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1 Introduction
Liénard equation []

x′′ + f (x)x′ + g(x) =  (.)

appears as a simplified model in many domains in science and engineering. It was inten-
sively studied during the first half of the th century as it can be used to model oscillating
circuits or simple pendulums. For example, Van der Pol oscillator

x′′ – μ
(
 – x)x′ + x = 

is a Liénard equation.
From then on, there have been a good amount of work on periodic solutions for Liénard

equations (see [–] and the references cited therein). Some classical tools have been
used to study Liénard equation in the literature, including Mawhin’s coincidence degree
theorem [, , ], topological degree methods [, ], Schauder’s fixed point theorem [],
Massera’s theorem [], the Manasevich-Mawhin continuation theorem [, ], generalized
polar coordinates [] and the Poincaré map [].

At the same time, some authors began to consider Liénard equation with singularity
[–]. For example, in , Zhang [] discussed a kind of singular Liénard equation

x′′ + f (x)x′ + g(t, x) = , (.)
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where g was on the singular case, i.e., when g(t, x) → +∞, as x → +. By application of
coincidence degree theory, the author obtained that (.) had at least one periodic solution.
Afterwards, Jebelean and Mawhin investigated the following quasilinear equation of p-
Laplacian type:

(∣∣x′∣∣p–x′)′ + f (x)x′(t) + g(x) = h(t),

where g satisfied slightly strong singularity, i.e.,

∫ 


g(u) du = –∞.

The authors proved that the above problem had at least one positive periodic solution
through a basic application of the Manasevich-Mawhin continuation theorem. Recently,
Xin and Cheng [] studied the following p-Laplacian Liénard equation with singularity
and deviating argument:

(∣∣x′∣∣p–x′)′ + f (x)x′ + g
(
t, x(t – σ )

)
= e(t). (.)

By applications of coincidence degree theory and some analysis skills, they obtained that
(.) had at least one positive periodic solution.

All the aforementioned results concern singular Liénard equation and singular p-
Laplacian Liénard equation. There are few results on the φ-Laplacian Liénard equation
with singularity. Motivated by [, , ], in this paper, we further consider the following
φ-Laplacian Liénard equation:

(
φ
(
x′(t)

))′ + f
(
t, x(t)

)
x′(t) + g

(
x(t – σ )

)
= e(t), (.)

where f : R→ R is an L-Carathéodory function, which means, it is measurable in the first
variable and continuous in the second variable, and for every  < r < s, there exists hr,s ∈
L[, T] such that |g(t, x(t))| ≤ hr,s for all x ∈ [r, s] and a.e. t ∈ [, T]; τ is a positive constant;
e ∈ L(R) is a T-periodic function; g : (, +∞) →R is the L-function, the nonlinear term
g of (.) can be with a singularity at origin, i.e.,

lim
x→+

g(x) = +∞,
(

or lim
x→+

g(x) = –∞
)

, uniformly in t.

It is said that (.) is of attractive type (resp. repulsive type) if g(x) → +∞ (resp. g(x) →
–∞) as x → +.

Moreover, φ : R→R is a continuous function and φ() = , which satisfies

(A) (φ(x) – φ(x))(x – x) >  for ∀x �= x, x, x ∈R;
(A) There exists a function α : [, +∞] → [, +∞],α(s) → +∞ as s → +∞, such that φ(x) ·

x ≥ α(|x|)|x| for ∀x ∈R.

It is easy to see that φ represents a large class of nonlinear operators, including |u|p–u :
R →R which is a p-Laplacian operator.

The remaining part of the paper is organized as follows. In Section , we give some
preliminary lemmas. In Section , by employing the Manasevich-Mawhin continuation
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theorem, we state and prove the existence of a positive periodic solution for (.) with at-
tractive singularity. In Section , we investigate the existence result for (.) with repulsive
singularity. In Section , two numerical examples demonstrate the validity of the method.
Our results improve and extend the results in [, , –].

2 Preliminary lemmas
For the T-periodic boundary value problem

(
φ
(
x′(t)

))′ = f̃
(
t, x, x′), (.)

here f̃ : [, T] ×R×R →R is assumed to be Carathéodory.

Lemma . (Manasevich-Mawhin []) Let � be an open bounded set in C
T := {x ∈

C(R,R) : x is T-periodic}. If
(i) for each λ ∈ (, ), the problem

(
φ
(
x′))′ = λf̃

(
t, x, x′), x() = x(T), x′() = x′(T)

has no solution on ∂�;
(ii) the equation

F(a) :=

T

∫ T


f̃
(
t, x, x′)dt = 

has no solution on ∂� ∩R;
(iii) the Brouwer degree of F

deg{F ,� ∩R, } �= ,

then the periodic boundary value problem (.) has at least one periodic solution on
�̄.

Next, we embed equation (.) into the following equation family with a parameter λ ∈
(, ]:

(
φ
(
x′(t)

))′ + λf
(
t, x(t)

)
x′(t) + λg

(
x(t – τ )

)
= λe(t). (.)

By applications of Lemma ., we obtain the following result.

Lemma . Suppose that (A) and (A) hold. Assume that there exist positive constants
E, E, E and E < E such that the following conditions hold:

() Each possible periodic solution x to equation (.) such that E < x(t) < E, for all
t ∈ [, T] and ‖x′‖ < E, here ‖x′‖ := maxt∈[,T] |x′(t)|.

() Each possible solution C to equation

g(C) –

T

∫ T


e(t) dt = 

satisfies E < C < E.
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() It holds

(
g(E) –


T

∫ T


e(t) dt

)(
g(E) –


T

∫ T


e(t) dt

)
< .

Then (.) has at least one T-periodic solution.

3 Main results (I): periodic solution of (1.4) with attractive singularity
In this section, we investigate the existence of a positive periodic solution for (.) with
attractive singularity.

Theorem . Assume that conditions (A) and (A) hold. Suppose that the following con-
ditions hold:

(H) There exist constants  < d < d such that g(x) – e(t) >  for x ∈ (, d) and g(x) – e(t) <
 for x ∈ (d, +∞).

(H) There exist positive constants a, b and m such that

g(x) ≤ axm + b, for all x > . (.)

(H) (Attractive singularity) limx→+
∫ 

x g(s) ds = +∞.
(H) There exists a constant γ >  such that infx∈R |f (t, x)| ≥ γ > .

Then (.) has a positive T-periodic solution.

Proof Firstly, we claim that there exists a point t ∈ [, T] such that

d ≤ x(t) ≤ d. (.)

Let t, t be, respectively, the global minimum point and the global maximum point x(t)
on [, T]; then x′(t) =  and x′(t) = , and we claim that

(
φ
(
x′(t)

))′ ≥ . (.)

In fact, if (.) does not hold, then (φ(x′(t)))′ <  and there exists ε >  such that (φ(x′(t)))′ <
 for t ∈ (t – ε, t + ε). Therefore φ(x′(t)) is strictly decreasing for t ∈ (t – ε, t + ε). From (A),
we know that x′(t) is strictly decreasing for t ∈ (t – ε, t + ε). This contradicts the definition
of t. Thus, (.) is true. From (.) and (.), we have

g
(
x(t – τ )

)
– e(t) ≤ . (.)

Similarly, we can get

g
(
x(t – τ )

)
– e(t) ≥ . (.)

From (H), (.) and (.), we have

x(t – τ ) ≥ d and x(t – τ ) ≤ d.
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In view of x being a continuous function, we can get (.).
Multiplying both sides of (.) by x′(t) and integrating over the interval [, T], we have

∫ T



(
φ
(
x′(t)

))′x′(t) dt + λ

∫ T


f
(
t, x(t)

)∣∣x′(t)
∣∣ dt + λ

∫ T


g
(
x(t – τ )

)
x′(t) dt

= λ

∫ T


e(t)x′(t) dt. (.)

Moreover, we have

∫ T



(
φ
(
x′(t)

))′x′(t) dt =
∫ T


x′(t) d

(
φ
(
x′(t)

))

=
[
φ
(
x′(t)

)
x′(t)

]T
 –

∫ T


φ
(
x′(t)

)
dx′(t) =  (.)

and
∫ T


g
(
x(t – τ )

)
x′(t) dt =

∫ T


g
(
x(t – τ )

)
dx(t) =

∫ T


g
(
x(t – τ )

)
dx(t – τ ) = , (.)

since dx(t) = dx(t–τ )
d(t–τ ) dt = dx(t – τ ).

Substituting (.) and (.) into (.), we have

∫ T


f
(
t, x(t)

)∣∣x′(t)
∣
∣ dt =

∫ T


e(t)x′(t) dt. (.)

From (.), we have

∣∣∣
∣

∫ T


f
(
t, x(t)

)∣∣x′(t)
∣∣ dt

∣∣∣
∣ =

∣∣∣
∣

∫ T


e(t)x′(t) dt

∣∣∣
∣.

From (H), we know

∣∣
∣∣

∫ T


f
(
t, x(t)

)∣∣x′(t)
∣
∣ dt

∣∣
∣∣ =

∫ T



∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣ dt ≥ γ

∫ T



∣
∣x′(t)

∣
∣ dt.

Therefore, we can get

γ

∫ T



∣∣x′(t)
∣∣ dt ≤

∫ T



∣∣e(t)
∣∣∣∣x′(t)

∣∣dt

≤
(∫ T



∣
∣e(t)

∣
∣ dt

) 

(∫ T



∣
∣x′(t)

∣
∣ dt

) 


= ‖e‖

(∫ T



∣∣x′(t)
∣∣ dt

) 


,

where ‖e‖ = (
∫ T

 |e(t)| dt) 
 . It is easy to see that there exists a positive constant M′

 (in-
dependent of λ) such that

∫ T



∣
∣x′(t)

∣
∣ dt ≤ M′

. (.)
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From (.) and (.), we have

x(t) = x(t) +
∫ t

t

x′(s) ds ≤ d +
∫ T



∣∣x′(t)
∣∣dt

≤ d +
√

T
(∫ T



∣∣x′(t)
∣∣ dt

) 
 ≤ d +

√
T

(
M′


) 

 := M. (.)

On the other hand, integrating both sides of (.) over [, T], we have

∫ T



[
f
(
t, x(t)

)
x′(t) + g

(
x(t – τ )

)
– e(t)

]
dt = . (.)

Therefore, from (.), (.) and (H), we have

∫ T



∣
∣g

(
x(t – τ )

)∣∣dt

=
∫

g(x(t–τ ))≥
g
(
x(t – τ )

)
dt –

∫

g(x(t–τ ))≤
g
(
x(t – τ )

)
dt

= 
∫

g(x(t–τ ))≥
g
(
x(t – τ )

)
dt +

∫ T


f
(
t, x(t)

)
x′(t) dt –

∫ T


e(t) dt

≤ 
∫

g(u(t–τ ))≥

(
axm(t – τ ) + b

)
dt +

∫ T



∣∣f
(
t, x(t)

)∣∣∣∣x′(t)
∣∣dt +

∫ T



∣∣e(t)
∣∣dt

≤ a
∫ T



∣
∣x(t – τ )

∣
∣m dt + bT +

(∫ T



∣
∣f

(
t, x(t)

)∣∣ dt
) 


(∫ T



∣
∣x′(t)

∣
∣ dt

) 


+ ‖e‖T



≤ aMm
 T + bT + ‖fM‖M′ 


 + ‖e‖T


 , (.)

where fM := max≤x(t)≤M |f (t, x)|,‖fM‖ := (
∫ T

 |f (t, x(t))| dt) 
 . As x() = x(T), there ex-

ists a point t ∈ [, T] such that x′(t) = , while φ() = , from (.), (.) and (.), we
have

∥∥φ
(
x′)∥∥ = max

t∈[,T]

{∣∣φ
(
x′(t)

)∣∣}

= max
t∈[t,t+T]

{∣∣
∣∣

∫ t

t

(
φ
(
x′(s)

))′ ds
∣∣
∣∣

}

≤
∫ T



∣
∣f

(
t, x(t)

)∣∣
∣
∣x′(t)

∣
∣dt +

∫ T



∣
∣g

(
x(t – τ )

)∣∣dt +
∫ T



∣
∣e(t)

∣
∣dt

≤
(∫ T



∣∣f
(
t, x(t)

)∣∣ dt
) 


(∫ T



∣∣x′(t)
∣∣ dt

) 


+
∫ T



∣∣g
(
u(t – τ )

)∣∣dt

+
∫ T



∣
∣e(t)

∣
∣dt

≤ 
(
aMm

 T + bT + ‖fM‖M′ 

 + ‖e‖T



)

:= M′
. (.)

We claim that there exists a positive constant M > M′
 +  such that, for all t ∈R,

∥∥x′∥∥ ≤ M. (.)
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In fact, if x′ is not bounded, then from the definition of α, there exists a positive constant
M′′

 such that α(|x′|) > M′′
 for some x′ ∈R. However, from (A), we have

α
(∣∣x′∣∣)∣∣x′∣∣ ≤ φ

(
x′)x′ ≤ ∣∣φ

(
x′)∣∣∣∣x′∣∣ ≤ M′


∣∣x′∣∣.

Then we can get

α
(∣∣x′∣∣) ≤ M′

 for all x ∈R,

which is a contradiction. So, (.) holds.
From (.), we have

(
φ
(
x′(t + τ )

))′ + λf
(
t + τ , x(t + τ )

)
x′(t + τ ) + λg

(
x(t)

)
= λe(t + τ ). (.)

Multiplying both sides of (.) by x′(t) and integrating on [ξ , t], here ξ ∈ [, T], we get

λ

∫ x(t)

x(ξ )
g(x) dx = λ

∫ t

ξ

g
(
x(s)

)
x′(s) ds

= –
∫ t

ξ

(
φ
(
x′(s + τ )

))′x′(s) ds – λ

∫ t

ξ

f
(
s + τ , x(s + τ )

)
x′(s + τ )x′(s) ds

+ λ

∫ t

ξ

e(s + τ )x′(s) ds. (.)

By (.) and (.), we can get

∣
∣∣∣

∫ t

ξ

(
φ
(
x′(t + τ )

))′x′(s) ds
∣
∣∣∣

≤
∫ t

ξ

∣∣(φ
(
x′(s + τ )

))′∣∣∣∣x′(s)
∣∣ds

≤ ∥∥x′∥∥
∫ T



∣∣(φ
(
x′(t + τ )

))′∣∣dt

≤ λ
∥∥x′∥∥

(∫ T



∣∣f
(
t, x′(t)

)∣∣dt +
∫ T



∣∣g
(
x(t – τ )

)∣∣dt +
∫ T



∣∣e(t)
∣∣dt

)

≤ λM
(
aMm

 T + bT + ‖fM‖M′ 

 + ‖e‖T



)
.

Moreover, from (.), we have

∣∣
∣∣

∫ t

ξ

f
(
s + τ , x(s + τ )

)
x′(t + τ )x′(s) ds

∣
∣∣ ≤

∥∥
∥∥x′∥∥√T

(∫ T



∣
∣f

(
s + τ , x(s + τ )

)∣∣ ds
)

≤ M

√

T‖fM‖,

∣∣
∣∣

∫ t

ξ

e(t + τ )u′(t)
∣∣∣dt

∣∣
∣∣ ≤ M

√
T‖e‖.
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From (.), we have

∣∣∣
∣

∫ u(t)

u(ξ )
g(u) du

∣∣∣
∣ ≤ M

(
aMm

 T + bT + ‖fM‖M′ 

 + M

√
T‖fM‖ + 

√
T‖e‖

)

:= M′
. (.)

From (H), we know that there exists a constant M >  such that

x(t) ≥ M, ∀t ∈ [ξ , T]. (.)

Similarly, we can consider t ∈ [, ξ ].
Let E < min{d, M}, E > max{d, M}, E > M be constants, from (.), (.) and

(.), we can get that the periodic solution x to (.) satisfies

E < x(t) < E,
∥
∥x′∥∥ < E.

Then condition () of Lemma . is satisfied. For a possible solution C to equation

g(C) –

T

∫ T


e(t) dt = ,

it satisfies E < C < E. Therefore, condition () of Lemma . holds. Finally, we consider
condition () of Lemma . is also satisfied. In fact, from (H), we have

g(E) –

T

∫ T


e(t) dt > 

and

g(E) –

T

∫ T


e(t) dt < .

So condition () is also satisfied. By application of Lemma ., we get that (.) has at least
one positive periodic solution. �

4 Main results (II): periodic solution of (1.4) with repulsive singularity
In this section, we consider (.) in the case that f (t, x) ≡ f (x). Then (.) can be written
as

(
φ
(
x′(t)

))′ + f
(
x(t)

)
x′(t) + g

(
x(t – τ )

)
= e(t). (.)

We will discuss the existence of a positive periodic solution for (.) with repulsive singu-
larity.

Theorem . Assume that conditions (A) and (A) hold. Suppose that the following con-
ditions hold:

(H∗
 ) There exist constants  < d∗

 < d∗
 such that g(x) <  for x ∈ (, d∗

 ) and g(x) >  for
x ∈ (d∗

, +∞).
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(H∗
 )

∫ T
 e(t) dt = .

(H∗
 ) (Repulsive singularity) limx→+

∫ 
x g(s) ds = –∞.

(H∗
) There exists a constant γ ∗ >  such that infx∈R |f (x)| ≥ γ ∗ > .

Then (.) has at least one positive T-periodic solution.

Proof Firstly, we embed equation (.) into the following equation family with a parameter
λ ∈ (, ]:

(
φ
(
x′(t)

))′ + λf
(
x(t)

)
x′(t) + λg

(
x(t – τ )

)
= λe(t). (.)

Integrating both sides of (.) over [, T], from (H∗
 ), we have

∫ T


g
(
x(t – τ )

)
dt = . (.)

From the continuity of g , we know there exists t∗
 ∈ [, T] such that

g
(
x
(
t∗
 – τ

))
= .

Let t = t∗
 – τ , from assumption (H) we can get

d∗
 ≤ x(t) ≤ d∗

.

We follow the same strategy and notation as in the proof of Theorem .. We know that
there exists M∗

 >  such that

x(t) ≤ M∗
 .

Next, we prove that there exists a positive constant M∗
 such that ‖x′‖ ≤ M∗

 .
In fact, we get from (.) that

∫ T



∣
∣g

(
x(t – τ )

)∣∣dt =
∫

g(x(t–τ ))≥
g
(
x(t – τ )

)
dt –

∫

g(x(t–τ ))≤
g
(
x(t – τ )

)
dt

= 
∫

g(x(t–τ ))≥
g
(
x(t – τ )

)
dt

≤ 
∫ T


g+(

x(t – τ )
)

dt, (.)

where g+(x) = max{g(x), }. Since g+(x(t – τ )) ≥ , from (H∗
 ) we know x(t – τ ) ≥ d∗

 . Then
we have

∫ T



∣
∣g

(
x(t – τ )

)∣∣dt ≤ 
∫ T


g+(

x(t – τ )
)

dt

≤ T
∥∥g+

M

∥∥, (.)

where ‖g+
M

‖ = maxd∗
≤x≤M g+(x).
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As x() = x(T), there exists a point t ∈ [, T] such that x′(t) = , which φ() = , we
have

∣∣φ
(
x′(t)

)∣∣ =
∣
∣∣
∣

∫ t

t

(
φ
(
x′(s)

))′ ds
∣
∣∣
∣

≤ λ

(∫ T



∣∣f
(
x(t)

)∣∣∣∣x′(t)
∣∣dt +

∫ T



∣∣g
(
x(t – σ )

)∣∣dt +
∫ T



∣∣e(t)
∣∣dt

)

≤ λ

(
‖fM‖T




(∫ T



∣
∣x′(t)

∣
∣ dt

) 


+ T
∥
∥g+

M

∥
∥ + T


 ‖e‖

)

≤ λ
(‖fM‖T



(
M′


) 

 + T
∥∥g+

M

∥∥ + T

 ‖e‖

)
. (.)

Thus, from (.) we know that there exists some positive constant M∗
 such that

∥∥x′∥∥ ≤ M∗
. (.)

The proof left is the same as that of Theorem .. �

5 Examples
Example . Consider the following φ-Laplacian Liénard equation with attractive sin-
gularity

(
φ
(
x′(t)

))′ +
(
x cos t + 

)
x′(t) – xm(t – τ ) +


xκ (t – τ )

= ecos t , (.)

where φ(u) = ue|u| , τ is a positive constant and  < τ < T , m ≥  and κ ≥ .
Comparing (.) to (.), it is easy to see that g(x) = –xm(t – τ ) + 

xκ (t–τ ) , f (t, x) =
x cost +, e(t) = ecos t , T = π . Obviously, we get

(
xe|x| – ye|y|)(x – y) ≥ (|x|e|x| – |y|e|y|)(|y| – |y|) ≥ 

and

φ(x) · x = |x|e|x| .

So, conditions (A) and (A) hold. Moreover, it is easy to see that there exist constants
d = . and d =  such that (H) holds. g(x) ≤ xm + , here a = , b = , condition (H)
holds. Consider |f (t, x)| = |x cos t +| ≥  := γ , so, condition (H) is satisfied. Next, we
consider that condition (H) is also satisfied. In fact, limx→+

∫ 
x g(s) ds = limx→+

∫ 
x (–xm +


xκ ) ds = +∞, thus, condition (H) holds. Therefore, by Theorem ., we know that (.)
has at least one positive π-periodic solution.

Example . Consider the φ-Laplacian Liénard equation with repulsive singularity:

(
φ
(
x′(t)

))′ +
(
x + 

)
x′(t) + xm(t – τ ) –


xκ (t – τ )

= sin t, (.)
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where relativistic operator φ(u) = u√
–( |u|

c )
, here c is the speed of light in the vacuum and

c > , τ is a constant and  ≤ τ < T , m ≥ .
It is clear that T = π , g(x) = xm(t – τ ) – 

xκ (t–τ ) , f (x) = x + , e(t) = sin t. It is obvious
that (H∗

 )-(H∗
) hold. Now we consider conditions (A) and (A).

(
u

√
 – ( |u|

c )
–

v
√

 – ( |v|
c )

)
(u – v) ≥ 

and

φ(u) · u =
|u|

√
 – ( |u|

c )
.

Then conditions (A) and (A) hold. Therefore, by Theorem ., we know that (.) has at
least one positive periodic solution.
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