman & Hall/CRC, Boca Raton (1999)
Dibenedetto, E: Degenerate Parabolic Equations. Springer, New York (1993)
Bénilan, P: Equations d’évolution dans un espace de Banach quelconque et applications. PhD thesis, Univ. Orsay (1972) (in French)
Véron, L: Effets régularisants de semi-groupes non linéaires dans des espaces de banach. Ann. Fac. Sci. Toulouse 1(2), 171-200 (1971) (in French)
Vázquez, JL, Zuazua, E: Complexity of large time behaviour of evolution equations with bounded data. Chin. Ann. Math., Ser. B 23(2), 293-310 (2002)
Yin, J, Wang, L, Huang, R: Complexity of asymptotic behavior of the porous medium equation in \(\mathbb{R}^{N}\). J. Evol. Equ. 11(2), 429-455 (2011)
Wang, L, Yin, J, Jin, C: ω-Limit sets for porous medium equation with initial data in some weighted spaces. Discrete Contin. Dyn. Syst., Ser. B 1(1), 223-236 (2013)
Wang, L, Yin, J: Critical exponent for the asymptotic behavior of rescaled solutions to the porous medium equation. Electron. J. Differ. Equ. 2017, Article ID 10 (2017)
Wang, L, Yin, J: Proper spaces for the asymptotic convergence of solutions of porous medium equation. Nonlinear Anal., Real World Appl. 38, 261-270 (2017)
Cazenave, T, Dickstein, F, Weissler, FB: Universal solutions of a nonlinear heat equation on \(\mathbb{R}^{N}\). Ann. Sc. Norm. Super. Pisa, Cl. Sci. 2(1), 77-117 (2003)
Wang, L: Relation between solutions and initial values for evolution p-Laplacian equation. Appl. Math. Lett. 69, 55-60 (2017)
Cazenave, T, Dickstein, F, Weissler, FB: Multi-scale multi-profile global solutions of parabolic equations in \(\mathbb{R}^{N}\). Discrete Contin. Dyn. Syst., Ser. S 5, 449-472 (2012)
Carrillo, JA, Vázquez, JL: Asymptotic complexity in filtration equations. J. Evol. Equ. 7, 471-495 (2007)
Li, Y, McLaughlin, DW, Shatah, J, Wiggins, S: Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation. Commun. Pure Appl. Math. 49(11), 1175-1255 (1996)
Li, Y: Chaos in partial differential equations. Physics 983(1), 93-115 (2009)
Li, Y: Chaos in PDEs and Lax pairs of Euler equations. Acta Appl. Math. 77(2), 181-214 (2003)
Cazenave, T, Dickstein, F, Weissler, FB: Universal solutions of the heat equation on \(\mathbb{R}^{n}\). Discrete Contin. Dyn. Syst., Ser. A 9(5), 1105-1132 (2012)
Battelli, F, Fečkan, M: Chaos in the beam equation. J. Differ. Equ. 209(1), 172-227 (2005)
Lan, Y, Li, YC: On the dynamics of Navier-Stokes and Euler equations. J. Stat. Phys. 132(1), 35-76 (2008)
Li, Y, Wiggins, S: Homoclinic orbits and chaos in discretized perturbed NLS systems: part I. Homoclinic orbits. J. Nonlinear Sci. 7(3), 211-269 (1997)
Li, Y, Wiggins, S: Homoclinic orbits and chaos in discretized perturbed NLS systems: part II. Symbolic dynamics. J. Nonlinear Sci. 7(4), 315-370 (1997)
Li, Y: Persistent homoclinic orbits for nonlinear Schrödinger equation under singular perturbation. Dyn. Partial Differ. Equ. 1, 87-123 (2004)
Cazenave, T, Dickstein, F, Weissler, FB: Chaotic behavior of solutions of the Navier-Stokes system in \(\mathbb{R}^{N}\). Adv. Differ. Equ. 10(4), 361-398 (2005)
Devaney, RL: An introduction to chaotic dynamical systems. Bull. Am. Math. Soc. 16, 313-315 (1987)
DiBenedetto, E, Herrero, MA: On the Cauchy problem and initial traces for a degenerate parabolic equation. Trans. Am. Math. Soc. 314(1), 187-224 (1989)
Vázquez, JL: Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type. Oxford University Press, Oxford (2006)
Kamin, S, Vázquez, JL: Fundamental solutions and asymptotic behaviour for the p-Laplacian equation. Rev. Mat. Iberoam. 4(2), 339-354 (1988)
Zhao, JN, Yuan, HJ: Lipschitz continuity of solutions and interfaces of the evolution p-Laplacian equation. Northeast. Math. J. 8(1), 21-37 (1992)
Banks, J, Brooks, J, Cairns, G, Davis, G, Stacey, P: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332-334 (1992)
Acknowledgements
This research was supported by National Natural Science Foundation of China (11071099 and 11371153), Chongqing Fundamental and Frontier Research Project (cstc2016jcyjA0596) and the Chongqing Municipal Commission of Education (KJ1401003, KJ1601009), Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601035), Chongqing Municipal Key Laboratory of Institutions of Higher Education (No. C16).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The main ideal of continuity of the semigroup \(S(t)\) and chaos was proposed by LW and JY. The propagation estimate and space-time decay estimates were proved by JC. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wang, L., Yin, J. & Cao, J. Remark on the Cauchy problem for the evolution p-Laplacian equation. J Inequal Appl 2017, 175 (2017). https://doi.org/10.1186/s13660-017-1449-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-017-1449-1
MSC
- 35B40
- 35K65
Keywords
- chaos
- evolution p-Laplacian equation
- Cauchy problem
- propagation estimate
- decay estimate