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Abstract
In the present paper, we obtained a main theorem related to factored infinite series.
Some new results are also deduced.
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1 Introduction
Let

∑
an be a given infinite series with (sn) as the sequence of partial sums. In [], Borwein

introduced the (C,α,β) methods in the following form: Let α + β �= –, –, . . . . Then the
(C,α,β) mean is defined by

uα,β
n =


Aα+β

n

n∑

v=

Aα–
n–vAβ

v sv, ()

where

Aα+β
n = O

(
nα+β

)
, Aα+β

 =  and Aα+β
–n =  for n > . ()

The series
∑

an is said to be summable |C,α,β ,σ ; δ|k , k ≥ , δ ≥ , α + β > –, and σ ∈ R,
if (see [])

∞∑

n=

nσ (δk+k–) |tα,β
n |k
nk < ∞, ()

where tα,β
n is the (C,α,β) transform of the sequence (nan). It should be noted that,

for β = , the |C,α,β ,σ ; δ|k summability method reduces to the |C,α,σ ; δ|k summability
method (see []). Let us consider the sequence (θα,β

n ) which is defined by (see [])

θα,β
n =

⎧
⎨

⎩

|tα,β
n |, α = ,β > –,

max≤v≤n |tα,β
v |,  < α < ,β > –.

()

2 The main result
Here, we shall prove the following theorem.
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Theorem If (λn) is a convex sequence (see []) such that the series
∑

λn
n is convergent and

let (θα,β
n ) be a sequence defined as in (). If the condition

m∑

n=

nσ (δk+k–) (θα,β
n )k

nk– = O(m) as m → ∞ ()

holds, then the series
∑

anλn is summable |C,α,β ,σ ; δ|k , k ≥ ,  ≤ δ < α ≤ , σ ∈ R, and
(α + β + )k – σ (δk + k – ) > .

One should note that, if we set σ = , then we obtain a well-known result of Bor (see []).

We will use the following lemmas for the proof of the theorem given above.

Lemma  ([]) If  < α ≤ , β > –, and  ≤ v ≤ n, then

∣
∣
∣
∣
∣

v∑

p=

Aα–
n–pAβ

p ap

∣
∣
∣
∣
∣
≤ max

≤m≤v

∣
∣
∣
∣
∣

m∑

p=

Aα–
m–pAβ

p ap

∣
∣
∣
∣
∣
. ()

Lemma  ([]) If (λn) is a convex sequence such that the series
∑

λn
n is convergent, then

n�λn →  as n → ∞ and
∑∞

n=(n + )�λn is convergent.

3 Proof of the theorem
Let (Tα,β

n ) be the nth (C,α,β) mean of the sequence (nanλn). Then, by (), we have

Tα,β
n =


Aα+β

n

n∑

v=

Aα–
n–vAβ

v vavλv.

First applying Abel’s transformation and then using Lemma , we have

Tα,β
n =


Aα+β

n

n–∑

v=

�λv

v∑

p=

Aα–
n–pAβ

p pap +
λn

Aα+β
n

n∑

v=

Aα–
n–vAβ

v vav,

∣
∣Tα,β

n
∣
∣ ≤ 

Aα+β
n

n–∑

v=

|�λv|
∣
∣
∣
∣
∣

v∑

p=

Aα–
n–pAβ

p pap

∣
∣
∣
∣
∣

+
|λn|
Aα+β

n

∣
∣
∣
∣
∣

n∑

v=

Aα–
n–vAβ

v vav

∣
∣
∣
∣
∣

≤ 
Aα+β

n

n–∑

v=

Aα
v Aβ

v θα,β
v |�λv| + |λn|θα,β

n

= Tα,β
n, + Tα,β

n, .

In order to complete the proof of the theorem by using Minkowski’s inequality, it is suffi-
cient to show that

∞∑

n=

nσ (δk+k–) |Tα,β
n,r |k
nk < ∞, for r = , .
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For k > , we can apply Hölder’s inequality with indices k and k′, where 
k + 

k′ = , and we
obtain

m+∑

n=

nσ (δk+k–) |Tα,β
n, |k
nk ≤

m+∑

n=

nσ (δk+k–)–k

∣
∣
∣
∣
∣


Aα+β

n

n–∑

v=

Aα
v Aβ

v θα,β
v �λv

∣
∣
∣
∣
∣

k

= O()
m+∑

n=


n(α+β+)k–σ (δk+k–)

{ n–∑

v=

vαkvβk�λv
(
θα,β

v
)k

}

×
{ n–∑

v=

�λv

}k–

= O()
m∑

v=

v(α+β)k�λv
(
θα,β

v
)k

m+∑

n=v+


n(α+β+)k–σ (δk+k–)

= O()
m∑

v=

v(α+β)k�λv
(
θα,β

v
)k

∫ ∞

v

dx
x(α+β+)k–σ (δk+k–)

= O()
m∑

v=

�λvvσ (δk+k–) (θα,β
v )k

vk–

= O()
m–∑

v=

�(�λv)
v∑

p=

pσ (δk+k–) (θα,β
p )k

pk–

+ O()�λm

m∑

v=

vσ (δk+k–) (θα,β
v )k

vk–

= O()
m∑

v=

v�λv + O()m�λm = O() as m → ∞,

by virtue of hypotheses of the theorem and Lemma . Similarly, we have

m∑

n=

nσ (δk+k–) |Tα,β
n, |k
nk = O()

m∑

n=

λn

n
nσ (δk+k–) (θα,β

n )k

nk–

= O()
m–∑

n=

�

(
λn

n

) n∑

v=

vσ (δk+k–) (θα,β
v )k

vk–

+ O()
λm

m

m∑

n=

nσ (δk+k–) (θα,β
n )k

nk–

= O()
m–∑

n=

�λn + O()
m–∑

n=

λn+

n + 
+ O()λm

= O()
m–∑

n=

�λn + O()
m–∑

n=

λn

n
+ O()λm

= O()(λ – λm) + O()
m–∑

n=

λn

n
+ O()λm

= O() as m → ∞
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in view of hypotheses of the theorem and Lemma . This completes the proof of the the-
orem.

4 Conclusions
By selecting proper values for α, β , δ, and σ , we have some new results concerning the
|C, |k , |C,α|k , and |C,α; δ|k summability methods.
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