Skip to main content

Some new results on convex sequences

Abstract

In the present paper, we obtained a main theorem related to factored infinite series. Some new results are also deduced.

1 Introduction

Let \(\sum a_{n}\) be a given infinite series with \((s_{n})\) as the sequence of partial sums. In [1], Borwein introduced the \((C,\alpha ,\beta)\) methods in the following form: Let \(\alpha+\beta\ne -1,-2,\ldots\) . Then the \((C,\alpha,\beta)\) mean is defined by

$$ {u_{n}^{\alpha,\beta}}=\frac{1}{A_{n}^{\alpha+\beta}} \sum _{v=1}^{n}{A_{n-v}^{\alpha-1}} {A_{v}^{\beta}}s_{v}, $$
(1)

where

$$ {A_{n}^{\alpha+\beta}}= O \bigl(n^{\alpha+\beta} \bigr),\qquad {A_{0}^{\alpha+\beta}=1}\quad \mbox{and}\quad {A_{-n}^{\alpha+\beta}=0} \quad \mbox{for } n>0. $$
(2)

The series \(\sum{a_{n}}\) is said to be summable \({ \vert {C},\alpha,\beta ,\sigma;\delta \vert }_{k}\), \(k\geq1\), \(\delta\geq0\), \(\alpha+\beta>-1\), and \(\sigma\in {R}\), if (see [2])

$$ \sum_{n=1}^{\infty}n^{\sigma(\delta k+k-1)} \frac{ \vert t_{n}^{\alpha,\beta} \vert ^{k}}{{n}^{k}}< \infty, $$
(3)

where \({t_{n}^{\alpha,\beta}}\) is the \((C,\alpha,\beta)\) transform of the sequence \((na_{n})\). It should be noted that, for \({\beta=0}\), the \({ \vert {C},\alpha,\beta ,\sigma;\delta \vert }_{k}\) summability method reduces to the \({ \vert {C},\alpha,\sigma;\delta \vert }_{k}\) summability method (see [3]). Let us consider the sequence \((\theta_{n}^{\alpha,\beta})\) which is defined by (see [4])

$$\begin{aligned} \theta_{n}^{\alpha,\beta}= \textstyle\begin{cases} \vert t_{n}^{\alpha,\beta} \vert , & \alpha=1,\beta>-1, \\ \max_{1\leq v\leq n} \vert t_{v}^{\alpha,\beta} \vert , & 0< \alpha< 1, \beta>-1. \end{cases}\displaystyle \end{aligned}$$
(4)

2 The main result

Here, we shall prove the following theorem.

Theorem

If \((\lambda_{n})\) is a convex sequence (see [5]) such that the series \(\sum\frac{\lambda_{n}}{n}\) is convergent and let \((\theta _{n}^{\alpha,\beta})\) be a sequence defined as in (4). If the condition

$$\begin{aligned} \sum_{n=1}^{m}n^{\sigma(\delta k+k-1)} \frac{(\theta_{n}^{\alpha,\beta })^{k}}{n^{k-1}}=O(m) \quad\textit{as } {m\rightarrow\infty} \end{aligned}$$
(5)

holds, then the series \(\sum a_{n} \lambda_{n} \) is summable \({ \vert {C},\alpha,\beta,\sigma;\delta \vert }_{k}\), \(k\geq1\), \(0\leq \delta<\alpha\leq1\), \(\sigma\in{R}\), and \(({\alpha+\beta +1})k-{\sigma(\delta k+k-1)}>1 \).

One should note that, if we set \(\sigma=1\), then we obtain a well-known result of Bor (see [6]).

We will use the following lemmas for the proof of the theorem given above.

Lemma 1

[4]

If \(0<\alpha\leq1\), \(\beta>-1\), and \(1 \leq v \leq n\), then

$$\begin{aligned} \Biggl\vert {\sum_{p=0}^{v}A_{n-p}^{\alpha-1}A_{p}^{\beta}a_{p}} \Biggr\vert \leq \max_{1 \leq m \leq v} \Biggl\vert {\sum _{p=0}^{m} A_{m-p}^{\alpha-1}A_{p}^{\beta}a_{p}} \Biggr\vert . \end{aligned}$$
(6)

Lemma 2

[7]

If \((\lambda_{n})\) is a convex sequence such that the series \(\sum\frac{\lambda_{n}}{n}\) is convergent, then \(n{\Delta\lambda_{n}}\rightarrow0\textit{ as }n\rightarrow\infty\) and \(\sum_{n=1}^{\infty} (n+1)\Delta^{2} {\lambda_{n}}\) is convergent.

3 Proof of the theorem

Let \((T_{n}^{\alpha,\beta})\) be the nth \((C,\alpha,\beta)\) mean of the sequence \((n{a_{n}}{\lambda_{n}})\). Then, by (1), we have

$$\begin{aligned} T_{n}^{\alpha,\beta} = & \frac{1}{A_{n}^{\alpha+\beta}} \sum _{v=1}^{n}A_{n-v}^{\alpha-1}A_{v}^{\beta} va_{v}\lambda_{v} . \end{aligned}$$

First applying Abel’s transformation and then using Lemma 1, we have

$$\begin{aligned} &T_{n}^{\alpha,\beta} = \frac{1}{A_{n}^{\alpha+\beta}} \sum _{v=1}^{n-1}\Delta\lambda_{v} \sum _{p=1}^{v}A_{n-p}^{\alpha-1}A_{p}^{\beta}p a_{p}+ \frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} {A_{n-v}^{\alpha-1}}A_{v}^{\beta}va_{v}, \\ &\bigl\vert T_{n}^{\alpha,\beta} \bigr\vert \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \vert { \Delta\lambda_{v}} \vert \Biggl\vert {\sum _{p=1}^{v}A_{n-p}^{\alpha-1}A_{p}^{\beta}p a_{p}} \Biggr\vert + \frac{ \vert \lambda_{n} \vert }{A_{n}^{\alpha+\beta}} \Biggl\vert \sum _{v=1}^{n} {A_{n-v}^{\alpha-1}} {A_{v}^{\beta}}v{a_{v}} \Biggr\vert \\ &\phantom{\bigl\vert T_{n}^{\alpha,\beta} \bigr\vert }\leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha}A_{v}^{\beta} \theta_{v}^{\alpha,\beta} \vert {\Delta \lambda_{v}} \vert + \vert {\lambda_{n}} \vert \theta_{n}^{\alpha,\beta} \\ &\phantom{\bigl\vert T_{n}^{\alpha,\beta} \bigr\vert }= T_{n,1}^{\alpha,\beta} + T_{n,2}^{\alpha,\beta}. \end{aligned}$$

In order to complete the proof of the theorem by using Minkowski’s inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty}n^{\sigma(\delta k+k-1)} \frac{ \vert T_{n,r}^{\alpha,\beta} \vert ^{k}}{n^{k}} < \infty,\quad \mbox{for } r=1,2. $$

For \(k>1\), we can apply Hölder’s inequality with indices k and \({k'}\), where \(\frac{1}{k}+\frac{1}{k'}=1\), and we obtain

$$\begin{aligned} \sum_{n=2}^{m+1}n^{\sigma(\delta k+k-1)} \frac{ \vert {T_{n,1}^{\alpha,\beta}} \vert ^{k}}{n^{k}} \leq{}&\sum_{n=2}^{m+1} n^{\sigma(\delta k+k-1)-k} \Biggl\vert { \frac{1}{A_{n}^{\alpha+\beta}} \sum _{v=1}^{n-1}A_{v}^{\alpha}A_{v}^{\beta} \theta_{v}^{\alpha,\beta}\Delta \lambda_{v}} \Biggr\vert ^{k} \\ = {}& O(1) \sum_{n=2}^{m+1} \frac{1}{n^{(\alpha+ \beta +1)k-\sigma(\delta k+k-1)}} \Biggl\{ \sum_{v=1}^{n-1} v^{\alpha k}v^{\beta k} \Delta\lambda_{v} \bigl( \theta_{v}^{\alpha,\beta} \bigr)^{k} \Biggr\} \\ &{}\times \Biggl\{ \sum_{v=1}^{n-1}\Delta \lambda_{v} \Biggr\} ^{k-1} \\ = {}& O(1)\sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta\lambda_{v} \bigl(\theta_{v}^{\alpha,\beta} \bigr)^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{(\alpha+ \beta+1)k-\sigma(\delta k+k-1)}} \\ = {}& O(1)\sum_{v=1}^{m}v^{(\alpha+\beta) k} \Delta\lambda_{v} \bigl(\theta_{v}^{\alpha,\beta} \bigr)^{k} \int_{v}^{\infty} \frac{dx}{ x^{(\alpha+ \beta+1)k-\sigma(\delta k+k-1)}} \\ = {}& O(1)\sum_{v=1}^{m}\Delta \lambda_{v}v^{\sigma(\delta k+k-1)} \frac{(\theta_{v}^{\alpha,\beta})^{k}}{v^{k-1}} \\ = {}& O(1)\sum_{v=1}^{m-1}\Delta(\Delta \lambda_{v})\sum_{p=1}^{v} p^{\sigma(\delta k+k-1)}\frac{(\theta_{p}^{\alpha,\beta})^{k}}{p^{k-1}} \\ &{}+ O(1)\Delta\lambda_{m}\sum_{v=1}^{m} v^{\sigma(\delta k+k-1)}\frac {(\theta_{v}^{\alpha,\beta})^{k}}{v^{k-1}} \\ ={} & O(1)\sum_{v=1}^{m} v \Delta^{2}\lambda_{v} + O(1)m {\Delta\lambda_{m}} = O(1) \quad\mbox{as } {m\rightarrow\infty}, \end{aligned}$$

by virtue of hypotheses of the theorem and Lemma 2. Similarly, we have

$$\begin{aligned} \sum_{n=1}^{m}n^{\sigma(\delta k+k-1)} \frac{ \vert {T_{n,2}^{\alpha,\beta}} \vert ^{k}}{n^{k}} = {}& O(1)\sum_{n=1}^{m} \frac {\lambda_{n}}{n}n^{\sigma(\delta k+k-1)}\frac{(\theta_{n}^{\alpha,\beta })^{k}}{n^{k-1}} \\ = {}& O(1)\sum_{n=1}^{m-1} \Delta \biggl( \frac{\lambda_{n}}{n} \biggr)\sum_{v=1}^{n}v^{\sigma(\delta k+k-1)} \frac{({\theta_{v}^{\alpha,\beta}})^{k}}{v^{k-1}} \\ &{} + O(1)\frac{\lambda_{m}}{m}\sum_{n=1}^{m}n^{\sigma(\delta k+k-1)} \frac{({\theta_{n}^{\alpha,\beta}})^{k}}{n^{k-1}} \\ = {}& O(1)\sum_{n=1}^{m-1}\Delta \lambda_{n} + O(1)\sum_{n=1}^{m-1} \frac{\lambda_{n+1}}{n+1} + O(1)\lambda_{m} \\ ={} & O(1)\sum_{n=1}^{m-1}\Delta \lambda_{n} + O(1)\sum_{n=2}^{m-1} \frac{\lambda_{n}}{n} + O(1)\lambda_{m} \\ = {}& O(1) (\lambda_{1}-\lambda_{m})+ O(1)\sum _{n=1}^{m-1}\frac{\lambda_{n}}{n} + O(1) \lambda_{m} \\ = {}&O(1) \quad\mbox{as } {m\rightarrow\infty} \end{aligned}$$

in view of hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

4 Conclusions

By selecting proper values for α, β, δ, and σ, we have some new results concerning the \({ \vert {C,1} \vert }_{k}\), \({ \vert {C},\alpha \vert }_{k}\), and \({ \vert {C},\alpha ;\delta \vert }_{k}\) summability methods.

References

  1. Borwein, D: Theorems on some methods of summability. Quart. J. Math., Oxford, Ser. (2) 9, 310-316 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bor, H: On the generalized absolute Cesàro summability. Pac. J. Appl. Math. 2, 217-222 (2010)

    MATH  Google Scholar 

  3. Tuncer, AN: On generalized absolute Cesàro summability factors. Ann. Pol. Math. 78, 25-29 (2002)

    Article  MATH  Google Scholar 

  4. Bor, H: On a new application of power increasing sequences. Proc. Est. Acad. Sci. 57, 205-209 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zygmund, A: Trigonometric Series. Inst. Mat. Polskiej Akademi Nauk, Warsaw (1935)

    MATH  Google Scholar 

  6. Bor, H: A new application of convex sequences. J. Class. Anal. 1, 31-34 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chow, HC: On the summability factors of Fourier series. J. Lond. Math. Soc. 16, 215-220 (1941)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Bor.

Additional information

Competing interests

The author declares that he has no competing interests.

Author’s contributions

The author carried out all work of this article and the main theorem. The author read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bor, H. Some new results on convex sequences. J Inequal Appl 2017, 165 (2017). https://doi.org/10.1186/s13660-017-1438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1438-4

MSC

Keywords