Skip to main content

Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities

Abstract

In this paper, by application of the Manasevich-Mawhin continuation theorem, we investigate the existence of a positive periodic solution for a kind of ϕ-Laplacian singular Liénard equation with attractive and repulsive singularities.

1 Introduction

Liénard equation [1]

$$ { } x'' + f(x)x' + g(x) = 0 $$
(1.1)

appears as a simplified model in many domains in science and engineering. It was intensively studied during the first half of the 20th century as it can be used to model oscillating circuits or simple pendulums. For example, Van der Pol oscillator

$$x''-\mu\bigl(1-x^{2}\bigr)x'+x=0 $$

is a Liénard equation.

From then on, there have been a good amount of work on periodic solutions for Liénard equations (see [212] and the references cited therein). Some classical tools have been used to study Liénard equation in the literature, including Mawhin’s coincidence degree theorem [2, 3, 5], topological degree methods [4, 6], Schauder’s fixed point theorem [7], Massera’s theorem [8], the Manasevich-Mawhin continuation theorem [9, 12], generalized polar coordinates [10] and the Poincaré map [11].

At the same time, some authors began to consider Liénard equation with singularity [1320]. For example, in 1996, Zhang [20]  discussed a kind of singular Liénard equation

$$ { } x''+f(x)x'+g(t,x)=0, $$
(1.2)

where g was on the singular case, i.e., when \(g(t,x)\rightarrow+\infty\), as \(x\rightarrow0^{+}\). By application of coincidence degree theory, the author obtained that (1.2) had at least one periodic solution. Afterwards, Jebelean and Mawhin investigated the following quasilinear equation of p-Laplacian type:

$$\bigl( \bigl\vert x' \bigr\vert ^{p-2}x' \bigr)'+f(x)x'(t)+g(x)=h(t), $$

where g satisfied slightly strong singularity, i.e.,

$$\int^{1}_{0}g(u)\,du=-\infty. $$

The authors proved that the above problem had at least one positive periodic solution through a basic application of the Manasevich-Mawhin continuation theorem. Recently, Xin and Cheng [19] studied the following p-Laplacian Liénard equation with singularity and deviating argument:

$$ { } \bigl( \bigl\vert x' \bigr\vert ^{p-2}x'\bigr)'+f(x)x'+g \bigl(t,x(t-\sigma)\bigr)=e(t). $$
(1.3)

By applications of coincidence degree theory and some analysis skills, they obtained that (1.3) had at least one positive periodic solution.

All the aforementioned results concern singular Liénard equation and singular p-Laplacian Liénard equation. There are few results on the ϕ-Laplacian Liénard equation with singularity. Motivated by [13, 19, 20], in this paper, we further consider the following ϕ-Laplacian Liénard equation:

$$ { } \bigl(\phi\bigl(x'(t)\bigr)\bigr)'+f \bigl(t,x(t)\bigr)x'(t)+g\bigl(x(t-\sigma)\bigr)=e(t), $$
(1.4)

where \(f:\mathbb{R}\to\mathbb{R}\) is an \(L^{2}\)-Carathéodory function, which means, it is measurable in the first variable and continuous in the second variable, and for every \(0< r< s\), there exists \(h_{r,s}\in L^{2}[0,T]\) such that \(\vert g(t,x(t)) \vert \leq h_{r,s}\) for all \(x\in[r,s]\) and a.e. \(t\in[0,T]\); τ is a positive constant; \(e\in L^{2}(\mathbb{R})\) is a T-periodic function; \(g:(0,+\infty)\to \mathbb{R}\) is the \(L^{2}\)-function, the nonlinear term g of (1.4) can be with a singularity at origin, i.e.,

$$ \lim_{x\rightarrow0^{+}} g(x)=+\infty, \quad \Bigl(\mbox{or } \lim _{x\rightarrow0^{+}} g(x)=-\infty\Bigr), \quad \mbox{uniformly in } t. $$

It is said that (1.4) is of attractive type (resp. repulsive type) if \(g(x)\rightarrow+\infty\) (resp. \(g(x)\rightarrow-\infty\)) as \(x\rightarrow0^{+}\).

Moreover, \(\phi:\mathbb{R}\rightarrow\mathbb{R}\) is a continuous function and \(\phi(0)=0\), which satisfies

\((A_{1})\) :

\((\phi(x_{1})-\phi(x_{2}))(x_{1}-x_{2})>0\) for \(\forall x_{1}\neq x_{2}, x_{1}, x_{2}\in\mathbb{R}\);

\((A_{2})\) :

There exists a function \(\alpha:[0,+\infty]\rightarrow[0,+\infty], \alpha(s)\rightarrow+\infty\) as \(s\rightarrow+\infty\), such that \(\phi(x)\cdot x\geq\alpha( \vert x \vert ) \vert x \vert \) for \(\forall x\in\mathbb{R}\).

It is easy to see that ϕ represents a large class of nonlinear operators, including \(\vert u \vert ^{p-2}u: \mathbb{R}\rightarrow\mathbb{R} \) which is a p-Laplacian operator.

The remaining part of the paper is organized as follows. In Section 2, we give some preliminary lemmas. In Section 3, by employing the Manasevich-Mawhin continuation theorem, we state and prove the existence of a positive periodic solution for (1.4) with attractive singularity. In Section 4, we investigate the existence result for (1.4) with repulsive singularity. In Section 5, two numerical examples demonstrate the validity of the method. Our results improve and extend the results in [13, 15, 1820].

2 Preliminary lemmas

For the T-periodic boundary value problem

$$ { } \bigl(\phi\bigl(x'(t)\bigr)\bigr)'= \tilde{f}\bigl(t,x,x'\bigr), $$
(2.1)

here \(\tilde{f}:[0,T]\times\mathbb{R}\times\mathbb{R}\rightarrow\mathbb{R}\) is assumed to be Carathéodory.

Lemma 2.1

Manasevich-Mawhin [21]

Let Ω be an open bounded set in \(C^{1}_{T}:=\{x\in C^{1}(\mathbb{R},\mathbb{R}): x\textit{ is $T$-periodic}\}\). If

  1. (i)

    for each \(\lambda\in(0,1)\), the problem

    $$\bigl(\phi\bigl(x'\bigr)\bigr)'=\lambda \tilde{f} \bigl(t,x,x'\bigr), \qquad x(0)=x(T), \qquad x'(0)=x'(T) $$

    has no solution on Ω;

  2. (ii)

    the equation

    $$F(a):=\frac{1}{T} \int^{T}_{0}\tilde{f}\bigl(t,x,x' \bigr)\,dt=0 $$

    has no solution on \(\partial\Omega\cap\mathbb{R}\);

  3. (iii)

    the Brouwer degree of F

    $$\deg\{F,\Omega\cap\mathbb{R},0\}\neq0, $$

    then the periodic boundary value problem (2.1) has at least one periodic solution on Ω̄.

Next, we embed equation (1.4) into the following equation family with a parameter \(\lambda\in(0,1]\):

$$ { } \bigl(\phi\bigl(x'(t)\bigr)\bigr)'+ \lambda f\bigl(t,x(t)\bigr)x'(t)+\lambda g\bigl(x(t-\tau)\bigr)= \lambda e(t). $$
(2.2)

By applications of Lemma 2.1, we obtain the following result.

Lemma 2.2

Suppose that \((A_{1})\) and \((A_{2})\) hold. Assume that there exist positive constants \(E_{1}, E_{2}, E_{3}\) and \(E_{1}< E_{2}\) such that the following conditions hold:

  1. (1)

    Each possible periodic solution x to equation (2.2) such that \(E_{1}< x(t)< E_{2}\), for all \(t\in[0,T]\) and \(\Vert x' \Vert < E_{3}\), here \(\Vert x' \Vert :=\max_{t\in[0,T]} \vert x'(t) \vert \).

  2. (2)

    Each possible solution C to equation

    $$g(C)-\frac{1}{T} \int^{T}_{0} e(t)\,dt=0 $$

    satisfies \(E_{1}< C< E_{2}\).

  3. (3)

    It holds

    $$\biggl(g(E_{1})-\frac{1}{T} \int^{T}_{0} e(t)\,dt \biggr) \biggl(g(E_{2})- \frac {1}{T} \int^{T}_{0} e(t)\,dt \biggr)< 0. $$

    Then (1.4) has at least one T-periodic solution.

3 Main results (I): periodic solution of (1.4) with attractive singularity

In this section, we investigate the existence of a positive periodic solution for (1.4) with attractive singularity.

Theorem 3.1

Assume that conditions \((A_{1})\) and \((A_{2})\) hold. Suppose that the following conditions hold:

\((H_{1})\) :

There exist constants \(0< d_{1}< d_{2}\) such that \(g(x)-e(t)>0\) for \(x\in(0,d_{1})\) and \(g(x)-e(t)<0\) for \(x\in(d_{2},+\infty)\).

\((H_{2})\) :

There exist positive constants \(a, b\) and m such that

$$ g(x)\leq a x^{m}+b, \quad \textit{for all } x>0. $$
(3.1)
\((H_{3})\) :

(Attractive singularity) \(\lim_{x\to 0^{+}}\int^{1}_{x}g(s)\,ds=+\infty\).

\((H_{4})\) :

There exists a constant \(\gamma>0\) such that \(\inf_{x\in\mathbb{R}} \vert f(t,x) \vert \geq\gamma>0\).

Then (1.4) has a positive T-periodic solution.

Proof

Firstly, we claim that there exists a point \(t_{1}\in[0,T]\) such that

$$ { } d_{1}\leq x(t_{1})\leq d_{2}. $$
(3.2)

Let \(\underline{t}\), be, respectively, the global minimum point and the global maximum point \(x(t)\) on \([0,T]\); then \(x'(\underline{t})=0\) and \(x'(\overline{t})=0\), and we claim that

$$ { } \bigl(\phi\bigl(x'(\underline{t})\bigr) \bigr)'\geq0. $$
(3.3)

In fact, if (3.3) does not hold, then \((\phi(x'(\underline{t})))'<0\) and there exists \(\varepsilon>0\) such that \((\phi(x'(t)))'<0\) for \(t\in(\underline{t}-\varepsilon,\underline{t}+\varepsilon)\). Therefore \(\phi(x'(t))\) is strictly decreasing for \(t\in(\underline{t}-\varepsilon,\underline{t}+\varepsilon)\). From \((A_{1})\), we know that \(x'(t)\) is strictly decreasing for \(t\in(\underline{t}-\varepsilon,\underline{t}+\varepsilon)\). This contradicts the definition of \(\underline{t}\). Thus, (3.3) is true. From (2.2) and (3.3), we have

$$ { } g\bigl(x(\underline{t}-\tau)\bigr)-e(\underline{t})\leq0. $$
(3.4)

Similarly, we can get

$$ { } g\bigl(x(\overline{t}-\tau)\bigr)-e(\overline{t})\geq0. $$
(3.5)

From \((H_{1})\), (3.4) and (3.5), we have

$$x(\underline{t}-\tau)\geq d_{1}\quad \mbox{and}\quad x(\overline{t}-\tau)\leq d_{2}. $$

In view of x being a continuous function, we can get (3.2).

Multiplying both sides of (2.2) by \(x'(t)\) and integrating over the interval \([0,T]\), we have

$$\begin{aligned} { } &\int^{T}_{0}\bigl(\phi\bigl(x'(t)\bigr) \bigr)'x'(t)\,dt+\lambda \int ^{T}_{0}f\bigl(t,x(t)\bigr) \bigl\vert x'(t) \bigr\vert ^{2}\,dt+\lambda \int^{T}_{0}g\bigl(x(t-\tau)\bigr)x'(t)\,dt \\ &\quad= \lambda \int ^{T}_{0}e(t)x'(t)\,dt. \end{aligned}$$
(3.6)

Moreover, we have

$$\begin{aligned} { } \int^{T}_{0}\bigl(\phi\bigl(x'(t)\bigr) \bigr)'x'(t)\,dt&= \int^{T}_{0}x'(t)\,d\bigl(\phi \bigl(x'(t)\bigr)\bigr) \\ &= \bigl[\phi \bigl(x'(t) \bigr)x'(t) \bigr]^{T}_{0}- \int^{T}_{0}\phi\bigl(x'(t) \bigr)\,dx'(t)=0 \end{aligned}$$
(3.7)

and

$$ { } \int^{T}_{0}g\bigl(x(t-\tau)\bigr)x'(t)\,dt= \int^{T}_{0}g\bigl(x(t-\tau)\bigr)\,dx(t)= \int^{T}_{0}g\bigl(x(t-\tau )\bigr)\,dx(t-\tau)=0, $$
(3.8)

since \(dx(t)=\frac{dx(t-\tau)}{d(t-\tau)}\,dt=dx(t-\tau)\).

Substituting (3.7) and (3.8) into (3.6), we have

$$ { } \int^{T}_{0}f\bigl(t,x(t)\bigr) \bigl\vert x'(t) \bigr\vert ^{2}\,dt= \int^{T}_{0}e(t)x'(t)\,dt. $$
(3.9)

From (3.9), we have

$$\biggl\vert \int^{T}_{0} f\bigl(t,x(t)\bigr) \bigl\vert x'(t) \bigr\vert ^{2}\,dt \biggr\vert = \biggl\vert \int^{T}_{0}e(t)x'(t)\,dt \biggr\vert . $$

From \((H_{4})\), we know

$$\biggl\vert \int^{T}_{0} f\bigl(t,x(t)\bigr) \bigl\vert x'(t) \bigr\vert ^{2}\,dt \biggr\vert = \int^{T}_{0} \bigl\vert f\bigl(t,x(t)\bigr) \bigr\vert \bigl\vert x'(t) \bigr\vert ^{2}\,dt\geq\gamma \int ^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt. $$

Therefore, we can get

$$\begin{aligned} \gamma \int^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt\leq{}& \int^{T}_{0} \bigl\vert e(t) \bigr\vert \bigl\vert x'(t) \bigr\vert \, dt \\ \leq{}& \biggl( \int^{T}_{0} \bigl\vert e(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}} \biggl( \int ^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}} \\ ={}& \Vert e \Vert _{2} \biggl( \int^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}}, \end{aligned}$$

where \(\Vert e \Vert _{2}= (\int^{T}_{0} \vert e(t) \vert ^{2}\,dt )^{\frac{1}{2}}\). It is easy to see that there exists a positive constant \(M_{1}'\) (independent of λ) such that

$$ { } \int^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt\leq M_{1}'. $$
(3.10)

From (3.2) and (3.10), we have

$$\begin{aligned} { } x(t)&=x(t_{1})+ \int^{t}_{t_{1}}x'(s)\,ds\leq d_{2}+ \int^{T}_{0} \bigl\vert x'(t) \bigr\vert \,dt \\ &\leq d_{2}+\sqrt{T} \biggl( \int^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}}\leq d_{2}+\sqrt{T} \bigl(M_{1}' \bigr)^{\frac{1}{2}}:=M_{1}. \end{aligned}$$
(3.11)

On the other hand, integrating both sides of (2.2) over \([0,T]\), we have

$$ { } \int^{T}_{0}\bigl[f\bigl(t,x(t)\bigr)x'(t)+g \bigl(x(t-\tau)\bigr)-e(t)\bigr]\,dt=0. $$
(3.12)

Therefore, from (3.10), (3.12) and \((H_{2})\), we have

$$\begin{aligned} &\int^{T}_{0} \bigl\vert g\bigl(x(t-\tau)\bigr) \bigr\vert \,dt \\ &\quad= \int_{g(x(t-\tau))\geq0}g\bigl(x(t-\tau)\bigr)\,dt- \int _{g(x(t-\tau))\leq0}g\bigl(x(t-\tau)\bigr)\,dt \\ &\quad =2 \int_{g(x(t-\tau))\geq0}g\bigl(x(t-\tau)\bigr)\,dt+ \int^{T}_{0}f\bigl(t,x(t)\bigr)x'(t)\,dt- \int ^{T}_{0}e(t)\,dt \\ &\quad \leq2 \int_{g(u(t-\tau))\geq0}\bigl(ax^{m}(t-\tau)+b\bigr)\,dt+ \int ^{T}_{0} \bigl\vert f\bigl(t,x(t)\bigr) \bigr\vert \bigl\vert x'(t) \bigr\vert \,dt+ \int^{T}_{0} \bigl\vert e(t) \bigr\vert \,dt \\ &\quad \leq2a \int^{T}_{0} \bigl\vert x(t-\tau) \bigr\vert ^{m}\,dt+2bT+ \biggl( \int^{T}_{0} \bigl\vert f\bigl(t,x(t)\bigr) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}} \biggl( \int^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}} + \Vert e \Vert _{2}T^{\frac{1}{2}} \\ &\quad \leq2aM_{1}^{m}T+2bT+ \Vert f_{M_{1}} \Vert _{2} {M'}_{1}^{\frac{1}{2}}+ \Vert e \Vert _{2}T^{\frac{1}{2}}, \end{aligned}$$
(3.13)

where \(f_{M_{1}}:=\max_{0\leq x(t)\leq M_{1}} \vert f(t,x) \vert , \Vert f_{M_{1}} \Vert _{2}:= (\int^{T}_{0} \vert f(t,x(t)) \vert ^{2}\,dt )^{\frac {1}{2}}\). As \(x(0)=x(T)\), there exists a point \(t_{2}\in[0,T]\) such that \(x'(t_{2})=0\), while \(\phi(0)=0\), from (3.10), (3.12) and (3.13), we have

$$\begin{aligned} \bigl\Vert \phi\bigl(x' \bigr) \bigr\Vert ={}&\max_{t\in[0,T]}\bigl\{ \bigl\vert \phi \bigl(x'(t)\bigr) \bigr\vert \bigr\} \\ ={}&\max_{t\in[t_{2},t_{2}+T]} \biggl\{ \biggl\vert \int^{t}_{t_{2}}\bigl(\phi\bigl(x'(s)\bigr) \bigr)'\,ds \biggr\vert \biggr\} \\ \leq{}& \int^{T}_{0} \bigl\vert f\bigl(t,x(t)\bigr) \bigr\vert \bigl\vert x'(t) \bigr\vert \,dt+ \int^{T}_{0} \bigl\vert g\bigl(x(t-\tau)\bigr) \bigr\vert \,dt+ \int ^{T}_{0} \bigl\vert e(t) \bigr\vert \,dt \\ \leq{}& \biggl( \int^{T}_{0} \bigl\vert f\bigl(t,x(t)\bigr) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}} \biggl( \int ^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}}+ \int^{T}_{0} \bigl\vert g\bigl(u(t-\tau)\bigr) \bigr\vert \,dt \\ &{}+ \int ^{T}_{0} \bigl\vert e(t) \bigr\vert \,dt \\ \leq{}& 2 \bigl(aM_{1}^{m}T+bT+ \Vert f_{M_{1}} \Vert _{2} {M'}_{1}^{\frac{1}{2}}+ \Vert e \Vert _{2}T^{\frac{1}{2}} \bigr):={M'}_{2}. \end{aligned}$$
(3.14)

We claim that there exists a positive constant \(M_{2}>M_{2}'+1\) such that, for all \(t\in\mathbb{R}\),

$$ { } \bigl\Vert x' \bigr\Vert \leq M_{2}. $$
(3.15)

In fact, if \(x'\) is not bounded, then from the definition of α, there exists a positive constant \(M_{2}''\) such that \(\alpha( \vert x' \vert )>M_{2}''\) for some \(x'\in\mathbb{R}\). However, from \((A_{2})\), we have

$$\alpha\bigl( \bigl\vert x' \bigr\vert \bigr) \bigl\vert x' \bigr\vert \leq\phi\bigl(x'\bigr)x' \leq \bigl\vert \phi\bigl(x'\bigr) \bigr\vert \bigl\vert x' \bigr\vert \leq M_{2}' \bigl\vert x' \bigr\vert . $$

Then we can get

$$\alpha\bigl( \bigl\vert x' \bigr\vert \bigr)\leq M_{2}' \quad\mbox{for all } x\in\mathbb{R}, $$

which is a contradiction. So, (3.15) holds.

From (2.2), we have

$$ { } \bigl(\phi\bigl(x'(t+\tau)\bigr) \bigr)'+\lambda f\bigl(t+\tau,x(t+\tau)\bigr)x'(t+ \tau)+\lambda g\bigl(x(t)\bigr)=\lambda e(t+\tau). $$
(3.16)

Multiplying both sides of (3.16) by \(x'(t)\) and integrating on \([\xi,t]\), here \(\xi\in[0,T]\), we get

$$\begin{aligned} \lambda \int^{x(t)}_{x(\xi)}g(x)\,dx={}&\lambda \int^{t}_{\xi}g\bigl(x(s)\bigr)x'(s)\,ds \\ ={}&- \int^{t}_{\xi}\bigl(\phi\bigl(x'(s+\tau) \bigr)\bigr)'x'(s)\,ds-\lambda \int^{t}_{\xi}f\bigl(s+\tau ,x(s+\tau) \bigr)x'(s+\tau)x'(s)\,ds \\ &{}+\lambda \int^{t}_{\xi}e(s+\tau)x'(s)\,ds. \end{aligned}$$
(3.17)

By (3.14) and (3.15), we can get

$$\begin{aligned} &\biggl\vert \int^{t}_{\xi}\bigl(\phi\bigl(x'(t+\tau) \bigr)\bigr)'x'(s)\,ds \biggr\vert \\ &\quad \leq \int^{t}_{\xi } \bigl\vert \bigl(\phi \bigl(x'(s+\tau)\bigr)\bigr)' \bigr\vert \bigl\vert x'(s) \bigr\vert \,ds \\ &\quad\leq \bigl\Vert x' \bigr\Vert \int^{T}_{0} \bigl\vert \bigl(\phi \bigl(x'(t+\tau)\bigr)\bigr)' \bigr\vert \,dt \\ &\quad \leq\lambda \bigl\Vert x' \bigr\Vert \biggl( \int^{T}_{0} \bigl\vert f\bigl(t,x'(t) \bigr) \bigr\vert \,dt+ \int^{T}_{0} \bigl\vert g\bigl(x(t-\tau)\bigr) \bigr\vert \,dt+ \int ^{T}_{0} \bigl\vert e(t) \bigr\vert \,dt \biggr) \\ &\quad \leq 2\lambda M_{2}\bigl(aM_{1}^{m}T+bT+ \Vert f_{M_{1}} \Vert _{2}{M'}_{1}^{\frac{1}{2}}+ \Vert e \Vert _{2}T^{\frac{1}{2}}\bigr). \end{aligned}$$

Moreover, from (3.15), we have

$$\begin{aligned} & \biggl\vert \int^{t}_{\xi}f\bigl(s+\tau,x(s+\tau) \bigr)x'(t+\tau)x'(s)\,ds \Big|\leq \biggr\Vert x' \bigr\Vert ^{2}\sqrt{T} \biggl( \int^{T}_{0} \bigl\vert f\bigl(s+\tau,x(s+\tau) \bigr) \bigr\vert ^{2}\,ds \biggr)\\ &\phantom{\biggl\vert \int^{t}_{\xi}f\bigl(s+\tau,x(s+\tau) \bigr)x'(t+\tau)x'(s)\,ds \biggr\vert }\leq M_{2}^{2} \sqrt{T} \Vert f_{M_{1}} \Vert _{2}, \\ & \biggl\vert \int^{t}_{\xi}e(t+\tau)u'(t)\Big\vert \,dt \biggr\vert \leq M_{2}\sqrt{T} \Vert e \Vert _{2}. \end{aligned}$$

From (3.17), we have

$$\begin{aligned} { } \biggl\vert \int^{u(t)}_{u(\xi)}g_{0}(u)\,du \biggr\vert &\leq M_{2}\bigl(2aM_{1}^{m}T+2bT+2 \Vert f_{M_{1}} \Vert _{2}{M'}_{1}^{\frac{1}{2}}+M_{2} \sqrt{T} \Vert f_{M_{1}} \Vert _{2} +3\sqrt{T} \Vert e \Vert _{2}\bigr) \\ &:=M'_{3}. \end{aligned}$$
(3.18)

From \((H_{3})\), we know that there exists a constant \(M_{3}>0\) such that

$$ { } x(t)\geq M_{3}, \quad \forall t\in[\xi,T]. $$
(3.19)

Similarly, we can consider \(t\in[0,\xi]\).

Let \(E_{1}<\min\{d_{1},M_{3}\}\), \(E_{2}>\max\{d_{2}, M_{1}\}\), \(E_{3}>M_{2}\) be constants, from (3.11), (3.15) and (3.19), we can get that the periodic solution x to (2.2) satisfies

$$ E_{1}< x(t)< E_{2}, \qquad\bigl\Vert x' \bigr\Vert < E_{3}. $$

Then condition (1) of Lemma 2.1 is satisfied. For a possible solution C to equation

$$g(C)-\frac{1}{T} \int^{T}_{0}e(t)\,dt=0, $$

it satisfies \(E_{1}< C<E_{2}\). Therefore, condition (2) of Lemma 2.2 holds. Finally, we consider condition (3) of Lemma 2.2 is also satisfied. In fact, from \((H_{1})\), we have

$$g(E_{1})-\frac{1}{T} \int^{T}_{0}e(t)\,dt>0 $$

and

$$g(E_{2})-\frac{1}{T} \int^{T}_{0}e(t)\,dt< 0. $$

So condition (3) is also satisfied. By application of Lemma 2.2, we get that (1.4) has at least one positive periodic solution. □

4 Main results (II): periodic solution of (1.4) with repulsive singularity

In this section, we consider (1.4) in the case that \(f(t,x)\equiv f(x)\). Then (1.4) can be written as

$$ { } \bigl(\phi\bigl(x'(t)\bigr)\bigr)'+f \bigl(x(t)\bigr)x'(t)+g\bigl(x(t-\tau)\bigr)=e(t). $$
(4.1)

We will discuss the existence of a positive periodic solution for (4.1) with repulsive singularity.

Theorem 4.1

Assume that conditions \((A_{1})\) and \((A_{2})\) hold. Suppose that the following conditions hold:

\((H_{1}^{*})\) :

There exist constants \(0< d_{1}^{*}< d_{2}^{*}\) such that \(g(x)<0\) for \(x\in(0,d_{1}^{*})\) and \(g(x)>0\) for \(x\in(d_{2}^{*},+\infty)\).

\((H_{2}^{*})\) :

\(\int^{T}_{0}e(t)\,dt=0\).

\((H_{3}^{*})\) :

(Repulsive singularity) \(\lim_{x\to 0^{+}}\int^{1}_{x}g(s)\,ds=-\infty\).

\((H_{4}^{*})\) :

There exists a constant \(\gamma^{*}>0\) such that \(\inf_{x\in\mathbb{R}} \vert f(x) \vert \geq\gamma^{*}>0\).

Then (4.1) has at least one positive T-periodic solution.

Proof

Firstly, we embed equation (4.1) into the following equation family with a parameter \(\lambda\in(0,1]\):

$$ { } \bigl(\phi\bigl(x'(t)\bigr)\bigr)'+ \lambda f\bigl(x(t)\bigr)x'(t)+\lambda g\bigl(x(t-\tau)\bigr)=\lambda e(t). $$
(4.2)

Integrating both sides of (4.2) over \([0,T]\), from \((H_{2}^{*})\), we have

$$ { } \int^{T}_{0}g\bigl(x(t-\tau)\bigr)\,dt=0. $$
(4.3)

From the continuity of g, we know there exists \(t_{1}^{*}\in[0,T]\) such that

$$g\bigl(x\bigl(t_{1}^{*}-\tau\bigr)\bigr)=0. $$

Let \(t_{3}=t_{1}^{*}-\tau\), from assumption \((H_{1})\) we can get

$$d_{1}^{*}\leq x(t_{3})\leq d_{2}^{*}. $$

We follow the same strategy and notation as in the proof of Theorem 3.1. We know that there exists \(M_{1}^{*}>0\) such that

$$x(t)\leq M_{1}^{*}. $$

Next, we prove that there exists a positive constant \(M_{2}^{*}\) such that \(\Vert x' \Vert \leq M_{2}^{*}\).

In fact, we get from (4.3) that

$$\begin{aligned} { } \int^{T}_{0} \bigl\vert g\bigl(x(t-\tau)\bigr) \bigr\vert \,dt={}& \int_{g(x(t-\tau))\geq0}g\bigl(x(t-\tau)\bigr)\,dt- \int _{g(x(t-\tau))\leq0}g\bigl(x(t-\tau)\bigr)\,dt \\ ={}&2 \int_{g(x(t-\tau))\geq0}g\bigl(x(t-\tau)\bigr)\,dt \\ \leq{}&2 \int^{T}_{0}g^{+}\bigl(x(t-\tau)\bigr)\,dt, \end{aligned}$$
(4.4)

where \(g^{+}(x)=\max\{g(x),0\}\). Since \(g^{+}(x(t-\tau))\geq0\), from \((H_{1}^{*})\) we know \(x(t-\tau)\geq d_{2}^{*}\). Then we have

$$\begin{aligned} { } \int^{T}_{0} \bigl\vert g\bigl(x(t-\tau)\bigr) \bigr\vert \,dt\leq{}&2 \int^{T}_{0}g^{+}\bigl(x(t-\tau)\bigr)\,dt \\ \leq{}&2T \bigl\Vert g^{+}_{M_{1}} \bigr\Vert , \end{aligned}$$
(4.5)

where \(\Vert g^{+}_{M_{1}} \Vert =\max_{d_{2}^{*}\leq x\leq M_{1}}g^{+}(x)\).

As \(x(0)=x(T)\), there exists a point \(t_{4}\in[0,T]\) such that \(x'(t_{4})=0\), which \(\phi(0)=0\), we have

$$\begin{aligned} { } \bigl\vert \phi\bigl(x'(t) \bigr) \bigr\vert ={}& \biggl\vert \int^{t}_{t_{4}}\bigl(\phi\bigl(x'(s)\bigr) \bigr)'\,ds \biggr\vert \\ \leq{}&\lambda \biggl( \int^{T}_{0} \bigl\vert f\bigl(x(t)\bigr) \bigr\vert \bigl\vert x'(t) \bigr\vert \,dt+ \int^{T}_{0} \bigl\vert g\bigl(x(t-\sigma )\bigr) \bigr\vert \,dt+ \int^{T}_{0} \bigl\vert e(t) \bigr\vert \,dt \biggr) \\ \leq{}&\lambda \biggl( \Vert f_{M_{1}} \Vert T^{\frac{1}{2}} \biggl( \int ^{T}_{0} \bigl\vert x'(t) \bigr\vert ^{2}\,dt \biggr)^{\frac{1}{2}}+2T \bigl\Vert g^{+}_{M_{1}} \bigr\Vert +T^{\frac{1}{2}} \Vert e \Vert _{2} \biggr) \\ \leq{}&\lambda \bigl( \Vert f_{M_{1}} \Vert T^{\frac{1}{2}} \bigl(M_{1}' \bigr)^{\frac {1}{2}}+2T \bigl\Vert g^{+}_{M_{1}} \bigr\Vert +T^{\frac{1}{2}} \Vert e \Vert _{2} \bigr). \end{aligned}$$
(4.6)

Thus, from (3.15) we know that there exists some positive constant \(M_{2}^{*}\) such that

$$ { } \bigl\Vert x' \bigr\Vert \leq M_{2}^{*}. $$
(4.7)

The proof left is the same as that of Theorem 3.1. □

5 Examples

Example 5.1

Consider the following ϕ-Laplacian Liénard equation with attractive singularity

$$ { } \bigl(\phi\bigl(x'(t)\bigr)\bigr)'+ \bigl(5x^{6}\cos^{2}t+10\bigr)x'(t)-3x^{m}(t- \tau)+\frac{1}{x^{\kappa}(t-\tau)}=e^{\cos^{2}t}, $$
(5.1)

where \(\phi(u)=ue^{ \vert u \vert ^{2}}\), τ is a positive constant and \(0<\tau <T\), \(m\geq0\) and \(\kappa\geq1\).

Comparing (5.1) to (1.4), it is easy to see that \(g(x)=-3x^{m}(t-\tau)+\frac{1}{x^{\kappa}(t-\tau)}\), \(f(t,x)=5x^{6}\cos^{t}+10\), \(e(t)=e^{\cos^{2}t}, T=\pi\). Obviously, we get

$$\bigl( xe^{ \vert x \vert ^{2}}-ye^{ \vert y \vert ^{2}}\bigr) (x-y)\geq\bigl( \vert x \vert e^{ \vert x \vert ^{2}}- \vert y \vert e^{ \vert y \vert ^{2}}\bigr) \bigl( \vert y \vert - \vert y \vert \bigr)\geq0 $$

and

$$\phi(x)\cdot x= \vert x \vert ^{2}e^{ \vert x \vert ^{2}}. $$

So, conditions \((A_{1})\) and \((A_{2})\) hold. Moreover, it is easy to see that there exist constants \(d_{1}=0.1\) and \(d_{2}=1\) such that \((H_{1})\) holds. \(g(x)\leq3x^{m}+1\), here \(a=3, b=1\), condition \((H_{2})\) holds. Consider \(\vert f(t,x) \vert = \vert 5x^{6} \cos^{2}t+10 \vert \geq10:=\gamma\), so, condition \((H_{4})\) is satisfied. Next, we consider that condition \((H_{3})\) is also satisfied. In fact, \(\lim_{x\to 0^{+}}\int^{1}_{x}g(s)\,ds=\lim_{x\to 0^{+}}\int^{1}_{x}(-x^{m}+\frac{1}{x^{\kappa}})\,ds=+\infty\), thus, condition \((H_{3})\) holds. Therefore, by Theorem 3.1, we know that (5.1) has at least one positive π-periodic solution.

Example 5.2

Consider the ϕ-Laplacian Liénard equation with repulsive singularity:

$$ { } \bigl(\phi\bigl(x'(t)\bigr)\bigr)'+ \bigl(x^{4}+3\bigr)x'(t)+5x^{m}(t-\tau)- \frac{1}{x^{\kappa}(t-\tau)}=\sin t, $$
(5.2)

where relativistic operator \(\phi(u)=\frac{u}{\sqrt{1- (\frac{ \vert u \vert }{c} )^{2}}}\), here c is the speed of light in the vacuum and \(c>0\), τ is a constant and \(0\leq\tau< T\), \(m\geq0\).

It is clear that \(T=2\pi\), \(g(x)=5x^{m}(t-\tau)-\frac{1}{x^{\kappa}(t-\tau)}\), \(f(x)=x^{4}+3\), \(e(t)=\sin t\). It is obvious that \((H_{1}^{*})\)-\((H_{4}^{*})\) hold. Now we consider conditions \((A_{1})\) and \((A_{2})\).

$$\biggl(\frac{u}{\sqrt{1- (\frac{ \vert u \vert }{c} )^{2}}}-\frac{v}{\sqrt {1- (\frac{ \vert v \vert }{c} )^{2}}} \biggr) (u-v)\geq 0 $$

and

$$\phi(u)\cdot u=\frac{ \vert u \vert ^{2}}{\sqrt{1- (\frac{ \vert u \vert }{c} )^{2}}}. $$

Then conditions \((A_{1})\) and \((A_{2})\) hold. Therefore, by Theorem 4.1, we know that (5.2) has at least one positive periodic solution.

References

  1. Liénard, A: Etude des oscillations entretenues, vol. 23 pp. 901-912 (1928)

  2. Cheng, ZB, Ren, JL: Existence of periodic solution for fourth-order Liénard type p-Laplacian generalized neutral differential equation with variable parameter. J. Appl. Anal. Comput. 5, 704-720 (2015)

    MathSciNet  Google Scholar 

  3. Cheung, WS, Ren, JL: Periodic solutions for p-Laplacian Liénard equation with a deviating argument. Nonlinear Anal. 59, 107-120 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Liu, WB, Feng, ZS: Periodic solutions for p-Laplacian systems of Liénard-type. Commun. Pure Appl. Anal. 10, 1393-1400 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, BW, Huang, LH: Existence and uniqueness of periodic solutions for a kind of Liénard equation with a deviating argument. Appl. Math. Lett. 21, 56-62 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ma, TT, Wang, ZH: Periodic solutions of Liénard equations with resonant isochronous potentials. Discrete Contin. Dyn. Syst. 33, 1563-1581 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Torres, J: Nondegeneracy of the periodically forced Liénard differential equation with ϕ-Laplacian. Commun. Contemp. Math. 13, 283-292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Villari, G: An improvement of Massera’s theorem for the existence and uniqueness of a periodic solution for the Liénard equation. Rend. Ist. Mat. Univ. Trieste 44, 187-195 (2012)

    MATH  Google Scholar 

  9. Wang, Y, Dai, XZ, Xia, XX: On the existence of a unique periodic solution to a Liénard type p-Laplacian non-autonomous equation. Nonlinear Anal. 71, 275-280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, YY, Cheng, SS, Ge, WG: Periodic solutions of generalized Liénard equations with a p-Laplacian-like operator. Bull. Braz. Math. Soc. 39, 21-43 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, LJ, Zeng, XW: The period function of Liénard systems. Proc. R. Soc. Edinb. A 143, 205-221 (2013)

    Article  MATH  Google Scholar 

  12. Xin, Y, Han, XF, Cheng, ZB: Existence and uniqueness of positive periodic solution for ϕ-Laplacian Liénard equation. Bound. Value Probl. 2014, 244 (2014)

    Article  MATH  Google Scholar 

  13. Jebelean, P, Mawhin, J: Periodic solutions of forced dissipative p-Liénard equations with singularities. Vietnam J. Math. 32, 97-103 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Kong, FC, Lu, SP, Liang, ZT: Existence of positive periodic solutions for neutral Liénard differential equations with a singularity. Electron. J. Differ. Equ. 2015 242, (2015)

    Article  MATH  Google Scholar 

  15. Mawhin, J: Periodic solutions for quasilinear complex-valued differential systems involving singular ϕ-Laplacians. Rend. Ist. Mat. Univ. Trieste 44, 75-87 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Li, SJ, Liao, FF, Xing, WY: Periodic solutions for Liénard differential equations with singularities. Electron. J. Differ. Equ. 2015 151, (2015)

    Article  MATH  Google Scholar 

  17. Lu, SP, Kong, FC: Periodic solutions for a kind of prescribed mean curvature Liénard equation with a singularity and a deviating argument. Adv. Differ. Equ. 2015, 151 (2015)

    Article  Google Scholar 

  18. Wang, ZH: Periodic solutions of Liénard equation with a singularity and a deviating argument. Nonlinear Anal., Real World Appl. 16, 227-234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xin, Y, Cheng, ZB: Positive periodic solution of p-Laplacian Liénard type differential equation with singularity and deviating argument. Adv. Differ. Equ. 2016, 41 (2016)

    Article  Google Scholar 

  20. Zhang, MR: Periodic solutions of Liénard equations with singular forces of repulsive type. J. Math. Anal. Appl. 203, 254-269 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Manásevich, R, Mawhin, J: Periodic solutions for nonlinear systems with p-Laplacian-like operator. J. Differ. Equ. 145, 367-393 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

YX and ZBC would like to thank the referee for invaluable comments and insightful suggestions. This work was supported by the National Natural Science Foundation of China (No. 11501170), China Postdoctoral Science Foundation funded project (No. 2016M590886).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibo Cheng.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

YX and ZBC worked together in the derivation of the mathematical results. Both authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y., Cheng, Z. Study on a kind of ϕ-Laplacian Liénard equation with attractive and repulsive singularities. J Inequal Appl 2017, 180 (2017). https://doi.org/10.1186/s13660-017-1410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1410-3

MSC

Keywords