Some new results on convex sequences

Hüseyin Bor*

Correspondence:
hbor33@gmail.com
Independent Consultant, P.O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In the present paper, we obtained a main theorem related to factored infinite series. Some new results are also deduced.

MSC: 26D15; 40D15; 40F05
Keywords: absolute summability; convex sequence; Minkowsky inequality; Hölder inequality

1 Introduction

Let $\sum a_{n}$ be a given infinite series with $\left(s_{n}\right)$ as the sequence of partial sums. In [1], Borwein introduced the (C, α, β) methods in the following form: Let $\alpha+\beta \neq-1,-2, \ldots$. Then the (C, α, β) mean is defined by

$$
\begin{equation*}
u_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} s_{v}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } n>0 . \tag{2}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta, \sigma ; \delta|_{k}, k \geq 1, \delta \geq 0, \alpha+\beta>-1$, and $\sigma \in R$, if (see [2])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\sigma(\delta k+k-1)} \frac{\left|t_{n}^{\alpha, \beta}\right|^{k}}{n^{k}}<\infty, \tag{3}
\end{equation*}
$$

where $t_{n}^{\alpha, \beta}$ is the (C, α, β) transform of the sequence $\left(n a_{n}\right)$. It should be noted that, for $\beta=0$, the $|C, \alpha, \beta, \sigma ; \delta|_{k}$ summability method reduces to the $|C, \alpha, \sigma ; \delta|_{k}$ summability method (see [3]). Let us consider the sequence $\left(\theta_{n}^{\alpha, \beta}\right.$) which is defined by (see [4])

$$
\theta_{n}^{\alpha, \beta}= \begin{cases}\left|t_{n}^{\alpha, \beta}\right|, & \alpha=1, \beta>-1 \tag{4}\\ \max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, & 0<\alpha<1, \beta>-1\end{cases}
$$

2 The main result

Here, we shall prove the following theorem.
o The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

Theorem If $\left(\lambda_{n}\right)$ is a convex sequence (see [5]) such that the series $\sum \frac{\lambda_{n}}{n}$ is convergent and let $\left(\theta_{n}^{\alpha, \beta}\right)$ be a sequence defined as in (4). If the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{\sigma(\delta k+k-1)} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k-1}}=O(m) \quad \text { as } m \rightarrow \infty \tag{5}
\end{equation*}
$$

holds, then the series $\sum a_{n} \lambda_{n}$ is summable $|C, \alpha, \beta, \sigma ; \delta|_{k}, k \geq 1,0 \leq \delta<\alpha \leq 1, \sigma \in R$, and $(\alpha+\beta+1) k-\sigma(\delta k+k-1)>1$.

One should note that, if we set $\sigma=1$, then we obtain a well-known result of Bor (see [6]).

We will use the following lemmas for the proof of the theorem given above.

Lemma 1 ([4]) If $0<\alpha \leq 1, \beta>-1$, and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| . \tag{6}
\end{equation*}
$$

Lemma 2 ([7]) If $\left(\lambda_{n}\right)$ is a convex sequence such that the series $\sum \frac{\lambda_{n}}{n}$ is convergent, then $n \Delta \lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$ and $\sum_{n=1}^{\infty}(n+1) \Delta^{2} \lambda_{n}$ is convergent.

3 Proof of the theorem

Let $\left(T_{n}^{\alpha, \beta}\right)$ be the nth (C, α, β) mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1), we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

First applying Abel's transformation and then using Lemma 1, we have

$$
\begin{aligned}
T_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \\
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|\left|\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha, \beta} \\
& =T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta} .
\end{aligned}
$$

In order to complete the proof of the theorem by using Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{\sigma(\delta k+k-1)} \frac{\left|T_{n, r}^{\alpha, \beta}\right|^{k}}{n^{k}}<\infty, \quad \text { for } r=1,2
$$

For $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, and we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\sigma(\delta k+k-1)} \frac{\left|T_{n, 1}^{\alpha, \beta}\right|^{k}}{n^{k}} \leq & \sum_{n=2}^{m+1} n^{\sigma(\delta k+k-1)-k}\left|\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta} \Delta \lambda_{v}\right|^{k} \\
= & \left.O(1) \sum_{n=2}^{m+1} \frac{1}{n^{(\alpha+\beta+1) k-\sigma(\delta k+k-1)}} \sum_{v=1}^{n-1} v^{\alpha k} v^{\beta k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\right\} \\
& \times\left\{\sum_{v=1}^{n-1} \Delta \lambda_{v}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \sum_{n=v+1}^{m+1} \frac{n^{(\alpha+\beta+1) k-\sigma(\delta k+k-1)}}{m} \\
= & O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k} \Delta \lambda_{v}\left(\theta_{v}^{\alpha, \beta}\right)^{k} \int_{v}^{\infty} \frac{x^{(\alpha+\beta+1) k-\sigma(\delta k+k-1)}}{\sum_{v}} \\
= & O(1) \sum_{v=1}^{m} \Delta \lambda_{v} v^{\sigma(\delta k+k-1)} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v^{k-1}} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(\Delta \lambda_{v}\right) \sum_{p=1}^{v} p^{\sigma(\delta k+k-1)} \frac{\left(\theta_{p}^{\alpha, \beta}\right)^{k}}{p^{k-1}} \\
& +O(1) \Delta \lambda_{m} \sum_{v=1}^{m} v^{\sigma(\delta k+k-1)} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v^{k-1}} \\
= & \sum_{v=1}^{m} v \Delta^{2} \lambda_{v}+O(1) m^{2} \Delta \lambda_{m}=O(1) \quad a s m \rightarrow \infty
\end{aligned}
$$

by virtue of hypotheses of the theorem and Lemma 2. Similarly, we have

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\sigma(\delta k+k-1)} \frac{\left|T_{n, 2}^{\alpha, \beta}\right|^{k}}{n^{k}}= & O(1) \sum_{n=1}^{m} \frac{\lambda_{n}}{n} n^{\sigma(\delta k+k-1)} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k-1}} \\
= & O(1) \sum_{n=1}^{m-1} \Delta\left(\frac{\lambda_{n}}{n}\right) \sum_{v=1}^{n} v^{\sigma(\delta k+k-1)} \frac{\left(\theta_{v}^{\alpha, \beta}\right)^{k}}{v^{k-1}} \\
& +O(1) \frac{\lambda_{m}}{m} \sum_{n=1}^{m} n^{\sigma(\delta k+k-1)} \frac{\left(\theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k-1}} \\
= & O(1) \sum_{n=1}^{m-1} \Delta \lambda_{n}+O(1) \sum_{n=1}^{m-1} \frac{\lambda_{n+1}}{n+1}+O(1) \lambda_{m} \\
= & O(1) \sum_{n=1}^{m-1} \Delta \lambda_{n}+O(1) \sum_{n=2}^{m-1} \frac{\lambda_{n}}{n}+O(1) \lambda_{m} \\
= & O(1)\left(\lambda_{1}-\lambda_{m}\right)+O(1) \sum_{n=1}^{m-1} \frac{\lambda_{n}}{n}+O(1) \lambda_{m} \\
= & O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

in view of hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

4 Conclusions

By selecting proper values for α, β, δ, and σ, we have some new results concerning the $|C, 1|_{k},|C, \alpha|_{k}$, and $|C, \alpha ; \delta|_{k}$ summability methods.

Competing interests

The author declares that he has no competing interests.

Author's contributions

The author carried out all work of this article and the main theorem. The author read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 May 2017 Accepted: 26 June 2017 Published online: 14 July 2017

References

1. Borwein, D: Theorems on some methods of summability. Quart. J. Math., Oxford, Ser. (2) 9, 310-316 (1958)
2. Bor, H: On the generalized absolute Cesàro summability. Pac. J. Appl. Math. 2, 217-222 (2010)
3. Tuncer, AN: On generalized absolute Cesàro summability factors. Ann. Pol. Math. 78, 25-29 (2002)
4. Bor, H: On a new application of power increasing sequences. Proc. Est. Acad. Sci. 57, 205-209 (2008)
5. Zygmund, A: Trigonometric Series. Inst. Mat. Polskiej Akademi Nauk, Warsaw (1935)
6. Bor, H: A new application of convex sequences. J. Class. Anal. 1, 31-34 (2012)
7. Chow, HC: On the summability factors of Fourier series. J. Lond. Math. Soc. 16, 215-220 (1941)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:
 - Convenient online submission
 - Rigorous peer review
 - Open access: articles freely available online
 - High visibility within the field
 - Retaining the copyright to your article

