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Abstract
In this paper, we prove that the semigroup S(t) generated by the Cauchy problem of
the evolution p-Laplacian equation ∂u

∂t – div(|∇u|p–2∇u) = 0 (p > 2) is continuous form
a weighted L∞ space to the continuous space C0(RN). Then we use this property to
reveal the fact that the evolution p-Laplacian equation generates a chaotic dynamical
system on some compact subsets of C0(RN). For this purpose, we need to establish
the propagation estimates and the space-time decay estimates for the solutions first.
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1 Introduction
In this paper, we consider the Cauchy problems of the evolution p-Laplacian equation

∂u
∂t

– div
(|∇u|p–∇u

)
=  in (,∞) ×R

N , (.)

u(x, ) = u in R
N , (.)

where p >  and the nonnegative initial value u belongs to the weighted L∞ space
Wσ (RN ) ≡ {ϕ; |x|σ ϕ(x) ∈ L∞(RN )} with the norm ‖ϕ(·)‖Wσ (RN ) = ‖| · |σ ϕ(·)‖L∞(RN ).

The evolution p-Laplacian equation, as an important class of parabolic equations, comes
from the compressible fluid flows in a homogeneous isotropic rigid porous medium. Com-
paring to the classical linear heat equation, this equation, to a certain extent, reflects even
more exactly physical reality [, ]. So the studies of this equation have attracted a large
number of mathematicians and remarkable progress has been achieved []. Among all of
the progress, the semigroup method given by Bénilan and Véron [, ] is a successful and
effective method to treat the evolution p-Laplacian equation.

Using the concepts of dynamical systems to study partial differential equations has also
attracted much attention in recent decades. Such concepts, like orbit, ω-limit, attractor
and chaos, were introduced to investigate the finite dimensional instances of dynamical
systems of ordinary differential equations. In , it was Vázquez and Zuazua [] who
first successfully used the ω-limit set of the rescaled solutions u(t 

 ·, t) to study the com-
plicated asymptotic behavior of solutions for the problem (.)-(.). Subsequently, we [–
] investigated the complicated asymptotic behavior of solutions of the porous medium
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equation by using the ω-limit set of the rescaled solutions t
μ
 u(tβ ·, t) with  < μ,β < ∞.

Using ω-limit set to research other partial differential equations, one can refer to [–].
The theory of chaos on some partial differential equations has also been well developed

since the pioneering work of Li, Wiggins, Shatah and McLaughlin; see [, ]. Li [] re-
vealed the fact that around the Silnikov homoclinic orbits, the existence of chaos on Euler
equations can be proved by constructing horseshoe. Cazenave, Dickstein and Weisslerit
[] found that the discrete dynamical system generated by the heat equation in some
sense is an example of chaos. In , Battellia and Fečkan proved the existence of homo-
clinic and chaotic solutions of beam equations in []. In , Lan and Li [] found that
the numerical Melnikov integral can be used as a tool for both predicting and controlling
chaos on Euler equations. The chaos theory on other partial differential equations, one
can see [–].

Inspired by the above papers, especially by [], we focus our attention on the semigroup
and the chaos theory for the evolution p-Laplacian equation. To overcome the difficulties
caused by the degeneracy and nonlinearity of this equation, we first establish the propa-
gation estimate and the decay estimate for the solutions of the problem of (.)-(.). By
using the propagation estimate and the decay estimate of the solutions u(x, t), we see that
the semigroup S(t) generated by the evolution p-Laplacian equation is continuous from
the compact set Bσ ,+

M to the space C(RN ), where

Bσ ,+
M ≡ {

ϕ ∈ Wσ

(
R

N)
;‖ϕ‖Wσ (RN ) ≤ M and ϕ ≥ 

}

with the weak-star topology of Wσ (RN ). Then using the definition of chaos, the commu-
tative relation between the delation operator Dσ

λ and the semigroup S(t), we find that, for
any fixed λ > , the map

Fσ
λ ≡ Dσ

λ S
(
λ – 

)

defined on compact set S()Bσ ,+
M is chaotic. Here the delation operator Dσ

λ is defined as

Dσ
λϕ(x) = λ

σ
σ (p–)+p ϕ

(
λ


σ (p–)+p x

)

for ϕ ∈ L
loc(RN ).

The rest of this paper is organized as follows. In the next section, we give some def-
initions and some propositions of the solutions for the problem (.)-(.). Section  is
devoted to giving the propagation speed estimate and decay estimate for the solutions of
problem (.)-(.). The continuity of the semigroup S(t) is consider in Section . We re-
veal the fact that the problem (.)-(.) generates a chaotic dynamical system on certain
compact subsets of C(RN ) in Section .

2 Preliminaries
In this section, we give some definitions and present some propositions of solutions for the
problem (.)-(.). We first present the definition of chaos. Although there has been no
universally accepted mathematical definition of chaos, the popular text by Devaney []
isolates three components as being the essential features of chaos. They are formulated
for a continuous map F : X → X on some metric space (X, d). The first of Devaney’s three



Wang et al. Journal of Inequalities and Applications  (2017) 2017:175 Page 3 of 16

conditions is that F is transitive; that is, for all non-empty open subsets U and V of X there
exists a natural number k such that

Fk(U) ∩ V �= ∅.

In a certain sense, transitivity is an irreducibility condition. The second of Devaney’s con-
ditions is that the periodic points of F form a dense subset of X. The final condition is
called sensitive dependence on initial conditions; F verifies this property if there is a δ > 
such that, for every point x ∈ X and every neighborhood 	 of x, there exist a point y ∈ 	

and a nonnegative integer k such that

d
(
Fk(x), Fk(y)

)
> δ.

This sensitivity condition captures the idea that in chaotic systems minute errors in exper-
imental readings eventually lead to large scale divergence. Sensitive dependence on initial
conditions is thus widely understood as being the central idea in chaos.

Definition . (Devaney’s definition of chaos []) Let (X, d) be a metric space. A con-
tinuous map

F : X → X

is said to be chaotic on X if
. F is transitive;
. the periodic points of F are dense in X ;
. F has sensitive dependence on initial conditions.

To discuss chaotic dynamical system in the evolution p-Laplacian equation, we need to
adopt some concepts as that in [, , ]. For f ∈ L

loc(RN ), we define

|||f |||r = sup
R≥r

R– N(p–)+p
p–

∫

{|x|≤R}

∣
∣f (x)

∣
∣dx

and


(f ) = lim
r→∞|||f |||r .

The space X is given by

X ≡ {
ϕ ∈ L

loc
(
R

N)
; |||ϕ||| < ∞}

with the norm ||| · |||. Hence it is a Banach space. The space X is defined as

X ≡ {
ϕ ∈ X;
(ϕ) = 

}
.

The weak solutions of the problem (.)-(.) is defined as follows.
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Definition . For u ∈ X, a measurable function u = u(x, t) defined in QT = R
N × (, T),

T > , is a weak solution of the problem (.)-(.) if

u ∈ Cloc
(
(, T); L

loc
(
R

N)) ∩ Lp
loc

(
, T ; W ,p

loc
(
R

N))

and for every test function ϕ ∈ C∞
 (QT ), the following identity holds:

∫∫

QT

(
uϕt – |∇u|p–∇u · ∇ϕ

)
dx dt = ,

and u(x, t) satisfies the initial-value equation (.) in the following sense:

u(x, t) → u(x) in L
loc

(
R

N)

as t → .

The existence and uniqueness of weak solution of the problem (.)-(.) for the initial
value u ∈ X is shown in [, ], and these solutions satisfy the following proposition.

Proposition . ([, , ]) For every u ∈ X, there exist a time T = T(u) and a weak
solution u(x, t) of the problem (.)-(.) in QT . Moreover, for

 < t ≤ T(u) = C
(u)–(p–), (.)

the solutions u(x, t) are Hölder continuous in QT ≡ (, T) × R
N and satisfy the following

estimates:

∣∣∣∣∣∣u(·, t)
∣∣∣∣∣∣

r ≤ C|||u|||r (.)

and

∣
∣u(x, t)

∣
∣ ≤ Ct– N

N(p–)+p R
p

p– |||u|||
p

N(p–)+p
r if r ≤ R and |x| ≤ R, (.)

where BR is the closed ball in R
N with the radius R.

From the above proposition, the following proposition can easily been proved; see [,
].

Proposition . ([, ]) Let u(x, t) be the nonnegative weak solution of the problem
(.)–(.). Given x ∈R

N , if

B(x) = sup
R>

R– N(p–)+p
p–

∫

|x–y|<R
u(y) dy < ∞,

then, for all  < t ≤ CB(x)–(p–),

u(x, t) = .
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Proposition . ([]) If the initial value u ∈ X, one can easily see that T(u) = ∞ and
thus these solutions are global. Moreover, the evolution p-Laplacian equation generates a
bound semigroup in X given by

S(t) : u → u(x, t). (.)

Moreover, if  ≤ q ≤ ∞ and u ∈ Lq(RN ) ⊂ X, then S(t) is a contraction bounded semi-
group in Lq(RN ).

For  < σ < N , λ >  and u ∈ X, the space-time dilation �σ
λ is defined as

�σ
λ

[
S(t)u

]
(x) = Dσ

λ

[
S
(
λt

)
u

]
(x) = λ

σ
σ (p–)+p u

(
λ


σ (p–)+p x,λt

)
,

where S(t) is the semigroup given by (.) and the dilation Dσ
λ is given by

Dσ
λϕ(x) = λ

σ
σ (p–)+p ϕ

(
λ


σ (p–)+p x

)

for ϕ ∈ L
loc(RN ). In this paper, we consider our problem in the L∞ weight space Wσ (RN ) ≡

{ϕ ∈ L
loc(RN ); |x|σ ϕ(x) ∈ L∞(RN )} with  < σ < N . We equip this space with the norm

‖ϕ‖Wσ (RN ) = ‖| · |σ ϕ(·)‖L∞(RN ). Hence it is a Banach space. Meanwhile, one easily verifies
that, for  < σ < N , Wσ (RN ) ⊂ X. The closed convex set

Bσ ,+
M ≡ {

ϕ ∈ Wσ

(
R

N)
;‖ϕ‖Wσ (RN ) ≤ M and ϕ ≥ 

}

with the weak-star topology of Wσ (RN ) is compact and separable. Thus it can be meter-
izable. We use the symbol dσ ,∗

M to denote this metric. So, for all M ≥ , the metric space
(Bσ ,+

M , dσ ,∗
M ) is compact, hence complete and separable.

In the rest of this section, we study the relation between the semigroup operator S(t)
and the dilation operator Dσ

λ . Suppose u(x, t) is a weak solution of the problem (.)-(.)
with initial value u ∈ X. Let

v(x, t) = �σ
λ

[
S(t)u

]
(x) = λ

σ
σ (p–)+p

(
S
(
λt

)
u

)(
λ


σ (p–)+p x

)
. (.)

So

∂v
∂t

= div
(|∇v|p– · ∇v

)
.

This mean that v(x, t) is a weak solution of the following Cauchy problem:

⎧
⎨

⎩

∂v
∂t = div(|∇v|p– · ∇v) in R

N × (,∞),

v(x, ) = λ
σ

σ (p–)+p u(λ


σ (p–)+p x) = Dσ
λ u(x) in R

N .

Note that

∥∥Dσ
λ u

∥∥
Wσ (RN ) = ‖u‖Wσ (RN ).
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So, u ∈ W σ (RN ), hence

v(x, t) = S(t)
(
Dσ

λ u
)
(x).

Then we get the following commutative relation between the semigroup operator S(t) and
the dilation operator Dσ

λ :

�σ
λ

[
S(t)u

]
= Dσ

λ

[
S
(
λt

)
u

]
= S(t)

[
Dσ

λ u
]
. (.)

For any fixed λ >  and  < σ < N , we now define the map Fσ
λ : S()Bσ ,+

M → S()Bσ ,+
M as

Fσ
λ ≡ Dσ

λ S
(
λ – 

)
= S

(
 –


λ

)
Dσ

λ .

3 Some estimates
In this section, we first estimate the propagation speed of solutions for Problem (.)-(.)
with the nonnegative initial value u ∈ Wσ (RN ). For this purpose, we need some concepts.
Let

d(x) ≡ sup
{

R; u(y) =  a.e. in BR(x)
}

be the distance from x to the support of u and let us introduce the following symbol to
denote the positive set of u(x, t) at time t:

	(t) ≡ {
x ∈R

N ; u(x, t) > 
}

.

We also define the ρ-neighborhood of the set 	(t) as

	ρ(t) ≡ {
x ∈R

N ; d
(
x,	(t)

)
< ρ

}
,

where d(x,	(t)) is the distance from x to 	(t).

Theorem . (Propagation estimate) Suppose  < σ < N and the initial value u ∈
W +

σ (RN ), i.e., u ≥  and u ∈ Wσ (RN ). Let u(x, t) be a nonnegative weak solution of the
problem (.)-(.). For any  ≤ t < t < ∞, then

	(t) ⊂ 	ρ(t–t)(t),

where ρ(t – t) = C(t – t)


σ (p–)+p ‖u‖
p–

σ (p–)+p
Wσ (RN ) .

Proof Without loss of generality, we restrict our consideration to the case t = . Assume
x ∈ R

N with d(x) > . Note first that, if R < d(x), then
∫

BR(x)
u(y) dy = . (.)

For any r ≥ , let R = d(x) + r ≥ d(x). If |x| < R, then

BR(x) ⊂ BR().
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Therefore,

R– N(p–)+p
p–

∫

BR(x)
u(y) dy ≤ C‖u‖Wσ (RN )R

– N(p–)+p
p–

∫

BR()
|y|–σ dy

= C‖u‖Wσ (RN )R
– p

p– –σ ≤ C‖u‖Wσ (RN )d(x)– p
p– –σ . (.)

If |x| ≥ R, then, for any y ∈ BR(x),

|y| ≥ |x| – R ≥ R.

So for  < σ < N , we have

|y|–σ ≤ R–σ .

Therefore,

R– N(p–)+p
p–

∫

BR(x)
u(y) dy ≤ C‖u‖Wσ (RN )R

– N(p–)+p
p– –σ

∫

BR(x)
dy

= C‖u‖Wσ (RN )R
– p

p– –σ ≤ C‖u‖Wσ (RN )d(x)– p
p– –σ .

Combining this with (.) and (.), we have

B(x) = sup
R>

R– N(p–)+p
p–

∫

BR(x)
u(y) dy ≤ C‖u‖Wσ (RN )d(x)– (p–)σ+p

p– .

Therefore, Proposition . implies

u(x, t) =  for all  ≤ t ≤ C‖u‖–(p–)
Wσ (RN )d(x)(p–)σ+p.

This means

	(t) ⊂ 	ρ(t)(),

where ρ(t) = C‖u‖
p–

σ (p–)+p
Wσ (RN ) t


(p–)σ+p . So we complete the proof of this theorem. �

In the rest of this section, we pay our attention on the properties of the semigroup S(t).

Theorem . Let ω ∈ C(RN \ {}) be a homogeneous function of degree . Suppose  <
σ < N and set u(x) = |x|–σω(x). It follows that

S(t)u(x) = t– σ
σ (p–)+p g

(
t– 

σ (p–)+p x
)
, (.)

where g(x) ∈ Cα(RN ) and |x|σ g(x) – ω(x) →  as |x| → ∞.

Proof From (.) and the definition of the initial value u, we have

�σ
λ

[
S(s)u(x)

]
= λ

σ
σ (p–)+p

[
S
(
λs

)
u

](
λ


σ (p–)+p x

)

= S(s)
[
λ

σ
σ (p–)+p u

(
λ


σ (p–)+p ·)](x) = S(s)u(x). (.)



Wang et al. Journal of Inequalities and Applications  (2017) 2017:175 Page 8 of 16

First notice that, for  < σ < N ,

‖u‖r = sup
R≥r

R– N(p–)+p
p–

∫

BR

∣
∣u(x)

∣
∣dx ≤ Cr–σ– p

p– →  as r → ∞.

So,

u ∈ X.

Therefore,

S(s)u ∈ C
α
 ,α(

(,∞) ×R
N)

for some  < α < ; see [, ]. In particular,

S()u(x) ∈ Cα
(
R

N)
.

Now taking s = , λ = t 
 and g(x) = S()u(x) in the expression (.), we obtain

S(t)u(x) = t– σ
σ (p–)+p g

(
t– 

σ (p–)+p x
)

and

g(x) ∈ Cα
(
R

N)
.

The fact S(t)u(x) ∈ C([,∞) ×R
N \ {, }) [, ] clearly implies that, for |x| = ,

t– σ
σ (p–)+p g

(
t– 

σ (p–)+p x
)

= S(t)u(x) → ϕ(x) = |x|–σω(x) = ω(x)

as t → . Let

y = t– 
σ (p–)+p x.

So

|y| → ∞ as t → .

Therefore,

|y|σ g(y) – ω(y) → ,

as |y| → ∞. We complete the proof of this theorem. �

Theorem . (Space-time decay estimates) Given  < σ < N and a constant M > , there
exists a constant C such that if u ∈ Bσ ,+

M (RN ), then

S(t)u(x) ≤ C
(
t


N(p–)+p + |x|)– σ

 , (.)

for all t >  and all x ∈R
N .
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Proof Let

ϕ(x) = M|x|–σ

and

g(x) = S()ϕ(x).

It follows from Theorem . that there exists a constant C such that

∣
∣g(x)

∣
∣ ≤ C

(
 + |x|)– σ

 .

So by (.),

S(t)ϕ(x) ≤ C
(
t


σ (p–)+p + |x|)– σ

 .

By the comparison principle [, ], we get

S(t)u(x) ≤ S(t)ϕ(x) ≤ C
(
t


σ (p–)+p + |x|)– σ

 .

So the proof of this theorem is complete. �

4 Continuity of the semigroup
In this section, we first present the fact that the semigroup operator S(t) are continuous
from the metric space Bσ ,+

M to the space C(RN ), which is the basis of the proof of our main
result.

Theorem . For any fixed τ > , let  < σ < N and M > , then, for any t > τ , S(t) :
(Bσ ,+

M , dσ ,∗
M ) → C(RN ) is continuous. In particular, S() is a continuous map from the metric

space (Bσ ,+
M , dσ ,∗

M ) to the space C(RN ).

Proof Let {un}n≥ ⊂ Bσ ,+
M and u ∈ Bσ ,+

M such that

dσ ,∗
M (un, u) →  as n → ∞.

Therefore,

un → u in D ′(
R

N)
as n → ∞. (.)

Notice also that

‖un‖Wσ (RN ) ≤ M for all n ≥ .

For any t, R > , let

R(t) = R +  + CM
p–

σ (p–)+p t


σ (p–)+p .
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So, for all n ≥ ,

supp
[
( – χR(t))un

] ⊂ {
x ∈R

N ; |x| > R +  + CM
p–

σ (p–)+p t


σ (p–)+p
}

,

where χR(t) is the cut-off function defined on the ball BR(t)+ ≡ {x ∈ R
N ; |x| ≤ R(t) + }

relative to the ball BR(t) ≡ {x ∈R
N ; |x| ≤ R(t)}, i.e.,

χR(t)(x) ∈ C∞


(
R

N)
,  ≤ χR(t)(x) ≤ 

and

χR(t)(x) =

⎧
⎨

⎩
 for x ∈ BR(t),

 for x /∈ BR(t)+.

By Lemma ., we get

supp
[
S(t)( – χR(t))un

] ⊂ {
x ∈R

N ; |x| ≥ R + 
}

.

This means that the value of S(t)un(x) in BR is only dependent on the initial value un in
BR(t). In other words, for x ∈ BR,

S(t)un(x) = S(t)[χR(t)un](x). (.)

For any ε > , taking the above R large enough, the inequality (.) clearly implies that, if
|x| ≥ R, then

∣∣S(t)un(x)
∣∣ <

ε


for all n ≥ . (.)

By (.) and the hypothesis un, u ∈ Wσ (RN ), we get, for  < q < N
σ

,

χR(t)un ⇀ χR(t)u in Lq(
R

N)
.

So,

S(τ )[χR(t)un] ⇀ S(τ )[χR(t)u] in Lq(
R

N)
.

In particular,

S(τ )[χR(t)un] → S(τ )[χR(t)u] in D ′(R).

From (.), we know that there exists a constant C(τ ) such that

∥∥S(τ )[χR(t)un]
∥∥

L∞(RN ) ≤ C(τ ) for all n ≥ .

Therefore,

S(τ )[χR(t)un] → S(τ )[χR(t)u] weakly-star in L∞(
R

N)
.
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From the regularity of the semigroup operator S(t), we obtain, for any fixed t > τ > ,

∥∥S(t)[χR(t)un] – S(t)[χR(t)u]
∥∥

L∞
loc(RN ) → 

as n → ∞. This implies, via (.), that

∥
∥S(t)[un] – S(t)[u]

∥
∥

L∞(BR) =
∥
∥S(t)[χR(t)un] – S(t)[χR(t)u]

∥
∥

L∞(BR) → .

By (.), there exists an integer N such that if n > N , then

∥∥S(t)[un] – S(t)[u]
∥∥

L∞(RN )

≤ ∥∥S(t)[un] – S(t)[u]
∥∥

L∞(BR) +
∥∥S(t)[un]

∥∥
L∞(RN \BR) +

∥∥S(t)[u]
∥∥

L∞(RN \BR)

< ε.

So we complete the proof of this theorem. �

5 Chaotic dynamical system
For any λ >  and M > , we recall that the map Fσ

λ : S()Bσ ,+
M �→ S()Bσ ,+

M is defined as

Fσ
λ = Dσ

λ S
(
λ – 

)
.

The ideas of the following theorem come from []. We also need a lemma which appeared
in [].

Lemma . If f : X → X is transitive and has dense periodic points, then F has sensitive
dependence on initial conditions.

Theorem . If λ >  and M > , then the map Fσ
λ : S()Bσ ,+

M �→ S()Bσ ,+
M is chaotic.

Proof We first verify that the map Fσ
λ is well defined. By Theorem ., the uniqueness the-

orem for the solution of (.)-(.) with u ∈ X, we see that S() is a continuous, injective,
surjective map from the compact Hausdorff space Bσ ,+

M onto the Hausdorff space S()Bσ ,+
M .

So we see that S() is a homeomorphism from the compact set Bσ ,+
M to S()Bσ ,+

M by the
fact that a continuous, injective, surjective map of the compact Hausdorff space onto the
Hausdorff space is a homeomorphism. This means that S()Bσ ,+

M is a compact set. For any
ϕ ∈ Bσ ,+

M , we have

Fσ
λ

[
S()ϕ

]
= S()

[
Dσ

λϕ
] ∈ S()Bσ ,+

M .

So, Fσ
λ is well defined. We will divide the rest proof into four steps.

. The map Fσ
λ is a continuous map on the compact set S()Bσ ,+

M .
For any sequence {vk}k≥ ⊂ Bσ ,+

M and v ∈ Bσ ,+
M , if

S()vk → S()v in C
(
R

N)
as k → ∞,
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then

S
(
λ)vk = S

(
λ – 

)[
S()vk

] → S
(
λ – 

)[
S()v

]
= S

(
λ)v in C

(
R

N)

as k → ∞. Here we have used the facts that λ >  and S(t) is a bounded contractive con-
tinuous semigroup in L∞(RN ) for t >  (Proposition .). Therefore,

∥∥Fσ
λ

[
S()vk

]
– Fσ

λ

[
S()v

]∥∥
L∞(RN )

=
∥∥Dσ

λ

[
S
(
λ)vk

]
– Dσ

λ

[
S
(
λ)v

]∥∥
L∞(RN )

=
∥∥S

(
λ)vk – S

(
λ)v

∥∥
L∞(RN ) → 

as k → ∞. This means that the map Fσ
λ is a continuous map on the compact set S()Bσ ,+

M .
. The periodic points of Fσ

λ are dense in S()Bσ ,+
M .

For any k ∈ Z
+, v ∈ Bσ ,+

M and λ > , let vk be defined as

vk(x) =
+∞∑

n=–∞
χn(x)λ

nσk
σ (p–)+p v

(
λ

nk
σ (p–)+p x

)
,

where

χn(x) =

⎧
⎨

⎩
 if x ∈ An = {λ (n–)k

σ (p–)+p ≤ |y| < λ
(n+)k

σ (p–)+p },
 if x /∈ An.

Note that, for all k > ,

‖vk‖Wσ (RN ) ≤ ‖v‖Wσ (RN ) ≤ M

and

(
Dσ

λ

)kvk = vk .

So

vk ∈ Bσ ,+
M

and

(
Fσ

λ

)k(S()vk
)

=
(
Fσ

λ

)k–[S()
(
Dσ

λ vk
)]

= · · · = S()
[(

Dσ
λ

)kvk)
]

= S()vk .

Therefore, S()vk is a periodic point of Fσ
λ . Note also that

vk(x) = v(x) if x ∈ A.

This means that

vk → v in D ′(
R

N \ {}) as k → ∞,
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hence

vk → v in
(
Bσ ,+

M , dσ ,∗
M

)
as k → ∞.

Using Theorem ., we get

S()vk → S()v in C
(
R

N)
as k → ∞.

This proves that the periodic points of Fσ
λ are dense in S()Bσ ,+

M .
. The map Fσ

λ is topologically transitive.
For any open subsets U and V of S()Bσ ,+

M , there exist a constant ε >  and two functions
ϕ, φ ∈ Bσ ,+

M such that

Bε

(
S()ϕ

) ⊂ U (.)

and

Bε

(
S()φ

) ⊂ V . (.)

Now let

U(x) =
∞∑

n=

(
Dσ

λ–
n

[
χn(x)φ(x)

]
+ Dσ

λ–
n–

[
χn–(x)ϕ(x)

])
, (.)

where

λn = λn+

and χn(x) is the cut-off function defined on the set An ≡ {x ∈ R
N ;λ

–n
σ (p–)+p < |x| <

λ
n

σ (p–)+p } relative to the set An– ≡ {x ∈ R
N ;λ

–n+
σ (p–)+p < |x| < λ

n–
σ (p–)+p }. Notice that, for all

n ≥ ,

supp
[
Dσ

λ–
n

(
χn(x)φ(x)

)] ⊂ {
x ∈R

N ;λ
n+–n
σ (p–)+p < |x| < λ

n++n
σ (p–)+p

}
(.)

and

supp
[
Dσ

λ–
n–

(
χn–(x)ϕ(x)

)] ⊂ {
x ∈R

N ;λ
n–n+
σ (p–)+p < |x| < λ

n+n–
σ (p–)+p

}
. (.)

So, for n ≥ , from (.) and (.), we have

supp Dσ

λ–
n

[
χn(x)φ(x)

] ∩ supp Dσ

λ–
n+

[
χn+(x)ϕ(x)

]
= ∅

and

supp Dσ

λ–
n

[
χn(x)φ(x)

] ∩ supp Dσ

λ–
n–

[
χn–(x)ϕ(x)

]
= ∅.
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Here we have used the fact that, if i > j ≥ , then

i+ – i > j+ + j.

So

U ∈ Bσ ,+
M .

Note also that

Dσ
λn U = φ in An–

and

Dσ
λn+ U = ϕ in An

for n ≥ . So

Dσ
λn U

n→∞−−−→ φ weakly-star in Wσ

(
R

N)

and

Dσ
λn+ U

n→∞−−−→ ϕ weakly-star in Wσ

(
R

N)
.

It follows from Theorem . that

S()Dσ
λn U

n→∞−−−→ S()φ in C
(
R

N)

and

S()Dσ
λn+ U

n→∞−−−→ S()ϕ in C
(
R

N)
.

Then we conclude from the definition of Fσ
λ that

(
Fσ

λ

)n–[
S()U

]
= S()

[(
Dσ

λ

)n
U

] n→∞−−−→ S()φ in C
(
R

N)
(.)

and

(
Fσ

λ

)n[
S()U

]
= S()

[(
Dσ

λ

)n+
U

] n→∞−−−→ S()ϕ in C
(
R

N)
. (.)

So for the above ε > , there exists N ∈N such that if n ≥ N , then

(
Fσ

λ

)n–[
S()U

] ∈ Bε

(
S()φ

) ⊂ V

and

(
Fσ

λ

)n[
S()U

] ∈ Bε

(
S()ϕ

) ⊂ U .
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These results mean that

Fσ
λ U ∩ V �= ∅.

So we complete the proof of that Fσ
λ is topologically transitive.

So the map Fσ
λ is chaotic by Devaney’s definition of chaos and Lemma ., and the proof

of this theorem is complete. �

6 Conclusion
In this paper, our concern here is the properties of the solutions to the Cauchy problem of
the evolution p-Laplacian equation with the initial value u belonging to a weighted L∞

spaces, and we get the following results:
I. The propagation estimate and the decay estimate for the solutions of the problem of

(.)-(.) have been established.
II. The semigroup S(t) generated by the evolution p-Laplacian equation is continuous

from the compact set Bσ ,+
M to the space C(RN ).

III. The map Fσ
λ generated by the evolution p-Laplacian equation is chaotic on the

compact subset S()Bσ ,+
M of C(RN ).

In future work, we hope to continue to study the properties of solutions for the Cauchy
problem of the evolution p-Laplacian equation with the initial value u belonging to other
Banach spaces, especially the unbounded spaces.
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