## RESEARCH



CrossMark

# Some new results on convex sequences

Hüseyin Bor\*

\*Correspondence: hbor33@gmail.com Independent Consultant, P.O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

## Abstract

In the present paper, we obtained a main theorem related to factored infinite series. Some new results are also deduced.

MSC: 26D15; 40D15; 40F05

**Keywords:** absolute summability; convex sequence; Minkowsky inequality; Hölder inequality

## **1** Introduction

Let  $\sum a_n$  be a given infinite series with  $(s_n)$  as the sequence of partial sums. In [1], Borwein introduced the  $(C, \alpha, \beta)$  methods in the following form: Let  $\alpha + \beta \neq -1, -2, \ldots$  Then the  $(C, \alpha, \beta)$  mean is defined by

$$u_n^{\alpha,\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{\nu=1}^n A_{n-\nu}^{\alpha-1} A_\nu^\beta s_\nu, \tag{1}$$

where

$$A_n^{\alpha+\beta} = O(n^{\alpha+\beta}), \qquad A_0^{\alpha+\beta} = 1 \quad \text{and} \quad A_{-n}^{\alpha+\beta} = 0 \quad \text{for } n > 0.$$
(2)

The series  $\sum a_n$  is said to be summable  $|C, \alpha, \beta, \sigma; \delta|_k$ ,  $k \ge 1$ ,  $\delta \ge 0$ ,  $\alpha + \beta > -1$ , and  $\sigma \in R$ , if (see [2])

$$\sum_{n=1}^{\infty} n^{\sigma(\delta k+k-1)} \frac{|t_n^{\alpha,\beta}|^k}{n^k} < \infty,$$
(3)

where  $t_n^{\alpha,\beta}$  is the  $(C,\alpha,\beta)$  transform of the sequence  $(na_n)$ . It should be noted that, for  $\beta = 0$ , the  $|C,\alpha,\beta,\sigma;\delta|_k$  summability method reduces to the  $|C,\alpha,\sigma;\delta|_k$  summability method (see [3]). Let us consider the sequence  $(\theta_n^{\alpha,\beta})$  which is defined by (see [4])

$$\theta_n^{\alpha,\beta} = \begin{cases} |t_n^{\alpha,\beta}|, & \alpha = 1, \beta > -1, \\ \max_{1 \le \nu \le n} |t_\nu^{\alpha,\beta}|, & 0 < \alpha < 1, \beta > -1. \end{cases}$$
(4)

### 2 The main result

Here, we shall prove the following theorem.



© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

**Theorem** If  $(\lambda_n)$  is a convex sequence (see [5]) such that the series  $\sum \frac{\lambda_n}{n}$  is convergent and let  $(\theta_n^{\alpha,\beta})$  be a sequence defined as in (4). If the condition

$$\sum_{n=1}^{m} n^{\sigma(\delta k+k-1)} \frac{(\theta_n^{\alpha,\beta})^k}{n^{k-1}} = O(m) \quad as \ m \to \infty$$
(5)

holds, then the series  $\sum a_n \lambda_n$  is summable  $|C, \alpha, \beta, \sigma; \delta|_k$ ,  $k \ge 1$ ,  $0 \le \delta < \alpha \le 1$ ,  $\sigma \in R$ , and  $(\alpha + \beta + 1)k - \sigma(\delta k + k - 1) > 1$ .

One should note that, if we set  $\sigma = 1$ , then we obtain a well-known result of Bor (see [6]).

We will use the following lemmas for the proof of the theorem given above.

**Lemma 1** ([4]) *If*  $0 < \alpha \le 1$ ,  $\beta > -1$ , *and*  $1 \le v \le n$ , *then* 

$$\left|\sum_{p=0}^{\nu} A_{n-p}^{\alpha-1} A_p^{\beta} a_p\right| \le \max_{1\le m\le \nu} \left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_p^{\beta} a_p\right|.$$
(6)

**Lemma 2** ([7]) If  $(\lambda_n)$  is a convex sequence such that the series  $\sum \frac{\lambda_n}{n}$  is convergent, then  $n\Delta\lambda_n \to 0$  as  $n \to \infty$  and  $\sum_{n=1}^{\infty} (n+1)\Delta^2\lambda_n$  is convergent.

## 3 Proof of the theorem

Let  $(T_n^{\alpha,\beta})$  be the *n*th  $(C,\alpha,\beta)$  mean of the sequence  $(na_n\lambda_n)$ . Then, by (1), we have

$$T_n^{\alpha,\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{\nu=1}^n A_{n-\nu}^{\alpha-1} A_{\nu}^{\beta} \nu a_{\nu} \lambda_{\nu}.$$

First applying Abel's transformation and then using Lemma 1, we have

$$\begin{split} T_n^{\alpha,\beta} &= \frac{1}{A_n^{\alpha+\beta}} \sum_{\nu=1}^{n-1} \Delta \lambda_\nu \sum_{p=1}^{\nu} A_{n-p}^{\alpha-1} A_p^{\beta} p a_p + \frac{\lambda_n}{A_n^{\alpha+\beta}} \sum_{\nu=1}^n A_{n-\nu}^{\alpha-1} A_{\nu}^{\beta} \nu a_{\nu}, \\ \left| T_n^{\alpha,\beta} \right| &\leq \frac{1}{A_n^{\alpha+\beta}} \sum_{\nu=1}^{n-1} \left| \Delta \lambda_\nu \right| \left| \sum_{p=1}^{\nu} A_{n-p}^{\alpha-1} A_p^{\beta} p a_p \right| + \frac{|\lambda_n|}{A_n^{\alpha+\beta}} \left| \sum_{\nu=1}^n A_{n-\nu}^{\alpha-1} A_{\nu}^{\beta} \nu a_\nu \right| \\ &\leq \frac{1}{A_n^{\alpha+\beta}} \sum_{\nu=1}^{n-1} A_\nu^{\alpha} A_\nu^{\beta} \theta_\nu^{\alpha,\beta} |\Delta \lambda_\nu| + |\lambda_n| \theta_n^{\alpha,\beta} \\ &= T_{n,1}^{\alpha,\beta} + T_{n,2}^{\alpha,\beta}. \end{split}$$

In order to complete the proof of the theorem by using Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} n^{\sigma(\delta k+k-1)} \frac{|T_{n,r}^{\alpha,\beta}|^k}{n^k} < \infty, \quad \text{for } r=1,2.$$

For k > 1, we can apply Hölder's inequality with indices k and k', where  $\frac{1}{k} + \frac{1}{k'} = 1$ , and we obtain

$$\begin{split} \sum_{n=2}^{m+1} n^{\sigma(\delta k+k-1)} \frac{|T_{n,1}^{\alpha,\beta}|^k}{n^k} &\leq \sum_{n=2}^{m+1} n^{\sigma(\delta k+k-1)-k} \left| \frac{1}{A_n^{\alpha+\beta}} \sum_{\nu=1}^{n-1} A_\nu^\alpha A_\nu^\beta \theta_\nu^{\alpha,\beta} \Delta \lambda_\nu \right|^k \\ &= O(1) \sum_{n=2}^{m+1} \frac{1}{n^{(\alpha+\beta+1)k-\sigma(\delta k+k-1)}} \left\{ \sum_{\nu=1}^{n-1} \nu^{\alpha k} \nu^{\beta k} \Delta \lambda_\nu (\theta_\nu^{\alpha,\beta})^k \right\} \\ &\quad \times \left\{ \sum_{\nu=1}^{n-1} \Delta \lambda_\nu \right\}^{k-1} \\ &= O(1) \sum_{\nu=1}^{m} \nu^{(\alpha+\beta)k} \Delta \lambda_\nu (\theta_\nu^{\alpha,\beta})^k \sum_{n=\nu+1}^{m+1} \frac{1}{n^{(\alpha+\beta+1)k-\sigma(\delta k+k-1)}} \\ &= O(1) \sum_{\nu=1}^{m} \nu^{(\alpha+\beta)k} \Delta \lambda_\nu (\theta_\nu^{\alpha,\beta})^k \int_\nu^\infty \frac{dx}{x^{(\alpha+\beta+1)k-\sigma(\delta k+k-1)}} \\ &= O(1) \sum_{\nu=1}^m \Delta \lambda_\nu \nu^{\sigma(\delta k+k-1)} \frac{(\theta_\nu^{\alpha,\beta})^k}{\nu^{k-1}} \\ &= O(1) \sum_{\nu=1}^{m-1} \Delta (\Delta \lambda_\nu) \sum_{p=1}^{\nu} p^{\sigma(\delta k+k-1)} \frac{(\theta_p^{\alpha,\beta})^k}{p^{k-1}} \\ &+ O(1) \Delta \lambda_m \sum_{\nu=1}^m \nu^{\sigma(\delta k+k-1)} \frac{(\theta_\nu^{\alpha,\beta})^k}{\nu^{k-1}} \\ &= O(1) \sum_{\nu=1}^m \nu \Delta^2 \lambda_\nu + O(1) m \Delta \lambda_m = O(1) \quad \text{as } m \to \infty, \end{split}$$

by virtue of hypotheses of the theorem and Lemma 2. Similarly, we have

$$\sum_{n=1}^{m} n^{\sigma(\delta k+k-1)} \frac{|T_{n,2}^{\alpha,\beta}|^k}{n^k} = O(1) \sum_{n=1}^{m} \frac{\lambda_n}{n} n^{\sigma(\delta k+k-1)} \frac{(\theta_n^{\alpha,\beta})^k}{n^{k-1}}$$
$$= O(1) \sum_{n=1}^{m-1} \Delta\left(\frac{\lambda_n}{n}\right) \sum_{\nu=1}^{n} \nu^{\sigma(\delta k+k-1)} \frac{(\theta_\nu^{\alpha,\beta})^k}{\nu^{k-1}}$$
$$+ O(1) \frac{\lambda_m}{m} \sum_{n=1}^{m} n^{\sigma(\delta k+k-1)} \frac{(\theta_n^{\alpha,\beta})^k}{n^{k-1}}$$
$$= O(1) \sum_{n=1}^{m-1} \Delta\lambda_n + O(1) \sum_{n=1}^{m-1} \frac{\lambda_{n+1}}{n+1} + O(1)\lambda_m$$
$$= O(1) \sum_{n=1}^{m-1} \Delta\lambda_n + O(1) \sum_{n=2}^{m-1} \frac{\lambda_n}{n} + O(1)\lambda_m$$
$$= O(1)(\lambda_1 - \lambda_m) + O(1) \sum_{n=1}^{m-1} \frac{\lambda_n}{n} + O(1)\lambda_m$$
$$= O(1) \text{ as } m \to \infty$$

in view of hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

## 4 Conclusions

By selecting proper values for  $\alpha$ ,  $\beta$ ,  $\delta$ , and  $\sigma$ , we have some new results concerning the  $|C,1|_k$ ,  $|C,\alpha|_k$ , and  $|C,\alpha;\delta|_k$  summability methods.

#### **Competing interests**

The author declares that he has no competing interests.

#### Author's contributions

The author carried out all work of this article and the main theorem. The author read and approved the final manuscript.

#### **Publisher's Note**

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

#### Received: 11 May 2017 Accepted: 26 June 2017 Published online: 14 July 2017

#### References

- 1. Borwein, D: Theorems on some methods of summability. Quart. J. Math., Oxford, Ser. (2) 9, 310-316 (1958)
- 2. Bor, H: On the generalized absolute Cesàro summability. Pac. J. Appl. Math. 2, 217-222 (2010)
- 3. Tuncer, AN: On generalized absolute Cesàro summability factors. Ann. Pol. Math. 78, 25-29 (2002)
- 4. Bor, H: On a new application of power increasing sequences. Proc. Est. Acad. Sci. 57, 205-209 (2008)
- 5. Zygmund, A: Trigonometric Series. Inst. Mat. Polskiej Akademi Nauk, Warsaw (1935)
- 6. Bor, H: A new application of convex sequences. J. Class. Anal. 1, 31-34 (2012)
- 7. Chow, HC: On the summability factors of Fourier series. J. Lond. Math. Soc. 16, 215-220 (1941)

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com