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Abstract
In this paper, we derive an anisotropic Picone identity for the anisotropic Laplacian,
which contains some known Picone identities. As applications, a Sturmian
comparison principle to the anisotropic elliptic equation and an anisotropic Hardy
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1 Introduction and main results
In recent years, the anisotropic Laplacian
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has been considerably concerned. Note that if pi =  (i = , . . . , n), then (.) becomes the
classical Laplacian; if pi = p = const, then (.) is the pseudo-p-Laplacian (see [])
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The anisotropic Laplacian has not only the widespread practical background in the nat-
ural science, but also the important theoretical value in the mathematics. For example, it
reflects anisotropic physical properties of some reinforced materials (Lions [] and Tang
[]), and describes the dynamics of fluids in the anisotropic media when the conductivi-
ties of the media are different in each direction [, ]. The equations associated with (.)
are also deduced in the image processing []. Existence, integrability, boundedness, and
continuity of solutions to anisotropic elliptic equations have received much attention; see
[–] and the references therein. In this paper, we prove an anisotropic Picone identity for
the anisotropic Laplacian, which contains some known Picone identities. As applications,
a Sturmian comparison principle to the anisotropic elliptic equation and an anisotropic
Hardy type inequality are given. Before giving the main results of this paper, we briefly
recall the existing results for the isotropic case.
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Picone [] considered the homogeneous linear second order differential system

{
(a(x)u′)′ + b(x)u = ,
(a(x)v′)′ + b(x)v = ,

where u and v are differentiable functions in x, and proved the identity that, for the differ-
entiable function v(x) �= ,

(
u
v
(
au′v – auv′)

)′
= (b – b)u + (a – a)u′ + a

(
u′ – v′ u

v

)

; (.)

then a Sturmian comparison principle and the oscillation theory of solutions were ob-
tained via (.). Picone [] (see also Allegretto []) generalized (.) to a Laplacian that,
for differentiable functions v >  and u ≥ ,

(
∇u –

u
v
∇v

)

= |∇u| +
u

v |∇v| – 
u
v
∇v · ∇u

= |∇u| – ∇
(

u

v

)
∇v. (.)

Allegretto and Huang [], Dunninger [] independently extended (.) to a p-Laplacian,
for differentiable functions v >  and u ≥ ,

|∇u|p + (p – )
up

vp |∇v|p – p
up–

vp– |∇v|p–∇v · ∇u

= |∇u|p – ∇
(

up

vp–

)
|∇v|p–∇v, (.)

and applied (.) to derive a Sturmian comparison principle, Liouville’s theorem, the
Hardy inequality, and some profound results for p-Laplace equations and systems. For
other generalizations of the Picone identities and applications, see Bal [], Dwivedi [],
Dwivedi and Tyagi [], Niu, Zhang and Wang [], Tyagi []. These results indicate that
Picone identities are seemingly simple in form, but extremely useful in the study of partial
differential equations, and they have become an important tool in the analysis.

Our main results are as follows.

Theorem . (Anisotropic Picone identity) Let v >  and u ≥  be two differentiable func-
tions in the set � ⊂ Rn, and denote

R(u, v) =
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where pi >  (i = , . . . , n). Then

R(u, v) = L(u, v). (.)

Moreover, we have

L(u, v) ≥ ;

furthermore, L(u, v) =  a.e. in � if and only if u = cv a.e. in �, c is a positive constant.

Remark . If pi =  (i = , . . . , n) in (.) and (.), we have (.) from (.). If pi = p =
const (i = , . . . , n) in (.) and (.), the result in [] follows. Moreover, the identity in
Theorem . is different from the one in [].

Theorem . (Anisotropic Hardy type inequality) Let u ∈ C
(A),  < pi < n, i = , . . . , n,

A = {x ∈ Rn|xi �= , i = , . . . , n}. Then we have
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A
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. (.)

This paper is organized as follows: The proofs of Theorem . and a Sturmian com-
parison principle to the anisotropic elliptic equation are given in Section ; Section  is
devoted to the proof of Theorem . in which a key ingredient is to choose a suitable auxil-
iary function (see (.) below) for the anisotropic case. Two corollaries are also furnished.

2 Proof of Theorem 1.1
Proof of Theorem . One derives easily that
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which is (.). To check L(u, v) ≥ , we rewrite L(u, v) by
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where
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Recall Young’s inequality: for a ≥  and b ≥ ,

ab ≤ api

p
+

bqi

q
, (.)

where pi > , qi >  (i = , . . . , n) and 
pi

+ 
qi

= ; the equality holds if and only if api = bqi ,

namely, a = b
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and so I ≥  from (.). Clearly, II ≥  in virtue of | ∂v
∂xi

|| ∂u
∂xi

| – ∂v
∂xi

∂u
∂xi

≥ . Hence L(u, v) ≥ 
from (.).

If u = cv, c is a positive constant, then clearly L(u, v) = . Now let us conclude that
L(u, v) =  implies u = cv. In fact, if L(u, v)(x) = , x ∈ �, then we consider the two cases
u(x) �=  and u(x) = , respectively.

(a) If u(x) �= , then I =  and II = . One shows by I =  that

∣∣∣∣
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∂xi

∣∣∣∣ =
u
v

∣∣∣∣
∂v
∂xi

∣∣∣∣. (.)

Using II = , it implies
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Putting (.) into (.) yields u = cv.
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which shows u = cv. The proof of Theorem . is completed. �



Feng and Cui Journal of Inequalities and Applications  (2017) 2017:16 Page 5 of 9

Let us address anisotropic Sobolev spaces; see Adams [], Lu [], Troisi [] etc. Given
a domain � ⊂ Rn, pi > , i = , , . . . , n. We define two anisotropic Sobolev spaces by

W ,(pi)(�) =
{

u ∈ W ,(�) :
∂u
∂xi

∈ Lpi (�), i = , . . . , n
}

and

W ,(pi)
 (�) =

{
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 (�) :
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∂xi

∈ Lpi (�), i = , . . . , n
}

,

with the norms
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∫
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) 
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,

respectively. Note that W ,(pi)
 (�) is the closure of C∞

 (�) in W ,(pi)(�). It is well known
that W ,(pi)(�) and W ,(pi)

 (�) are both separable and reflexive Banach spaces.
We will show a Sturmian comparison principle to the anisotropic elliptic equation by

Theorem ..

Proposition . Let f(x) and f(x) be two continuous functions with f(x) < f(x) in the
bounded domain �. Assume that there exists a positive function u ∈ W ,(pi)
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Then any nontrivial solution v to the following anisotropic elliptic equation:
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Proof Suppose that v to (.) does not change sign, without loss of generality, let v > 
in �. By (.), (.), and (.), we observe
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which is a contradiction. This completes the proof. �

3 Proof of Theorem 1.3
To prove Theorem ., we need a lemma from Theorem ..

Lemma . If there exist a constant ki >  and a function hi(x), i = , . . . , n, such that a
differentiable function v >  in the set � satisfies
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Proof of Theorem . Without loss of generality, we let  ≤ u ∈ C∞
 . To use Lemma ., we

introduce the auxiliary function

v =
n∏
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|xj|βj := |xi|βi vi, (.)

where βj = pj–
pj

and vi =
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Taking ki = ( pi–
pi

)pi and hi(x) = 
|xi|pi , and using Lemma ., we obtain (.). �

Corollary . For u ∈ C
(A), it follows that

∫

A
|∇u| dx ≥ n



∫

A

|u|
|x| dx. (.)

Proof Letting pi =  (i = , . . . , n) in (.) and noting the elementary inequality

n

( n∑
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ai
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≤ 
n
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for ai ≥ , i = , . . . , n, (.)
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∫

A
|∇u| dx =

n∑

i=

∫

A

∣∣∣∣
∂u
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≥ 


∫

A
|u|

( n∑
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)
dx
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∫

A
|u|

(
n

∑n
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)
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Corollary . If p > , then, for u ∈ C
(A), it follows that
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A
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Proof Let pi = p >  (i = , . . . , n) in (.). Recall the inequality
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 ≤

( n∑
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ai
p

) 
p

n
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Taking ai = 
|xi| in (.), it implies by (.) that

n∑

i=


|xi|p ≥ n– p–



( n∑

i=


|xi|

) p


≥ n– p–


(
n

∑n
i= |xi|

) p


= n
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|x|p . (.)

Putting (.) into the right-hand side of (.),
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p

)p ∫

A

|u|p
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p

)p

n
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∫

A
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On the other hand,

∫

A
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dx =
∫

A
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Hence (.) is proved via (.) and (.). �
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