Skip to content

Advertisement

Open Access

Anisotropic Picone identities and anisotropic Hardy inequalities

Journal of Inequalities and Applications20172017:16

https://doi.org/10.1186/s13660-017-1292-4

Received: 26 October 2016

Accepted: 22 December 2016

Published: 13 January 2017

Abstract

In this paper, we derive an anisotropic Picone identity for the anisotropic Laplacian, which contains some known Picone identities. As applications, a Sturmian comparison principle to the anisotropic elliptic equation and an anisotropic Hardy type inequality are shown.

Keywords

anisotropic Picone identityanisotropic Hardy type inequalityanisotropic elliptic equationSturmian comparison principle

MSC

26D1026D15

1 Introduction and main results

In recent years, the anisotropic Laplacian
$$ \sum_{i = 1}^{n} { \frac{\partial}{ {\partial{x_{i}}}} \biggl( {{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}}\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr)} ,\quad {p_{i}} > 1, $$
(1.1)
has been considerably concerned. Note that if \({p_{i}} = 2\) (\({i = 1, \ldots,n}\)), then (1.1) becomes the classical Laplacian; if \({p_{i}} = p = \mathrm{const}\), then (1.1) is the pseudo-p-Laplacian (see [1])
$$\sum_{i = 1}^{n} {\frac{\partial}{ {\partial{x_{i}}}} \biggl( {{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{p - 2}} \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr)}. $$
The anisotropic Laplacian has not only the widespread practical background in the natural science, but also the important theoretical value in the mathematics. For example, it reflects anisotropic physical properties of some reinforced materials (Lions [2] and Tang [3]), and describes the dynamics of fluids in the anisotropic media when the conductivities of the media are different in each direction [4, 5]. The equations associated with (1.1) are also deduced in the image processing [6]. Existence, integrability, boundedness, and continuity of solutions to anisotropic elliptic equations have received much attention; see [715] and the references therein. In this paper, we prove an anisotropic Picone identity for the anisotropic Laplacian, which contains some known Picone identities. As applications, a Sturmian comparison principle to the anisotropic elliptic equation and an anisotropic Hardy type inequality are given. Before giving the main results of this paper, we briefly recall the existing results for the isotropic case.
Picone [16] considered the homogeneous linear second order differential system
$$\left \{ \textstyle\begin{array}{l} {{ ( {{a_{1}}(x)u'} )}^{\prime}} + {b_{1}}(x)u = 0, \\ {{ ( {{a_{2}}(x)v'} )}^{\prime}} + {b_{2}}(x)v = 0, \end{array}\displaystyle \right . $$
where u and v are differentiable functions in x, and proved the identity that, for the differentiable function \(v(x) \ne0\),
$$ { \biggl( {\frac{u}{ v} \bigl( {{a_{1}}u'v - {a_{2}}uv'} \bigr)} \biggr)^{\prime}} = ( {{b_{2}} - {b_{1}}} ){u^{2}} + ( {{a_{1}} - {a_{2}}} ){u^{\prime 2}} + {a_{2}} { \biggl( {u' - v'\frac{u}{ v}} \biggr)^{2}}; $$
(1.2)
then a Sturmian comparison principle and the oscillation theory of solutions were obtained via (1.2). Picone [17] (see also Allegretto [18]) generalized (1.2) to a Laplacian that, for differentiable functions \(v > 0\) and \(u \geq0\),
$$\begin{aligned} { \biggl( {\nabla u - \frac{u}{ v}\nabla v} \biggr)^{2}} =& {\vert {\nabla u} \vert ^{2}} + \frac{{{u^{2}}}}{ {{v^{2}}}}{\vert {\nabla v} \vert ^{2}} - 2\frac{u}{ v} \nabla v \cdot\nabla u \\ =& {\vert {\nabla u} \vert ^{2}} - \nabla \biggl( {\frac{{{u^{2}}}}{ v}} \biggr)\nabla v. \end{aligned}$$
(1.3)
Allegretto and Huang [19], Dunninger [20] independently extended (1.3) to a p-Laplacian, for differentiable functions \(v > 0\) and \(u \geq0\),
$$\begin{aligned}& {\vert {\nabla u} \vert ^{p}} + (p - 1) \frac{{{u^{p}}}}{ {{v^{p}}}}{\vert {\nabla v} \vert ^{p}} - p\frac{{{u^{p - 1}}}}{ {{v^{p - 1}}}}{ \vert {\nabla v} \vert ^{p - 2}}\nabla v \cdot\nabla u \\& \quad = {\vert {\nabla u} \vert ^{p}} - \nabla \biggl( { \frac{{{u^{p}}}}{ {{v^{p - 1}}}}} \biggr){\vert {\nabla v} \vert ^{p - 2}}\nabla v, \end{aligned}$$
(1.4)
and applied (1.4) to derive a Sturmian comparison principle, Liouville’s theorem, the Hardy inequality, and some profound results for p-Laplace equations and systems. For other generalizations of the Picone identities and applications, see Bal [21], Dwivedi [22], Dwivedi and Tyagi [23], Niu, Zhang and Wang [24], Tyagi [25]. These results indicate that Picone identities are seemingly simple in form, but extremely useful in the study of partial differential equations, and they have become an important tool in the analysis.

Our main results are as follows.

Theorem 1.1

Anisotropic Picone identity

Let \(v > 0\) and \(u \geq0\) be two differentiable functions in the set \(\Omega \subset{R^{n}}\), and denote
$$\begin{aligned}& R(u,v) = \sum_{i = 1}^{n} {{{ \biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} - \sum _{i = 1}^{n} {\frac {\partial}{ {\partial{x_{i}}}} \biggl( { \frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}} - 1}}}}} \biggr){{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}}\frac{{\partial v}}{ {\partial{x_{i}}}}}, \end{aligned}$$
(1.5)
$$\begin{aligned}& L(u,v)= \sum_{i = 1}^{n} {{{ \biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} - \sum _{i = 1}^{n} {{p_{i}}\frac {{{u^{{p_{i}} - 1}}}}{ {{v^{{p_{i}} - 1}}}}{{ \biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}} \frac{{\partial v}}{ {\partial{x_{i}}}}\frac{{\partial u}}{ {\partial{x_{i}}}}} \\& \hphantom{L(u,v)={}}{} + \sum_{i = 1}^{n} { ( {{p_{i}} - 1} )\frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}}}}}}{{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}}, \end{aligned}$$
(1.6)
where \({p_{i}} > 1\) (\({i = 1, \ldots,n}\)). Then
$$ R(u,v) = L(u,v). $$
(1.7)
Moreover, we have
$$L(u,v) \geq0; $$
furthermore, \(L(u,v) = 0\) a.e. in Ω if and only if \(u = cv\) a.e. in Ω, c is a positive constant.

Remark 1.2

If \({p_{i}} = 2\) (\({i = 1, \ldots,n}\)) in (1.5) and (1.6), we have (1.3) from (1.7). If \({p_{i}} = p = \mathrm{const}\) (\({i = 1, \ldots,n}\)) in (1.5) and (1.6), the result in [26] follows. Moreover, the identity in Theorem 1.1 is different from the one in [26].

Theorem 1.3

Anisotropic Hardy type inequality

Let \(u \in C_{0}^{1} ( A )\), \(1 < {p_{i}} < n\), \(i = 1, \ldots,n\), \(A = \{ x \in{R^{n}}| {{x_{i}} \ne0,i = 1, \ldots,n} \}\). Then we have
$$ \sum_{i = 1}^{n} \int_{A} {\biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert }^{p_{i}}\,dx \geq\sum_{i = 1}^{n} \biggl( \frac{p_{i} - 1}{p_{i}} \biggr)^{p_{i}} \int_{A} {\frac{{{{\vert u \vert }^{{p_{i}}}}}}{ {{{\vert {{x_{i}}} \vert }^{{p_{i}}}}}}}. $$
(1.8)

This paper is organized as follows: The proofs of Theorem 1.1 and a Sturmian comparison principle to the anisotropic elliptic equation are given in Section 2; Section 3 is devoted to the proof of Theorem 1.3 in which a key ingredient is to choose a suitable auxiliary function (see (3.3) below) for the anisotropic case. Two corollaries are also furnished.

2 Proof of Theorem 1.1

Proof of Theorem 1.1

One derives easily that
$$\begin{aligned} R(u,v) &= \sum_{i = 1}^{n} {{{\biggl\vert { \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} - \sum _{i = 1}^{n} {\frac {\partial}{ {\partial{x_{i}}}} \biggl( { \frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}} - 1}}}}} \biggr){{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}}\frac{{\partial v}}{ {\partial{x_{i}}}}} \\ &= \sum_{i = 1}^{n} {{{\biggl\vert { \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} - \sum _{i = 1}^{n} {\frac {{{p_{i}}{u^{{p_{i}} - 1}}\frac{{\partial u}}{{\partial{x_{i}}}}{v^{{p_{i}} - 1}} - {u^{{p_{i}}}}({p_{i}} - 1){v^{{p_{i}} - 2}}\frac{{\partial v}}{{\partial{x_{i}}}}}}{ {{{ [ {{v^{{p_{i}} - 1}}} ]}^{2}}}}{{\biggl\vert { \frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}}\frac{{\partial v}}{ {\partial{x_{i}}}}} \\ &=\sum_{i = 1}^{n} {{{\biggl\vert { \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} - \sum _{i = 1}^{n} {{p_{i}}\frac {{{u^{{p_{i}} - 1}}}}{ {{v^{{p_{i}} - 1}}}}{{ \biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}} \frac{{\partial v}}{ {\partial{x_{i}}}}\frac{{\partial u}}{ {\partial{x_{i}}}}} + \sum_{i = 1}^{n} { ( {{p_{i}} - 1} )\frac {{{u^{{p_{i}}}}}}{ {{v^{{p_{i}}}}}}{{\biggl\vert { \frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} \\ &=L(u,v), \end{aligned}$$
which is (1.7). To check \(L(u,v) \geq0\), we rewrite \(L(u,v)\) by
$$\begin{aligned} L(u,v) =&\sum_{i = 1}^{n} {{{ \biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} - \sum _{i = 1}^{n} {{p_{i}}\frac {{{u^{{p_{i}} - 1}}}}{ {{v^{{p_{i}} - 1}}}}{{ \biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 1}}\biggl\vert { \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert } + \sum_{i = 1}^{n} { ( {{p_{i}} - 1} )\frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}}}}}}{{\biggl\vert { \frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} \\ &{} + \sum_{i = 1}^{n} {{p_{i}} \frac{{{u^{{p_{i}} - 1}}}}{ {{v^{{p_{i}} - 1}}}}{{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}} \biggl\{ {\biggl\vert {\frac {{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert \biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert - \frac{{\partial v}}{ {\partial{x_{i}}}} \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\} } \\ :=& \mathit{I} + \mathit{II}, \end{aligned}$$
(2.1)
where
$$\begin{aligned}& \mathit{I} = \sum_{i = 1}^{n} {{p_{i}} \biggl[ {\frac{1}{ {{p_{i}}}}{{\biggl\vert { \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}} + \frac{{{p_{i}} - 1}}{ {{p_{i}}}}{{ \biggl( {{{ \biggl( {\frac{u}{ v}\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert } \biggr)}^{{p_{i}} - 1}}} \biggr)}^{\frac{{{p_{i}}}}{{{p_{i}} - 1}}}}} \biggr]} \\& \hphantom{\mathit{I} ={}}{} - \sum_{i = 1}^{n} {{p_{i}}\frac{{{u^{{p_{i}} - 1}}}}{ {{v^{{p_{i}} - 1}}}}{{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 1}}\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }, \\& \mathit{II} = \sum_{i = 1}^{n} {{p_{i}}\frac{{{u^{{p_{i}} - 1}}}}{ {{v^{{p_{i}} - 1}}}}{{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}} \biggl\{ {\biggl\vert {\frac {{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert \biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert - \frac{{\partial v}}{ {\partial{x_{i}}}} \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\} }. \end{aligned}$$
Recall Young’s inequality: for \(a \geq0\) and \(b \geq0\),
$$ ab \leq\frac{{{a^{{p_{i}}}}}}{ p} + \frac{{{b^{{q_{i}}}}}}{ q}, $$
(2.2)
where \({p_{i}} > 1\), \({q_{i}} > 1\) (\(i = 1, \ldots,n\)) and \(\frac{1}{ {{p_{i}}}} + \frac{1}{{{q_{i}}}} = 1\); the equality holds if and only if \({a^{{p_{i}}}} = {b^{{q_{i}}}}\), namely, \(a = {b^{\frac{1}{{{p_{i}} - 1}}}}\). We take \(a = \vert {\frac{{\partial u}}{{\partial {x_{i}}}}} \vert \) and \(b = { ( {\frac{u}{v}\vert {\frac{{\partial v}}{{\partial{x_{i}}}}} \vert } )^{{p_{i}} - 1}}\) in (2.2) to obtain
$$\begin{aligned}& {p_{i}}\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert { \biggl( {\frac{u}{ v}\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert } \biggr)^{{p_{i}} - 1}} \\& \quad \leq{p_{i}} \biggl[ {\frac{1}{ {{p_{i}}}}{{\biggl\vert { \frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}} + \frac{{{p_{i}} - 1}}{ {{p_{i}}}}{{ \biggl( {{{ \biggl( {\frac{u}{ v}\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert } \biggr)}^{{p_{i}} - 1}}} \biggr)}^{\frac{{{p_{i}}}}{{{p_{i}} - 1}}}}} \biggr], \end{aligned}$$
(2.3)
and so \(\mathit{I} \geq0\) from (2.3). Clearly, \(\mathit{II} \geq0\) in virtue of \(\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \vert \vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \vert - \frac{{\partial v}}{ {\partial{x_{i}}}}\frac{{\partial u}}{ {\partial{x_{i}}}} \geq0\). Hence \(L(u,v) \geq0\) from (2.1).

If \(u = cv\), c is a positive constant, then clearly \(L(u,v) = 0\). Now let us conclude that \(L(u,v) = 0\) implies \(u = cv\). In fact, if \(L(u,v)({x_{0}}) = 0\), \({x_{0}} \in\Omega\), then we consider the two cases \(u({x_{0}}) \ne0\) and \(u({x_{0}}) = 0\), respectively.

(a) If \(u({x_{0}}) \ne0\), then \(\mathit{I} = 0\) and \(\mathit{II} = 0\). One shows by \(\mathit{I} = 0\) that
$$ \biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert = \frac{u}{ v}\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert . $$
(2.4)
Using \(\mathit{II} = 0\), it implies
$$ \frac{{\partial u}}{ {\partial{x_{i}}}} = c\frac{{\partial v}}{ {\partial{x_{i}}}}. $$
(2.5)
Putting (2.5) into (2.4) yields \(u = cv\).
(b) If \(u({x_{0}}) = 0\), then we denote \(S = \{x \in\Omega | {u(x) = 0} \}\) and \(\frac{{\partial u}}{{\partial {x_{i}}}} = 0\) a.e. in S. Thus
$$\frac{\partial}{ {\partial{x_{i}}}} \biggl( {\frac{u}{ v}} \biggr) = \frac{{v\frac{{\partial u}}{{\partial{x_{i}}}} - u\frac{{\partial v}}{{\partial{x_{i}}}}}}{ {{v^{2}}}} = 0, $$
which shows \(u = cv\). The proof of Theorem 1.1 is completed. □
Let us address anisotropic Sobolev spaces; see Adams [27], Lu [28], Troisi [29] etc. Given a domain \(\Omega \subset {R^{n}}\), \({p_{i}} > 1\), \(i = 1,2, \ldots,n\). We define two anisotropic Sobolev spaces by
$${W^{1, ( {{p_{i}}} )}}(\Omega) = \biggl\{ {u \in {W^{1,1}}(\Omega): \frac{{\partial u}}{ {\partial{x_{i}}}} \in{L^{{p_{i}}}}(\Omega),i = 1, \ldots,n} \biggr\} $$
and
$$W_{0}^{1, ( {{p_{i}}} )}(\Omega) = \biggl\{ {u \in W_{0}^{1,1}( \Omega):\frac{{\partial u}}{ {\partial{x_{i}}}} \in{L^{{p_{i}}}}(\Omega),i = 1, \ldots,n} \biggr\} , $$
with the norms
$${\Vert u \Vert _{{W^{1, ( {{p_{i}}} )}}(\Omega)}} = \int _{\Omega}{ \vert u \vert \,dx} + \sum _{i = 1}^{n} {{{ \biggl( { \int_{\Omega}{{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}\,dx} } \biggr)}^{\frac{1}{{{p_{i}}}}}}} $$
and
$${\Vert u \Vert _{W_{0}^{1, ( {{p_{i}}} )}(\Omega)}} = \sum_{i = 1}^{n} {{{ \biggl( { \int_{\Omega}{{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}\,dx} } \biggr)}^{\frac{1}{{{p_{i}}}}}}} , $$
respectively. Note that \(W_{0}^{1, ( {{p_{i}}} )}(\Omega)\) is the closure of \(C_{0}^{\infty}(\Omega)\) in \({W^{1, ( {{p_{i}}} )}}(\Omega)\). It is well known that \({W^{1, ( {{p_{i}}} )}}(\Omega)\) and \(W_{0}^{1, ( {{p_{i}}} )}(\Omega)\) are both separable and reflexive Banach spaces.

We will show a Sturmian comparison principle to the anisotropic elliptic equation by Theorem 1.1.

Proposition 2.1

Let \({f_{1}}(x)\) and \({f_{2}}(x)\) be two continuous functions with \({f_{1}}(x) < {f_{2}}(x)\) in the bounded domain Ω. Assume that there exists a positive function \(u \in W_{0}^{1, ( {{p_{i}}} )}(\Omega)\) satisfying
$$ \left \{ { \textstyle\begin{array}{l@{\quad}l} - \sum_{i = 1}^{n} {\frac{\partial}{{\partial{x_{i}}}} ( {{{\vert {\frac{{\partial u}}{{\partial{x_{i}}}}} \vert }^{{p_{i}} - 2}}\frac{{\partial u}}{{\partial{x_{i}}}}} ) = \sum_{i = 1}^{n} {{f_{1}}(x)} {u^{{p_{i}} - 1}}} , & x \in\Omega, \\ u > 0, & x \in\Omega, \\ u = 0, & x \in\partial\Omega. \end{array}\displaystyle } \right . $$
(2.6)
Then any nontrivial solution v to the following anisotropic elliptic equation:
$$ - \sum_{i = 1}^{n} { \frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}} - 1}}}}\frac{\partial}{ {\partial{x_{i}}}} \biggl( {{{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}}\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr) = \sum _{i = 1}^{n} {{f_{2}}(x)} } {u^{{p_{i}}}},\quad x \in\Omega, $$
(2.7)
must change sign.

Proof

Suppose that v to (2.7) does not change sign, without loss of generality, let \(v > 0\) in Ω. By (2.6), (2.7), and (1.7), we observe
$$\begin{aligned} 0&\leq \int_{\Omega}{L(u,v)\,dx} = \int_{\Omega}{R(u,v)\,dx} \\ & = \sum_{i = 1}^{n} { \int_{\Omega}{{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} \,dx} - \sum_{i = 1}^{n} { \int _{\Omega}{\frac{\partial}{ {\partial{x_{i}}}} \biggl( {\frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}} - 1}}}}} \biggr){{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}} \frac{{\partial v}}{ {\partial{x_{i}}}}} \,dx} \\ &= \sum_{i = 1}^{n} { \int_{\Omega}{{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} \,dx} + \sum_{i = 1}^{n} { \int _{\Omega}{\frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}} - 1}}}}\frac{\partial}{ {\partial{x_{i}}}} \biggl( {{{ \biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}} \frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr)\,dx} } \\ &= \sum_{i = 1}^{n} { \int_{\Omega}{ \bigl( {{f_{1}}(x) - {f_{2}}(x)} \bigr){u^{{p_{i}}}}} \,dx} \\ &< 0, \end{aligned}$$
which is a contradiction. This completes the proof. □

3 Proof of Theorem 1.3

To prove Theorem 1.3, we need a lemma from Theorem 1.1.

Lemma 3.1

If there exist a constant \({k_{i}} > 0\) and a function \({h_{i}}(x)\), \(i = 1, \ldots,n\), such that a differentiable function \(v>0\) in the set Ω satisfies
$$ - \frac{\partial}{ {\partial{x_{i}}}} \biggl( {{{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}}\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr) \geq{k_{i}} {h_{i}}(x){v^{{p_{i}} - 1}}, $$
(3.1)
then, for any \(0 \leq u \in C_{0}^{1}(\Omega)\), we have
$$ \sum_{i = 1}^{n} { \int_{\Omega}{{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} \,dx} \geq\sum_{i = 1}^{n} {{k_{i}} \int_{\Omega}{{h_{i}}(x){u^{{p_{i}}}}} \,dx}. $$
(3.2)

Proof

By (3.1) and (1.7), we see
$$\begin{aligned} 0&\leq \int_{\Omega}{L(u,v)\,dx} = \int_{\Omega}{R(u,v)\,dx} \\ & = \sum_{i = 1}^{n} { \int_{\Omega}{{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} \,dx} - \sum_{i = 1}^{n} { \int _{\Omega}{\frac{\partial}{ {\partial{x_{i}}}} \biggl( {\frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}} - 1}}}}} \biggr){{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}} \frac{{\partial v}}{ {\partial{x_{i}}}}} \,dx} \\ &= \sum_{i = 1}^{n} { \int_{\Omega}{{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} \,dx} + \sum_{i = 1}^{n} { \int _{\Omega}{\frac{{{u^{{p_{i}}}}}}{ {{v^{{p_{i}} - 1}}}}\frac{\partial}{ {\partial{x_{i}}}} \biggl( {{{ \biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}} \frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr)\,dx} } \\ &\leq\sum_{i = 1}^{n} { \int_{\Omega}{{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}}}}} \,dx} - \sum_{i = 1}^{n} {{k_{i}} \int _{\Omega}{{h_{i}}(x){u^{{p_{i}}}}} \,dx}, \end{aligned}$$
which implies (3.2). □

Proof of Theorem 1.3

Without loss of generality, we let \(0 \leq u \in C_{0}^{\infty}\). To use Lemma 3.1, we introduce the auxiliary function
$$ v = \prod_{j = 1}^{n} {{{ \vert {{x_{j}}} \vert }^{{\beta_{j}}}}} : = {\vert {{x_{i}}} \vert ^{{\beta_{i}}}} {\overline{v} _{i}}, $$
(3.3)
where \({\beta_{j}} = \frac{{{p_{j}} - 1}}{{{p_{j}}}}\) and \({\overline{v} _{i}} = \prod_{j = 1,j \ne i}^{n} {{{\vert {{x_{j}}} \vert }^{{\beta_{j}}}}} \), hence
$$\begin{aligned}& \frac{{\partial v}}{ {\partial{x_{i}}}} = {\beta_{i}} {\bar{v}_{i}} {\vert {{x_{i}}} \vert ^{{\beta_{i}} - 2}} {x_{i}}, \\& {\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert ^{{p_{i}} - 2}}= { \beta_{i}}^{{p_{i}} - 2}{\bar{v}_{i}}^{{{p_{i}} - 2}}{\vert {{x_{i}}} \vert ^{{\beta_{i}}{p_{i}} - 2{\beta _{i}} - {p_{i}} + 2}}, \\& {\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert ^{{p_{i}} - 2}} \frac{{\partial v}}{ {\partial{x_{i}}}} = {\beta_{i}}^{{p_{i}} - 1}{\overline{v} _{i}}^{{{p_{i}} - 1}}{\vert {{x_{i}}} \vert ^{{\beta_{i}}{p_{i}} - {\beta_{i}} - {p_{i}}}} {x_{i}}, \end{aligned}$$
and
$$ - \frac{\partial}{ {\partial{x_{i}}}} \biggl( {{{\biggl\vert {\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr\vert }^{{p_{i}} - 2}}\frac{{\partial v}}{ {\partial{x_{i}}}}} \biggr) = { \biggl( { \frac{{{p_{i}} - 1}}{ {{p_{i}}}}} \biggr)^{{p_{i}}}}\frac{{{v^{{p_{i}} - 1}}}}{ {{{\vert {{x_{i}}} \vert }^{{p_{i}}}}}}. $$
(3.4)
Taking \({k_{i}} = { ( {\frac{{{p_{i}} - 1}}{{{p_{i}}}}} )^{{p_{i}}}}\) and \({h_{i}}(x) = \frac{1}{{{{\vert {{x_{i}}} \vert }^{{p_{i}}}}}}\), and using Lemma 3.1, we obtain (1.8). □

Corollary 3.2

For \(u \in C_{0}^{1} ( A )\), it follows that
$$ \int_{A} {{{\vert {\nabla u} \vert }^{2}}} \,dx \geq\frac{{{n^{2}}}}{ 4} \int_{A } {\frac{{{{\vert u \vert }^{2}}}}{ {{{\vert x \vert }^{2}}}}} \,dx. $$
(3.5)

Proof

Letting \({p_{i}} = 2\) (\(i = 1, \ldots,n\)) in (1.8) and noting the elementary inequality
$$ n{ \Biggl( {\sum_{i = 1}^{n} { \frac{1}{ {{a_{i}}}}} } \Biggr)^{ - 1}} \leq\frac{1}{ n} \Biggl( {\sum _{i = 1}^{n} {{a_{i}}} } \Biggr) \quad \mbox{for } {a_{i}} \geq0,i = 1, \ldots,n, $$
(3.6)
we have by taking \({a_{i}} = {\vert {{x_{i}}} \vert ^{2}}\),
$$\begin{aligned} \int_{A} {{{\vert {\nabla u} \vert }^{2}}} \,dx &= \sum_{i = 1}^{n} { \int _{A} {{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{2}}} \,dx} \\ & \geq\frac{1}{ 4} \int_{A} {{{\vert u \vert }^{2}} \Biggl( {\sum _{i = 1}^{n} {\frac{1}{ {{{\vert {{x_{i}}} \vert }^{2}}}}} } \Biggr)} \,dx \\ &\geq\frac{1}{ 4} \int_{A} {{{\vert u \vert }^{2}} \biggl( { \frac{{{n^{2}}}}{ {\sum_{i = 1}^{n} {{{\vert {{x_{i}}} \vert }^{2}}} }}} \biggr)} \,dx \\ &= \frac{{{n^{2}}}}{ 4} \int_{A} {\frac{{{{\vert u \vert }^{2}}}}{ {{{\vert x \vert }^{2}}}}} \,dx. \end{aligned}$$
 □

Corollary 3.3

If \(p > 2\), then, for \(u \in C_{0}^{1} ( {A} )\), it follows that
$$ \int_{A} {{{\vert {\nabla u} \vert }^{p}}} \,dx \geq{ \biggl( {\frac{{p - 1}}{ p}} \biggr)^{p}} {n^{\frac{{p + 2}}{2}}} \int_{A} {\frac{{{{\vert u \vert }^{p}}}}{ {{{\vert x \vert }^{p}}}}} \,dx. $$
(3.7)

Proof

Let \({p_{i}} = p > 2\) (\(i = 1, \ldots,n\)) in (1.8). Recall the inequality
$$\sum_{i = 1}^{n} {{a_{i}}^{2}} \leq{ \Biggl( {\sum_{i = 1}^{n} {{a_{i}}^{p}} } \Biggr)^{\frac{2}{p}}} {n^{\frac{{p - 2}}{p}}} \quad \mbox{for } {a_{i}} \geq0,i = 1, \ldots,n, $$
which gives
$$ \sum_{i = 1}^{n} {{a_{i}}^{p}} \geq{n^{ - \frac{{p - 2}}{2}}} { \Biggl( {\sum _{i = 1}^{n} {{a_{i}}^{2}} } \Biggr)^{\frac{p}{2}}}. $$
(3.8)
Taking \({a_{i}} = \frac{1}{{\vert {{x_{i}}} \vert }}\) in (3.8), it implies by (3.6) that
$$ \sum_{i = 1}^{n} { \frac{1}{ {{{\vert {{x_{i}}} \vert }^{p}}}}} \geq{n^{ - \frac{{p - 2}}{2}}} { \Biggl( {\sum _{i = 1}^{n} {\frac{1}{ {{{\vert {{x_{i}}} \vert }^{2}}}}} } \Biggr)^{\frac{p}{2}}} \geq{n^{ - \frac{{p - 2}}{2}}} { \biggl( {\frac{{{n^{2}}}}{ {\sum_{i = 1}^{n} {{{\vert {{x_{i}}} \vert }^{2}}} }}} \biggr)^{\frac{p}{2}}} = {n^{\frac{{p + 2}}{2}}}\frac{1}{ {{{\vert x \vert }^{p}}}}. $$
(3.9)
Putting (3.9) into the right-hand side of (1.8),
$$ \sum_{i = 1}^{n} {{{ \biggl( { \frac{{p - 1}}{ p}} \biggr)}^{p}} \int_{A} {\frac{{{{\vert u \vert }^{p}}}}{ {{{\vert {{x_{i}}} \vert }^{p}}}}} \,dx} \geq{ \biggl( { \frac{{p - 1}}{ p}} \biggr)^{p}} {n^{\frac{{p + 2}}{2}}} \int_{A} {\frac{{{{\vert u \vert }^{p}}}}{ {{{\vert x \vert }^{p}}}}} \,dx. $$
(3.10)
On the other hand,
$$ \int_{A} {\sum_{i = 1}^{n} {{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{p}}} } \,dx \leq \int_{A } {{{ \Biggl( {\sum_{i = 1}^{n} {{{\biggl\vert {\frac{{\partial u}}{ {\partial{x_{i}}}}} \biggr\vert }^{2}}} } \Biggr)}^{\frac{p}{2}}}} \,dx = \int_{A } {{{\vert {\nabla u} \vert }^{p}}} \,dx. $$
(3.11)
Hence (3.7) is proved via (3.10) and (3.11). □

Declarations

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11271299), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM1203).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, P.R. China

References

  1. Belloni, M, Kawohl, B: The pseudo-p-Laplace eigenvalue problem and viscosity solutions as \(p \to\infty\). ESAIM Control Optim. Calc. Var. 10(1), 28-52 (2004) MathSciNetView ArticleMATHGoogle Scholar
  2. Lions, JL: Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires. Dunod, Paris (1969) MATHGoogle Scholar
  3. Tang, Q: Regularity of minimizer of non-isotropic integrals of the calculus of variations. Ann. Mat. Pura Appl. 164(1), 77-87 (1993) MathSciNetView ArticleMATHGoogle Scholar
  4. Antontsev, SN, Díaz, JI, Shmarev, S: Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics. Springer, Berlin (2012) MATHGoogle Scholar
  5. Bear, J: Dynamics of Fluids in Porous Media. Elsevier, New York (1972) MATHGoogle Scholar
  6. Weickert, J: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998) MATHGoogle Scholar
  7. Alves, CO, El Hamidi, A: Existence of solution for a anisotropic equation with critical exponent. Differ. Integral Equ. 21(1-2), 25-40 (2008) MathSciNetMATHGoogle Scholar
  8. Cianchi, A: Symmetrization in anisotropic elliptic problems. Commun. Partial Differ. Equ. 32(5), 693-717 (2007) MathSciNetView ArticleMATHGoogle Scholar
  9. Cîrstea, FC, Vétois, J: Fundamental solutions for anisotropic elliptic equations: existence and a priori estimates. Commun. Partial Differ. Equ. 40(4), 727-765 (2015) MathSciNetView ArticleMATHGoogle Scholar
  10. Di Castro, A, Montefusco, E: Nonlinear eigenvalues for anisotropic quasilinear degenerate elliptic equations. Nonlinear Anal. 70(11), 4093-4105 (2009) MathSciNetView ArticleMATHGoogle Scholar
  11. Fragalà, I, Gazzola, F, Kawohl, B: Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21(5), 715-734 (2004) MathSciNetView ArticleMATHGoogle Scholar
  12. Innamorati, A, Leonetti, F: Global integrability for weak solutions to some anisotropic elliptic equations. Nonlinear Anal. 113(5), 430-434 (2015) MathSciNetView ArticleMATHGoogle Scholar
  13. Lieberman, GM: Gradient estimates for anisotropic elliptic equations. Adv. Differ. Equ. 10(7), 767-812 (2005) MathSciNetMATHGoogle Scholar
  14. Liskevich, V, Skrypnik, II: Hölder continuity of solutions to an anisotropic elliptic equation. Nonlinear Anal. 71(5-6), 1699-1708 (2009) MathSciNetView ArticleMATHGoogle Scholar
  15. Tersenov, AS, Tersenov, AS: The problem of Dirichlet for anisotropic quasilinear degenerate elliptic equations. J. Differ. Equ. 235(2), 376-396 (2007) MathSciNetView ArticleMATHGoogle Scholar
  16. Picone, M: Sui valori eccezionali di un parametro da cui dipende un’equazione differenziale lineare ordinaria del second’ordine. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 11, 1-144 (1910) MathSciNetMATHGoogle Scholar
  17. Picone, M: Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo-ordine. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat. 20, 213-219 (1911) MATHGoogle Scholar
  18. Allegretto, W: Sturmianian theorems for second order systems. Proc. Am. Math. Soc. 94(2), 291-296 (1985) View ArticleMATHGoogle Scholar
  19. Allegretto, W, Huang, Y: A Picone’s identity for the p-Laplacian and applications. Nonlinear Anal. 32(7), 819-830 (1998) MathSciNetView ArticleMATHGoogle Scholar
  20. Dunninger, DR: A Sturm comparison theorem for some degenerate quasilinear elliptic operators. Boll. Unione Mat. Ital., A 9, 117-121 (1995) MathSciNetMATHGoogle Scholar
  21. Bal, K: Generalized Picone’s identity and its applications. Electron. J. Differ. Equ. 2013, 243 (2013) MathSciNetView ArticleMATHGoogle Scholar
  22. Dwivedi, G, Tyagi, J: Remarks on the qualitative questions for biharmonic operators. Taiwan. J. Math. 19(6), 1743-1758 (2015) MathSciNetGoogle Scholar
  23. Dwivedi, G, Tyagi, J: Picone’s identity for biharmonic operators on Heisenberg group and its applications. NoDEA Nonlinear Differ. Equ. Appl. 23(2), 1-26 (2016) MathSciNetView ArticleMATHGoogle Scholar
  24. Niu, P, Zhang, H, Wang, Y: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 129(129), 3623-3630 (2001) MathSciNetView ArticleMATHGoogle Scholar
  25. Tyagi, J: A nonlinear Picone’s identity and its applications. Appl. Math. Lett. 26(6), 624-626 (2013) MathSciNetView ArticleMATHGoogle Scholar
  26. Jaroš, J: Caccioppoli estimates through an anisotropic Picone’s identity. Proc. Am. Math. Soc. 143(3), 1137-1144 (2015) MathSciNetMATHGoogle Scholar
  27. Adams, RA: Sobolev Spaces. Academic Press, New York (1975) MATHGoogle Scholar
  28. Lu, W: On embedding theorem of spaces of functions with partial derivatives summable with different powers. Vestn. Leningr. State Univ. 7, 23-37 (1961) Google Scholar
  29. Troisi, M: Teoremi di inclusione per spazi di Sobolev non isotropi. Ric. Mat. 18(1), 3-24 (1969) MathSciNetMATHGoogle Scholar

Copyright

© The Author(s) 2017

Advertisement