Skip to content

Advertisement

Open Access

Pointwise approximation by a Durrmeyer variant of Bernstein-Stancu operators

Journal of Inequalities and Applications20172017:28

https://doi.org/10.1186/s13660-016-1291-x

Received: 19 August 2016

Accepted: 27 December 2016

Published: 27 January 2017

Abstract

In the present paper, we introduce a kind of Durrmeyer variant of Bernstein-Stancu operators, and we obtain the direct and converse results of approximation by the operators.

Keywords

Bernstein-Stancu type operatorspointwise and global estimatesinverse results

MSC

41A2541A35

1 Introduction

For any \(f\in C_{ [ 0,1 ] }\), the corresponding Bernstein operators and Bernsetin-Durrmeyer operators are defined by
$$ B_{n} ( f,x ) :=\sum_{k=0}^{n}f \biggl( \frac{k}{n} \biggr) p_{nk} ( x ) $$
(1.1)
and
$$ D_{n} ( f,x ) := ( n+1 ) \sum_{k=0}^{n}p_{nk} ( x ) \int_{0}^{1}f ( t ) p_{nk} ( t ) \,dt, $$
(1.2)
respectively, where \(p_{nk} ( x ) :=\binom{n}{k}x^{k} ( 1-x ) ^{n-k}\), \(k=0,1,\ldots,n\). Both \(B_{n} ( f,x ) \) and \(D_{n} ( f,x ) \) have played very important roles in approximation theory and computer science. There are many generalizations of the operators \(B_{n} ( f,x ) \) and \(D_{n} ( f,x ) \). Among them, Gadjiev and Ghorbanalizadeh [1] introduced the following new generalized Bernstein-Stancu type operators with shifted knots:
$$ S_{n,\alpha,\beta} ( f,x ) := \biggl( \frac{n+\beta _{2}}{n} \biggr) ^{n}\sum _{k=0}^{n}f \biggl( \frac{k+\alpha_{1}}{n+\beta_{1}} \biggr) q_{nk} ( x ) , $$
(1.3)
where \(x\in A_{n}:= [ \frac{\alpha_{2}}{n+\beta_{2}},\frac {n+\alpha _{2}}{n+\beta_{2}} ] \), and
$$ q_{nk} ( x ) :=\binom{n}{k} \biggl( x-\frac{\alpha_{2}}{n+\beta _{2}} \biggr) ^{k} \biggl( \frac{n+\alpha_{2}}{n+\beta_{2}}-x \biggr) ^{n-k},\quad k=0,1,\ldots,n, $$
with \(\alpha_{k}\), \(\beta_{k}\), \(k=1,2\) positive numbers satisfying \(0\leq \alpha_{1}\leq\beta_{1}\), \(0\leq\alpha_{2}\leq\beta_{2}\). Obviously, when \(\alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=0\), \(S_{n,\alpha,\beta } ( f,x ) \) reduces to the classical Bernstein operators in (1.1), when \(\alpha_{2}=\beta_{2}=0\), it reduces to the so-called Bernstein-Stancu operators which were introduced by Stancu [2]:
$$ B_{n,\alpha,\beta} ( f,x ) :=\sum_{k=0}^{n}f \biggl( \frac {k+\alpha }{n+\beta} \biggr) p_{nk} ( x ) . $$
(1.4)

Some approximation properties and generalizations of the operators \(S_{n,\alpha,\beta}(f,x)\) can be found in [35].

Motivated by (1.3), we introduce the following generalization of the operators (1.2):
$$ \widetilde{S}_{n,\alpha,\beta} ( f,x ) := \biggl( \frac {n+\beta_{2}}{n} \biggr) ^{n}\sum_{k=0}^{n} \lambda_{nk}^{-1}q_{nk} ( x ) \int_{A_{n}}q_{nk} ( t ) f \biggl( \frac{nt+\alpha_{1}}{n+\beta _{1}} \biggr) \,dt, $$
where
$$ \lambda_{nk}= \int_{A_{n}}q_{nk} ( t ) \,dt,\quad k=0,1,\ldots,n, $$
and \(\alpha_{k}\), \(\beta_{k}\), \(k=1,2\) positive numbers satisfying \(0\leq \alpha_{1}\leq\beta_{1}\), \(0\leq\alpha_{2}\leq\beta_{2}\).
By Lemma 1 in Section 2, we observe that \(\widetilde{S}_{n,\alpha,\beta } ( f,x ) \) can be rewritten as follows:
$$ \widetilde{S}_{n,\alpha,\beta} ( f,x ) = \biggl( \frac{n+\beta _{2}}{n} \biggr) ^{2n+1}\sum_{k=0}^{n}q_{nk} ( x ) ( n+1 ) \int_{A_{n}}q_{nk} ( t ) f \biggl( \frac{nt+\alpha_{1}}{n+\beta _{1}} \biggr) \,dt. $$
Especially, when \(\alpha_{1}=\alpha_{2}=\beta_{1}=\beta _{2}=0\), \(\widetilde{S}_{n,\alpha,\beta} ( f,x ) \) reduces to the classical Bernstein-Durrmeyer operators in (1.2). Many authors have studied some special cases of the operators \(\widetilde{S}_{n,\alpha,\beta} ( f,x ) \). For example, the case \(\alpha_{1}=\alpha_{2}=\beta_{1}=0\) in [6] by Jung, Deo, and Dhamija, the case \(\alpha_{1}=\beta_{1}=0 \) in [7] by Acar, Aral, and Gupta.
The main purpose of the present paper is to establish pointwise direct and converse approximation theorems of approximation by \(\widetilde {S}_{n,\alpha ,\beta} ( f,x ) \). To state our result, we need some notations:
$$\begin{aligned}& \omega_{\varphi^{\lambda}}^{2} ( f,t ) =\sup_{0< h\leq t}\sup _{x\pm h\varphi^{\lambda}\in A_{n}}\bigl\vert \Delta_{h\varphi ^{\lambda}}^{2}f(x) \bigr\vert , \end{aligned}$$
(1.5)
$$\begin{aligned}& D_{\lambda}^{2}= \bigl\{ f\in C ( A_{n} ) ,f^{\prime}\in \mathit{A.C.}_{\mathrm{loc}},\bigl\Vert \varphi^{2\lambda}f^{\prime\prime}\bigr\Vert < +\infty \bigr\} , \\& K_{\varphi^{\lambda}} \bigl( f,t^{2} \bigr) =\inf_{g\in D_{\lambda }^{2}} \bigl\{ \Vert f-g\Vert +t^{2}\bigl\Vert \varphi ^{2\lambda }g^{\prime\prime}\bigr\Vert \bigr\} , \end{aligned}$$
(1.6)
$$\begin{aligned}& \overline{D}_{\lambda}^{2}= \bigl\{ f\in D_{\lambda}^{2}, \bigl\Vert f^{\prime\prime}\bigr\Vert < +\infty \bigr\} , \\& \overline{K}_{\varphi^{\lambda}} \bigl( f,t^{2} \bigr) =\inf _{g\in \overline{D}_{\lambda}^{2}} \bigl\{ \Vert f-g\Vert +t^{2}\bigl\Vert \varphi^{2\lambda}g^{\prime\prime}\bigr\Vert +t^{4/(2-\lambda)}\bigl\Vert g^{\prime\prime}\bigr\Vert \bigr\} , \end{aligned}$$
(1.7)
and \(\varphi(x)=\sqrt{ ( x-\frac{\alpha_{2}}{n+\beta_{2}} ) ( \frac{n+\alpha_{2}}{n+\beta_{2}}-x ) }\), \(0\leq\lambda \leq1\). It is well known (see [8], Theorem 3.1.2) that
$$ \omega_{\varphi^{\lambda}}^{2} ( f,t ) \sim K_{\varphi ^{\lambda }} \bigl( f,t^{2} \bigr) \sim\overline{K}_{\varphi^{\lambda}} \bigl( f,t^{2} \bigr) , $$
(1.8)
where \(x\sim y\) means that there exists a positive constant c such that \(c^{-1}y\leq x\leq cy\).

Our first result can be read as follows.

Theorem 1

Let f be a continuous function on \(A_{n}\), \(\lambda\in [ 0,1 ] \) be a fixed positive number. Then there exists a positive constant C only depending on λ, \(\alpha_{1}\), \(\alpha_{2}\), \(\beta_{1}\), and \(\beta_{2}\) such that
$$ \bigl\vert \widetilde{S}_{n,\alpha,\beta} ( f,x ) -f ( x ) \bigr\vert \leq C \biggl( \omega_{\varphi^{\lambda}} \biggl( f, \frac{\delta_{n}^{1-\lambda} ( x ) }{\sqrt{n}} \biggr) +\omega \biggl( f,\frac{1}{n} \biggr) \biggr) , $$
(1.9)
where \(\delta_{n}(x)=\varphi(x)+1/\sqrt{n}\sim \max \{ \varphi (x),1/\sqrt{n} \} \), and \(\omega ( f,t ) \) is the usual modulus of continuity of f on \(A_{n}\).

Throughout the paper, C denotes either a positive absolute constant or a positive constant that may depend on some parameters but not on f, x, and n. Their values may be different at different locations.

For the converse result, we have the following.

Theorem 2

Let f be a continuous function on \(A_{n}\), \(0<\alpha<\frac {2}{2-\lambda}\), \(0\leq\lambda\leq1\). Then
$$ \bigl\vert \widetilde{S}_{n,\alpha,\beta} ( f,x ) -f(x)\bigr\vert =O \bigl( \bigl( n^{-1/2}\delta_{n}^{1-\lambda }(x) \bigr) ^{\alpha} \bigr) $$
(1.10)
implies that
$$ (\mathrm{i})\quad \omega_{\varphi^{\lambda}}^{2} ( f,t ) =O \bigl(t^{\alpha }\bigr);\qquad (\mathrm{ii})\quad \omega ( f,t ) =O \bigl( t^{\alpha ( 1-\lambda/2 ) } \bigr) . $$
(1.11)

2 Auxiliary lemmas

Lemma 1

We have
$$ \lambda_{kn}= \int_{A_{n}}q_{nk} ( t ) \,dt= \biggl( \frac {n}{n+\beta _{2}} \biggr) ^{n+1}\frac{1}{n+1},\quad k=0,1,\ldots,n. $$
(2.1)

Proof

For \(p,q=1,2,\ldots\) , set
$$\begin{aligned} B^{\ast} ( p,q ) :=& \int_{A_{n}} \biggl( x-\frac{\alpha_{2}}{n+\beta_{2}} \biggr) ^{p-1} \biggl( \frac{n+\alpha_{2}}{n+\beta_{2}}-x \biggr) ^{q-1}\,dx \\ = & \int_{0}^{\frac{n}{n+\beta_{2}}}x^{p-1} \biggl( \frac{n}{n+\beta_{2}} -x \biggr) ^{q-1}\,dx. \end{aligned}$$
Then
$$\begin{aligned} B^{\ast} ( p,q ) =&\frac{q-1}{p} \int_{0}^{\frac{n}{n+\beta _{2}}}x^{p} \biggl( \frac{n}{n+\beta_{2}}-x \biggr) ^{q-2}\,dx \\ =&\frac{q-1}{p} \int_{0}^{\frac{n}{n+\beta_{2}}} \biggl( \frac {n}{n+\beta_{2}}x^{p-1}-x^{p-1} \biggl( \frac{n}{n+\beta_{2}}-x \biggr) \biggr) \biggl( \frac{n}{n+\beta_{2}}-x \biggr) ^{q-2}\,dx \\ =&\frac{q-1}{p}\cdot\frac{n}{n+\beta_{2}}B^{\ast} ( p,q-1 ) -\frac{q-1}{p}B^{\ast} ( p,q ) , \end{aligned}$$
which implies that
$$ B^{\ast} ( p,q ) =\frac{q-1}{p+q-1}\cdot\frac{n}{n+\beta _{2}}B^{\ast} ( p,q-1 ) . $$
Therefore,
$$\begin{aligned} \lambda_{kn} =&\binom{n}{k}B^{\ast} ( k+1,n-k+1 ) \\ =& \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{n-k}\binom{n}{k} \frac{ ( n-k ) ( n-k-1 ) \cdots2\cdot1}{ ( n+1 ) n\cdots ( k+2 ) }B^{\ast} ( k+1,1 ) \\ =& \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{n-k}\frac{k+1}{ ( n+1 ) }\int_{0}^{\frac{n}{n+\beta_{2}}}x^{k}\,dx \\ =& \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{n+1}\frac{1}{n+1}. \end{aligned}$$
 □

Lemma 2

For any \(x\in A_{n}\), we have
$$ \widetilde{S}_{n,\alpha,\beta} \bigl( ( t-x ) ^{2},x \bigr) \leq \frac{C}{n}\delta_{n}^{2} ( x ) . $$
(2.2)

Proof

Write
$$ \widetilde{D}_{n,\alpha,\beta} ( f,x ) := \biggl( \frac {n+\beta_{2}}{n} \biggr) ^{2n+1}\sum_{k=0}^{n}q_{nk} ( x ) ( n+1 ) \int_{A_{n}}q_{nk} ( t ) f ( t ) \,dt. $$
Then [7]
$$\begin{aligned}& \widetilde{D}_{n,\alpha,\beta} ( 1,x ) =1, \widetilde {D}_{n,\alpha,\beta} ( t,x ) =\frac{n}{n+2}x+\frac{n+2\alpha _{2}}{ ( n+2 ) ( n+\beta_{2} ) }, \\& \widetilde{D}_{n,\alpha,\beta} \bigl( t^{2},x \bigr) = \biggl( x- \frac{ \alpha_{2}}{n+\beta_{2}} \biggr) ^{2}\frac{n ( n-1 ) }{ ( n+2 ) ( n+3 ) } \\& \hphantom{\widetilde{D}_{n,\alpha,\beta} \bigl( t^{2},x \bigr) ={}}{}+\frac{n}{n+\beta_{2}} \biggl( x-\frac{\alpha_{2}}{n+\beta_{2}} \biggr) \frac{4n}{ ( n+2 ) ( n+3 ) } \\& \hphantom{\widetilde{D}_{n,\alpha,\beta} \bigl( t^{2},x \bigr) ={}}{}+ \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{2} \frac{2}{ ( n+2 ) ( n+3 ) }+\frac{2n\alpha_{2}}{ ( n+2 ) ( n+\beta _{2} ) } \biggl( x-\frac{\alpha_{2}}{n+\beta_{2}} \biggr) \\& \hphantom{\widetilde{D}_{n,\alpha,\beta} \bigl( t^{2},x \bigr) ={}}{}+\frac{2n\alpha_{2}}{ ( n+2 ) ( n+\beta_{2} ) ^{2}}+ \biggl( \frac{\alpha_{2}}{n+\beta_{2}} \biggr) ^{2}, \end{aligned}$$
(2.3)
and
$$ \widetilde{D}_{n,\alpha,\beta} \bigl( ( t-x ) ^{2},x \bigr) \leq \frac{C}{n}\delta_{n}^{2} ( x ) . $$
By the facts that
$$\begin{aligned}& \widetilde{S}_{n,\alpha,\beta} ( 1,x ) =\widetilde {D}_{n,\alpha ,\beta} ( 1,x ) =1, \\& \widetilde{S}_{n,\alpha,\beta} ( t,x ) =\frac{n}{n+\beta _{1}}\widetilde{D}_{n,\alpha,\beta} ( t,x ) +\frac{\alpha_{1}}{n+\beta_{1}}, \end{aligned}$$
(2.4)
and
$$ \widetilde{S}_{n,\alpha,\beta} \bigl( t^{2},x \bigr) =\frac {n^{2}}{ ( n+\beta_{1} ) ^{2}} \widetilde{D}_{n,\alpha,\beta} \bigl( t^{2},x \bigr) + \frac{2n\alpha_{1}}{ ( n+\beta_{1} ) ^{2}}\widetilde{D}_{n,\alpha,\beta} ( t,x ) + \frac{\alpha _{1}^{2}}{ ( n+\beta_{1} ) ^{2}}, $$
we get
$$\begin{aligned} \widetilde{S}_{n,\alpha,\beta} \bigl( ( t-x ) ^{2},x \bigr) =&\frac{n^{2}}{ ( n+\beta_{1} ) ^{2}}\widetilde{D}_{n,\alpha ,\beta } \bigl( ( t-x ) ^{2},x \bigr) \\ &{}+ \biggl( \frac{2n^{2}x}{ ( n+\beta_{1} ) ^{2}}+\frac {2n\alpha_{1}}{ ( n+\beta_{1} ) ^{2}}-\frac{2nx}{n+\beta_{1}} \biggr) \widetilde{D}_{n,\alpha,\beta} ( t,x ) \\ &{}+\frac{\alpha_{1}^{2}}{ ( n+\beta_{1} ) ^{2}}-\frac{2\alpha _{1}x}{n+\beta_{1}}+x^{2}-\frac{n^{2}}{ ( n+\beta_{1} ) ^{2}}x^{2} \\ =&\frac{n^{2}}{ ( n+\beta_{1} ) ^{2}}\widetilde{D}_{n,\alpha ,\beta} \bigl( ( t-x ) ^{2},x \bigr) +\frac{ ( \beta _{1}^{2}+4\beta_{1} ) n+2\beta_{1}^{2}}{ ( n+\beta_{1} ) ^{2} ( n+2 ) }x^{2} \\ &{}+\frac{2\alpha_{1} ( \beta_{1}+\beta_{2}+2 ) n^{2}+2n\alpha _{1} ( \beta_{1}\beta_{2}+2\beta_{1}+2\beta_{2} ) +4\alpha _{1}\beta_{1}\beta_{2}}{ ( n+\beta_{1} ) ^{2} ( n+2 ) ( n+\beta_{2} ) }x \\ &{}+\frac{\alpha_{1}^{2}}{ ( n+\beta_{1} ) ^{2}} \\ \leq&\widetilde{D}_{n,\alpha,\beta} \bigl( ( t-x ) ^{2},x \bigr) + \frac{C}{n^{2}} \\ \leq&\frac{C}{n}\delta_{n}^{2} ( x ) . \end{aligned}$$
 □

Lemma 3

For any given \(\gamma\geq0\), we have
$$ \sum_{k=0}^{n}\biggl\vert \frac{k+\alpha_{2}}{n+\beta_{2}}-x\biggr\vert ^{\gamma}\bigl\vert q_{nk} ( x ) \bigr\vert \leq C\frac {\delta _{n}^{\gamma} ( x ) }{n^{\gamma/2}}, \quad x\in [ 0,1 ] . $$
(2.5)

Proof

It was showed in [3] that
$$ \sum_{k=0}^{n}\biggl\vert \frac{k+\alpha_{1}}{n+\beta_{1}}-x\biggr\vert ^{\gamma}\bigl\vert q_{nk} ( x ) \bigr\vert \leq C\frac{ ( \delta_{n}^{\ast} ( x ) ) ^{\gamma}}{n^{\gamma /2}}, \quad x\in [ 0,1 ] , $$
(2.6)
where \(\delta_{n}^{\ast} ( x ) :=\psi ( x ) +\frac {1}{\sqrt{n}}\) and \(\psi ( x ) =\sqrt{x ( 1-x ) }\). We verify that
$$ \delta_{n}^{\ast} ( x ) \sim\delta_{n} ( x ) ,\quad x\in [ 0,1 ] . $$
(2.7)
In fact, when \(x\in [ \frac{2\alpha_{2}+1}{n+\beta_{2}},\frac{ n-\beta_{2}+2\alpha_{2}}{n+\beta_{2}} ] \), we have
$$\begin{aligned}& \frac{1}{2}x\leq x-\frac{\alpha_{2}}{n+\beta_{2}}\leq x, \\& \frac{1}{2} ( 1-x ) \leq\frac{n+\alpha_{2}}{n+\beta _{2}}-x\leq 1-x. \end{aligned}$$
Thus,
$$ \psi ( x ) \sim\varphi ( x ) , $$
which implies (2.7) for \(x\in [ \frac{2\alpha_{2}+1}{n+\beta _{2}},\frac{n-\beta_{2}+2\alpha_{2}}{n+\beta_{2}} ] \). When \(x\in [ 0,\frac{2\alpha_{2}+1}{n+\beta_{2}} ) \cup ( \frac{n-\beta _{2}+2\alpha_{2}}{n+\beta_{2}},1 ] \), we have
$$ \delta_{n}^{\ast} ( x ) \sim\delta_{n} ( x ) \sim \frac{1}{\sqrt{n}}, $$
(2.8)
and thus (2.7) also holds.
Now, by (2.6) and (2.7), we have
$$\begin{aligned} \sum_{k=0}^{n}\biggl\vert \frac{k+\alpha_{2}}{n+\beta_{2}}-x\biggr\vert ^{\gamma}\bigl\vert q_{nk} ( x ) \bigr\vert \leq &\sum_{k=0}^{n}\biggl\vert \frac{k+\alpha_{2}}{n+\beta_{2}}-\frac {k+\alpha _{1}}{n+\beta_{1}}\biggr\vert ^{\gamma}\bigl\vert q_{nk} ( x ) \bigr\vert +\sum_{k=0}^{n} \biggl\vert \frac{k+\alpha_{1}}{n+\beta_{1}} -x\biggr\vert ^{\gamma}\bigl\vert q_{nk} ( x ) \bigr\vert \\ \leq&\frac{C}{n^{\gamma}}\sum_{k=0}^{n}\bigl\vert q_{nk} ( x ) \bigr\vert +C\frac{\delta_{n}^{\gamma} ( x ) }{n^{\gamma /2}} \\ \leq&C\frac{\delta_{n}^{\gamma} ( x ) }{n^{\gamma/2}}. \end{aligned}$$
 □

Lemma 4

For any \(x\in A_{n}\), we have
$$ \sum_{k=0}^{n}q_{nk} ( x ) ( n+1 ) \int_{A_{n}}\delta _{n}^{2} ( t ) q_{nk} ( t ) \,dt\leq C\delta _{n}^{2} ( x ) $$
(2.9)
and
$$ \sum_{k=0}^{n-1}q_{n-1,k} ( x ) n \int_{A_{n}}\delta _{n}^{-2} ( t ) q_{n+1,k+1} ( t ) \,dt\leq C\delta_{n}^{-2} ( x ) . $$
(2.10)

Proof

By a similar calculation to that of Lemma 1, we have
$$ \int_{A_{n}}\varphi^{2} ( t ) q_{nk} ( t ) \,dt= \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{n+3}\frac{ ( n-k+1 ) ( k+1 ) }{ ( n+3 ) ( n+2 ) ( n+1 ) }. $$
(2.11)
On the other hand, we have
$$\begin{aligned} \sum_{k=0}^{n} \biggl( \frac{k}{n}- \frac{k^{2}}{n^{2}} \biggr) q_{nk} ( x ) =& \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{n-1} \biggl( x-\frac{\alpha_{2}}{n+\beta_{2}} \biggr) - \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{n-1}\frac{ ( x-\frac{\alpha_{2}}{n+\beta_{2}} ) }{n} \\ &{}-\frac{n-1}{n} \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{n-2} \biggl( x-\frac{\alpha_{2}}{n+\beta_{2}} \biggr) ^{2} \\ =&\frac{n-1}{n} \biggl( \frac{n}{n+\beta_{2}} \biggr) ^{n-2}\varphi ^{2} ( x ) . \end{aligned}$$
Therefore,
$$\begin{aligned} \sum_{k=0}^{n}q_{nk} ( x ) ( n+1 ) \int_{A_{n}}\delta _{n}^{2} ( t ) q_{nk} ( t ) \,dt \leq& 2\sum_{k=0}^{n}q_{nk} ( x ) ( n+1 ) \int_{A_{n}} \biggl( \varphi^{2} ( t ) + \frac{1}{n} \biggr) q_{nk} ( t ) \,dt \\ \leq&2\sum_{k=0}^{n}q_{nk} ( x ) \biggl( \frac{n}{n+\beta _{2}} \biggr) ^{n+3}\frac{ ( n-k+1 ) ( k+1 ) }{ ( n+3 ) ( n+2 ) } \\ &{}+ \frac{C}{n}\sum_{k=0}^{n}q_{nk} ( x ) \\ \leq&C\sum_{k=0}^{n}q_{nk} ( x ) \biggl( \frac{ ( n-k ) k}{n^{2}}+\frac{1}{n} \biggr) +\frac{C}{n} \\ \leq&C\delta_{n}^{2} ( x ) , \end{aligned}$$
which proves (2.9).
By Lemma 1, we have
$$\begin{aligned} n \int_{A_{n}}\delta_{n}^{-2} ( t ) q_{n+1,k+1} ( t ) \,dt \leq&Cn \int_{A_{n}} \bigl( \varphi^{-2} ( t ) +n \bigr) q_{n+1,k+1} ( t ) \,dt \\ \leq&Cn \biggl( \int_{A_{n}}\varphi^{-2} ( t ) q_{n+1,k+1} ( t ) \,dt+1 \biggr) \\ =&Cn \biggl( \frac{ ( n+1 ) n}{ ( k+1 ) ( n-k ) }\int_{A_{n}}q_{n-1,k} ( t ) \,dt+1 \biggr) \\ \leq&Cn \biggl( \frac{ ( n+1 ) }{ ( k+1 ) ( n-k ) }+1 \biggr) \\ \leq&Cn. \end{aligned}$$
Then
$$\begin{aligned} \sum_{k=0}^{n-1}q_{n-1,k} ( x ) n \int_{A_{n}}\delta _{n}^{-2} ( t ) q_{n+1,k+1} ( t ) \,dt \leq &Cn\sum_{k=0}^{n}q_{n-1,k} ( x ) \\ =&Cn\leq C\delta_{n}^{-2} ( x ) . \end{aligned}$$
Hence, (2.10) is proved. □

Lemma 5

If f is r times differentiable on \([ 0,1 ] \), then
$$\begin{aligned} \widetilde{S}_{n,\alpha,\beta}^{(r)} ( f,x ) =& \biggl( \frac{ n+\beta_{2}}{n} \biggr) ^{2n+1} \biggl( \frac{n}{n+\beta_{1}} \biggr) ^{r} \frac{ ( n+1 ) !n!}{ ( n-r ) ! ( n+r ) !}\sum_{k=0}^{n-r}q_{n-r,k}(x) \\ &{}\times \int_{\frac{\alpha_{2}}{n+\beta_{2}}}^{\frac{n+\alpha_{2}}{n+\beta_{2}}}q_{n+r,k+r}(t)f^{(r)} \biggl( \frac{nt+\alpha_{1}}{n+\beta _{1}} \biggr) \,dt. \end{aligned}$$
(2.12)

Proof

By using Leibniz’s theorem, we have
$$\begin{aligned} \widetilde{S}_{n,\alpha,\beta}^{(r)} ( f,x ) =& \biggl( \frac{ n+\beta_{2}}{n} \biggr) ^{2n+1}\sum_{i=0}^{r} \sum_{k=i}^{n-r+i}\binom {r}{i}\frac{(-1)^{r-i} ( n+1 ) !}{ ( k-i ) ! ( n-k-r+i ) !} \\ &{}\times \biggl( x-\frac{\alpha_{2}}{n+\beta_{2}} \biggr) ^{k-i} \biggl( \frac{n+\alpha_{2}}{n+\beta_{2}}-x \biggr) ^{n-k-r+i} \int_{\frac{\alpha _{2}}{n+\beta_{2}}}^{\frac{n+\alpha_{2}}{n+\beta_{2}}}q_{nk}(t)f \biggl( \frac{nt+\alpha_{1}}{n+\beta_{1}} \biggr) \,dt \\ =& \biggl( \frac{n+\beta_{2}}{n} \biggr) ^{2n+1}\sum _{k=i}^{n-r+i}\sum_{i=0}^{r} \binom{r}{i}\frac{(-1)^{r-i} ( n+1 ) !}{ ( n-r ) !}q_{n-r,k-i}(x) \\ &{}\times \int_{\frac{\alpha_{2}}{n+\beta_{2}}}^{\frac{n+\alpha_{2}}{n+\beta_{2}}}q_{nk}(t)f \biggl( \frac{nt+\alpha_{1}}{n+\beta_{1}} \biggr) \,dt \\ =& \biggl( \frac{n+\beta_{2}}{n} \biggr) ^{2n+1}\frac{ ( n+1 ) !}{ ( n-r ) !}\sum _{k=0}^{n-r}(-1)^{r}q_{n-r,k}(x) \\ &{}\times \int_{\frac{\alpha_{2}}{n+\beta_{2}}}^{\frac{n+\alpha_{2}}{n+\beta_{2}}}\sum_{i=0}^{r} \binom{r}{i}(-1)^{i}q_{n,k+i}(t)f \biggl( \frac{nt+\alpha_{1}}{n+\beta_{1}} \biggr) \,dt. \end{aligned}$$
Since
$$ \frac{d^{r}}{dt^{r}}q_{n+r,k+r}(t)=\sum_{i=0}^{r} \binom {r}{i}(-1)^{i}\frac{ ( n+r ) !}{n!}q_{n,k+i}(t), $$
we have
$$\begin{aligned} \widetilde{S}_{n,\alpha,\beta}^{(r)} ( f,x ) =& \biggl( \frac{n+\beta_{2}}{n} \biggr) ^{2n+1}\frac{ ( n+1 ) !n!}{ ( n-r ) ! ( n+r ) !}\sum_{k=0}^{n-r}q_{n-r,k}(x) \\ &{}\times\int_{\frac{\alpha_{2}}{n+\beta_{2}}}^{\frac{n+\alpha_{2}}{n+\beta_{2}}}(-1)^{r}q_{n+r,k+r}^{(r)}(t)f \biggl( \frac{nt+\alpha_{1}}{n+\beta_{1}} \biggr) \,dt. \end{aligned}$$
We obtain the required result by integrating by parts r times. □
Set
$$\begin{aligned}& \Vert f\Vert _{0}=\sup_{x\in A_{n}} \bigl\{ \bigl\vert \delta _{n}^{\alpha ( \lambda-1 ) }(x)f ( x ) \bigr\vert \bigr\} ; \\& C_{\alpha,\lambda}= \bigl\{ f\in C ( A_{n} ) ,\Vert f\Vert _{0}< +\infty \bigr\} ; \\& \Vert f\Vert _{1}=\sup_{x\in A_{n}} \bigl\{ \bigl\vert \delta _{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)f^{\prime} ( x ) \bigr\vert \bigr\} ; \\& C_{\alpha,\lambda}^{1}= \bigl\{ f\in C_{\alpha,\lambda}, \Vert f\Vert _{1}< +\infty \bigr\} ; \\& \Vert f\Vert _{2}=\sup_{x\in A_{n}} \bigl\{ \bigl\vert \delta _{n}^{2+\alpha ( \lambda-1 ) }(x)f^{\prime\prime} ( x ) \bigr\vert \bigr\} ; \\& C_{\alpha,\lambda}^{2}= \bigl\{ f\in C_{\alpha,\lambda},f^{\prime } \in \mathit{A.C.}_{\mathrm{loc}},\Vert f\Vert _{2}< +\infty \bigr\} ; \\& K_{\alpha,\lambda}^{1} ( f,t ) =\inf_{g\in C_{\alpha,\lambda }^{1}} \bigl\{ \Vert f-g\Vert _{0}+t\Vert g\Vert _{1} \bigr\} ; \\& K_{\alpha,\lambda}^{2} ( f,t ) =\inf_{g\in C_{\alpha,\lambda }^{2}} \bigl\{ \Vert f-g\Vert _{0}+t\Vert g\Vert _{2} \bigr\} . \end{aligned}$$

Lemma 6

If \(0\leq\lambda\leq1\), \(0<\alpha<2\), then
$$\begin{aligned}& \bigl\Vert \widetilde{S}_{n,\alpha,\beta} ( f ) \bigr\Vert _{1}\leq Cn^{1/ ( 2-\lambda ) }\Vert f\Vert _{0},\quad f\in C_{\alpha,\lambda}, \end{aligned}$$
(2.13)
$$\begin{aligned}& \bigl\Vert \widetilde{S}_{n,\alpha,\beta} ( f ) \bigr\Vert _{1}\leq C\Vert f\Vert _{1},\quad f\in C_{\alpha,\lambda }^{1}. \end{aligned}$$
(2.14)

Proof

Firstly, we prove (2.13) by considering the following two cases.

Case 1. \(x\in B_{n}:= [ \frac{\alpha_{2}+1}{n+\beta_{2}}, \frac{n+\alpha_{2}-1}{n+\beta_{2}} ] \). In this case, we have
$$ \varphi ( x ) \geq\min \biggl( \varphi \biggl( \frac{\alpha _{2}+1}{n+\beta_{2}} \biggr) , \varphi \biggl( \frac{n+\alpha_{2}-1}{n+\beta _{2}} \biggr) \biggr) \geq \frac{C}{\sqrt{n}}, $$
which means that
$$ \delta_{n}(x)\sim\varphi ( x ) \quad \text{for }x\in B_{n}. $$
(2.15)
By simple calculations, we have
$$ q_{nk}^{\prime} ( x ) =n\varphi^{-2} ( x ) \biggl( \frac{k+\alpha_{2}}{n+\beta_{2}}-x \biggr) q_{nk} ( x ) $$
(2.16)
and
$$\begin{aligned} \delta_{n} \biggl( \frac{nt+\alpha_{1}}{n+\beta_{1}} \biggr) =&\sqrt{ \biggl( t-\frac{\alpha_{2}}{n+\beta_{2}}+\frac{\alpha_{1}-\beta _{1}t}{n+\beta_{1}} \biggr) \biggl( \frac{n+\alpha_{2}}{n+\beta_{2}}-t+\frac {\beta _{1}t-\alpha_{1}}{n+\beta_{1}} \biggr) }+\frac{1}{\sqrt{n}} \\ =&\sqrt{\varphi^{2} ( t ) +O \biggl( \frac{1}{n} \biggr) }+ \frac {1}{\sqrt{n}}\sim\varphi ( t ) +\frac{1}{\sqrt{n}}=\delta _{n} ( t ) . \end{aligned}$$
(2.17)
By (2.1), (2.15)-(2.17), and Hölder’s inequality, we have
$$\begin{aligned}& \bigl\vert \delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\widetilde{S}_{n,\alpha,\beta}^{\prime} ( f,x ) \bigr\vert \\& \quad \leq Cn\varphi^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) -2}(x) \biggl( \frac{n+\beta_{2}}{n} \biggr) ^{2n+1} \\& \qquad {}\times\sum_{k=0}^{n}q_{nk}(x) \biggl\vert \frac{k+\alpha_{2}}{n+\beta _{2}}-x\biggr\vert ( n+1 ) \biggl\vert \int_{A_{n}}f \biggl( \frac{nt+\alpha_{1}}{n+\beta_{1}} \biggr) q_{nk}(t)\,dt\biggr\vert \\& \quad \leq Cn\Vert f\Vert _{0}\varphi^{ ( \frac {2}{2-\lambda}-\alpha ) ( 1-\lambda ) -2}(x)\sum _{k=0}^{n}q_{nk}(x)\biggl\vert \frac{k+\alpha_{2}}{n+\beta _{2}}-x\biggr\vert ( n+1 ) \biggl\vert \int_{A_{n}}\delta _{n}^{\alpha ( 1-\lambda ) } ( t ) q_{nk}(t)\,dt\biggr\vert \\& \quad \leq Cn\Vert f\Vert _{0}\varphi^{ ( \frac {2}{2-\lambda}-\alpha ) ( 1-\lambda ) -2}(x)\sum _{k=0}^{n}q_{nk}(x)\biggl\vert \frac{k+\alpha_{2}}{n+\beta _{2}}-x\biggr\vert \biggl( ( n+1 ) \int_{A_{n}}\delta_{n}^{2} ( t ) q_{nk}(t)\,dt \biggr) ^{\alpha ( 1-\lambda ) /2} \\& \qquad {}\times \biggl( ( n+1 ) \int_{A_{n}}q_{nk}(t)\,dt \biggr) ^{1-\alpha ( 1-\lambda ) /2} \\& \quad \leq Cn\Vert f\Vert _{0}\varphi^{ ( \frac {2}{2-\lambda}-\alpha ) ( 1-\lambda ) -2}(x)\sum _{k=0}^{n}q_{nk}(x)\biggl\vert \frac{k+\alpha_{2}}{n+\beta _{2}}-x\biggr\vert \biggl( ( n+1 ) \int_{A_{n}}\delta_{n}^{2} ( t ) q_{nk}(t)\,dt \biggr) ^{\alpha ( 1-\lambda ) /2}. \end{aligned}$$
By (2.9), (2.15) (2.5), and Hölder’s inequality again, we have
$$\begin{aligned}& \bigl\vert \delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\widetilde{S}_{n,\alpha,\beta}^{\prime} ( f,x ) \bigr\vert \\& \quad \leq Cn\Vert f\Vert _{0}\varphi^{ ( \frac {2}{2-\lambda}-\alpha ) ( 1-\lambda ) -2}(x) \Biggl( \sum_{k=0}^{n}q_{nk}(x)\biggl\vert \frac{k+\alpha_{2}}{n+\beta_{2}}-x\biggr\vert ^{\frac{1}{1-\alpha ( 1-\lambda ) /2}} \Biggr) ^{1-\alpha ( 1-\lambda ) /2} \\& \qquad {}\times \Biggl( \sum_{k=0}^{n}q_{nk}(x) ( n+1 ) \int _{A_{n}}\delta _{n}^{2} ( t ) q_{nk}(t)\,dt \Biggr) ^{\alpha ( 1-\lambda ) /2} \\& \quad \leq Cn^{1/2}\Vert f\Vert _{0} \varphi^{\frac{2 ( 1-\lambda ) }{2-\lambda}-1}(x)\leq Cn^{1/ ( 2-\lambda ) } \Vert f\Vert _{0}. \end{aligned}$$
(2.18)
Case 2. \(x\in B_{n}^{c}= [ \frac{\alpha_{2}}{n+\beta_{2}},\frac {\alpha _{2}+1}{n+\beta_{2}} ) \cup ( \frac{n+\alpha_{2}-1}{n+\beta _{2}},\frac{n+\alpha_{2}}{n+\beta_{2}} ] \). In this case, we have
$$ \delta_{n} ( x ) \sim\frac{1}{\sqrt{n}},\quad x\in B_{n}^{c}. $$
(2.19)
Noting that
$$ q_{nk}^{\prime} ( x ) =n \bigl( q_{n-1,k-1} ( x ) -q_{n-1,k} ( x ) \bigr) $$
with \(q_{n-1,-1} ( x ) =q_{n-1,n} ( x ) =0\), we get
$$ \widetilde{S}_{n,\alpha,\beta}^{\prime} ( f,x ) =n\sum _{k=0}^{n-1}q_{n-1,k}(x) (x) ( n+1 ) \int_{A_{n}}f \biggl( \frac{nt+\alpha_{1}}{n+\beta_{1}} \biggr) \bigl( q_{n,k+1}(t)-q_{n,k}(t) \bigr) \,dt. $$
Then, by using (2.17) and Hölder’s inequality twice,
$$\begin{aligned}& \bigl\vert \delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\widetilde{S}_{n,\alpha,\beta}^{\prime} ( f,x ) \bigr\vert \\& \quad \leq Cn\delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\Vert f\Vert _{0}\Biggl\vert \sum_{k=0}^{n-1}q_{n-1,k}(x) ( n+1 ) \int_{A_{n}}\delta _{n}^{\alpha ( 1-\lambda ) } ( t ) \bigl( q_{n,k+1}(t)+q_{n,k}(t) \bigr) \,dt\Biggr\vert \\& \quad \leq Cn\delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\Vert f\Vert _{0}\sum_{k=0}^{n-1}q_{n-1,k}(x) \biggl( ( n+1 ) \int _{A_{n}}\delta _{n}^{2}(t) \bigl( q_{n,k+1}(t)+q_{n,k}(t) \bigr) \,dt \biggr) ^{\frac {\alpha ( 1-\lambda ) }{2}} \\& \quad \leq Cn\delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\Vert f\Vert _{0} \Biggl( \sum_{k=0}^{n-1}q_{n-1,k}(x) ( n+1 ) \int_{A_{n}}\delta _{n}^{2}(t) \bigl( q_{n,k+1}(t)+q_{n,k}(t) \bigr) \,dt \Biggr) ^{\frac {\alpha ( 1-\lambda ) }{2}} \\& \quad \leq Cn\delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\Vert f\Vert _{0}\delta_{n}^{\alpha ( 1-\lambda ) } \\& \quad \leq Cn^{\frac{1}{2-\lambda}} \Vert f\Vert _{0}, \end{aligned}$$
(2.20)
where in the fourth inequality, we used the following fact, which can be deduced exactly in the same way as (2.10):
$$ \sum_{k=0}^{n-1}q_{n-1,k}(x) ( n+1 ) \int_{A_{n}}\delta _{n}^{2}(t)q_{nk^{\ast}}(t) \,dt\leq C\delta_{n}^{2}(x). $$
We obtain (2.13) by combining (2.18) and (2.20).
Now, we begin to prove (2.14). If \(( \frac{2}{2-\lambda }-\alpha ) ( \lambda-1 ) <0\), by (2.12) and using Hölder’s inequality twice, we get
$$\begin{aligned}& \bigl\vert \delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\widetilde{S}_{n,\alpha,\beta}^{\prime} ( f,x ) \bigr\vert \\ & \quad \leq C\Vert f\Vert _{1}\Biggl\vert \delta_{n}^{ ( \frac {2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)n \sum_{k=0}^{n-1}q_{n-1,k} ( x ) \int_{A_{n}}q_{n+1,k+1}(t)\delta_{n}^{ ( \frac{2}{2-\lambda }-\alpha ) ( \lambda-1 ) }(t) \,dt\Biggr\vert \\ & \quad \leq C\Vert f\Vert _{1}\delta_{n}^{ ( \frac {2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x) \sum_{k=0}^{n-1}q_{n-1,k} ( x ) \biggl( n \int_{A_{n}}q_{n+1,k+1}(t)\delta_{n}^{-2}(t) \,dt \biggr) ^{\frac{1}{2} ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) } \\ & \qquad {}\times \biggl( n \int_{A_{n}}q_{n+1,k+1}(t)\,dt \biggr) ^{1-\frac {1}{2} ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) } \\ & \quad \leq C\Vert f\Vert _{1}\delta_{n}^{ ( \frac {2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x) \sum_{k=0}^{n-1}q_{n-1,k} ( x ) \biggl( n \int_{A_{n}}q_{n+1,k+1}(t)\delta_{n}^{-2}(t) \,dt \biggr) ^{\frac{1}{2} ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) } \\ & \qquad (\text{by (2.1)}) \\ & \quad \leq C\Vert f\Vert _{1}\delta_{n}^{ ( \frac {2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x) \Biggl( \sum_{k=0}^{n-1}q_{n-1,k} ( x ) n \int _{A_{n}}q_{n+1,k+1}(t)\delta _{n}^{-2}(t) \,dt \Biggr) ^{\frac{1}{2} ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) } \\ & \quad \leq C\Vert f\Vert _{1}, \end{aligned}$$
where, in the last inequality, (2.10) is applied.
If \(( \frac{2}{2-\lambda}-\alpha ) ( \lambda-1 ) >0\), by using (2.9) instead of (2.10), we also can deduce that
$$ \bigl\vert \delta_{n}^{ ( \frac{2}{2-\lambda}-\alpha ) ( 1-\lambda ) }(x)\widetilde{S}_{n,\alpha,\beta}^{\prime} ( f,x ) \bigr\vert \leq C\Vert f\Vert _{1}. $$
 □

Lemma 7

If \(0\leq\lambda\leq1\), \(0<\alpha<2\), then
$$\begin{aligned}& \bigl\Vert \widetilde{S}_{n,\alpha,\beta} ( f ) \bigr\Vert _{2}\leq Cn\Vert f\Vert _{0}, \quad f\in C_{\alpha ,\lambda}, \end{aligned}$$
(2.21)
$$\begin{aligned}& \bigl\Vert \widetilde{S}_{n,\alpha,\beta} ( f ) \bigr\Vert _{2}\leq C\Vert f\Vert _{2}, \quad f\in C_{\alpha,\lambda }^{2}. \end{aligned}$$
(2.22)

Proof

It can be proved in a way similar to Lemma 6. □

Lemma 8

For \(0< t<\frac{1}{8}\), \(\frac{t}{2}\leq x\leq1-\frac{t}{2}\), \(x\in [ 0,1 ] \), \(\beta<2\), we have
$$ \int_{-t/2}^{t/2}\delta_{n}^{-\beta} ( x+u ) \, du\leq C(\beta )t\delta_{n}^{-\beta}(x). $$
(2.23)

Lemma 9

For \(0< t<\frac{1}{4}\), \(t\leq x\leq1-t\), \(x\in [ 0,1 ] \), \(0\leq \beta\leq2\), we have
$$ \int_{-t/2}^{t/2} \int_{-t/2}^{t/2}\delta_{n}^{-\beta} ( x+u+v ) \,du\,dv\leq Ct^{2}\delta_{n}^{-\beta}(x). $$
(2.24)

It has been shown in [9] that Lemma 8 and Lemma 9 are valid when \(\delta_{n} ( t ) \) is replaced by \(\delta_{n}^{\ast} ( t ) \), which combining with (2.8) proves Lemma 8 and Lemma 9.

3 Proofs of theorems

3.1 Proof of Theorem 1

Define the auxiliary operators \(\mathbf{S}_{n,\alpha,\beta} ( f,x ) \) as follows:
$$ \mathbf{S}_{n,\alpha,\beta} ( f,x ) =\widetilde {S}_{n,\alpha ,\beta} ( f,x ) +L_{n,\alpha,\beta} ( f,x ) , $$
(3.1)
where
$$ L_{n,\alpha,\beta} ( f,x ) =f(x)-f \bigl( \widetilde {S}_{n,\alpha ,\beta} ( t,x ) \bigr) . $$
By (2.3) and (2.4), we have
$$\begin{aligned}& \bigl\vert \widetilde{S}_{n,\alpha,\beta} ( t,x ) -x \bigr\vert \leq \frac{C}{n}, \end{aligned}$$
(3.2)
$$\begin{aligned}& \mathbf{S}_{n,\alpha,\beta} ( 1,x ) =1,\qquad \mathbf{S}_{n,\alpha,\beta} ( t-x,x ) =0, \end{aligned}$$
(3.3)
and
$$ \Vert \mathbf{S}_{n,\alpha,\beta} \Vert \leq3. $$
(3.4)
It follows from (3.2) that
$$ \bigl\vert L_{n,\alpha,\beta} ( f,x ) \bigr\vert \leq\omega \bigl( f,\bigl\vert \widetilde{S}_{n,\alpha,\beta} ( t,x ) -x\bigr\vert \bigr) \leq C\omega \biggl( f,\frac{1}{n} \biggr) . $$
(3.5)
From (1.7) and (1.8), for any fixed x, λ, and n, we may choose a \(g_{n,x,\lambda} ( t ) \in\overline{D}_{\lambda}^{2} \) such that
$$\begin{aligned}& \Vert f-g\Vert \leq C\omega_{\varphi^{\lambda}}^{2} \bigl( f,n^{-1/2}\delta_{n}^{1-\lambda}(x) \bigr) , \end{aligned}$$
(3.6)
$$\begin{aligned}& \bigl( n^{-1/2}\delta_{n}^{1-\lambda}(x) \bigr) ^{2}\bigl\Vert \varphi ^{2\lambda}g^{\prime\prime}\bigr\Vert \leq C\omega_{\varphi ^{\lambda }}^{2} \bigl( f,n^{-1/2} \delta_{n}^{1-\lambda}(x) \bigr) , \end{aligned}$$
(3.7)
$$\begin{aligned}& \bigl( n^{-1/2}\delta_{n}^{1-\lambda}(x) \bigr) ^{4/ ( 2-\lambda ) }\bigl\Vert g^{\prime\prime}\bigr\Vert \leq C \omega_{\varphi ^{\lambda}}^{2} \bigl( f,n^{-1/2} \delta_{n}^{1-\lambda}(x) \bigr) . \end{aligned}$$
(3.8)
By (3.4) and (3.6), we have
$$\begin{aligned} \bigl\vert \mathbf{S}_{n,\alpha,\beta} ( f,x ) -f(x)\bigr\vert \leq&\bigl\vert \mathbf{S}_{n,\alpha,\beta } \bigl( ( f-g ) ,x \bigr) \bigr\vert +\bigl\vert f(x)-g(x)\bigr\vert +\bigl\vert \mathbf{S}_{n,\alpha,\beta} ( g,x ) -g(x)\bigr\vert \\ \leq&4\Vert f-g\Vert +\bigl\vert \mathbf{S}_{n,\alpha ,\beta} ( g,x ) -g(x) \bigr\vert \\ \leq&C\omega_{\varphi^{\lambda}}^{2} \bigl( f,n^{-1/2}\delta _{n}^{1-\lambda}(x) \bigr) +\bigl\vert \mathbf{S}_{n,\alpha,\beta } ( g,x ) -g(x)\bigr\vert . \end{aligned}$$
(3.9)
Noting that \(\varphi^{2\lambda}(x)\) and \(\delta_{n}^{2\lambda}(x)\) are concave functions on \([ 0,1 ] \), for any \(t,x\in [ 0,1 ] \), and u between x and t, say \(u=\theta x+ ( 1-\theta ) t\), \(0\leq\theta\leq1\), we have
$$\begin{aligned}& \frac{\vert t-u\vert }{\varphi^{2\lambda}(u)}=\frac{\theta \vert t-x\vert }{\varphi^{2\lambda}(\theta x+ ( 1-\theta ) t)}\leq\frac{\theta \vert t-x\vert }{\theta\varphi ^{2\lambda}(x)+ ( 1-\theta ) \varphi^{2\lambda}(t)}\leq \frac{\vert t-x\vert }{\varphi^{2\lambda}(x)}, \end{aligned}$$
(3.10)
$$\begin{aligned}& \frac{\vert t-u\vert }{\delta_{n}^{2\lambda}(u)}\leq\frac{ \vert t-x\vert }{\delta_{n}^{2\lambda}(x)}. \end{aligned}$$
(3.11)
By using Taylor’s expansion
$$ g(t)=g(x)+g^{\prime}(x) ( t-x ) + \int_{x}^{t} ( t-u ) g^{\prime\prime}(u)\,du, $$
(3.3), and (3.11),
$$\begin{aligned} \bigl\vert \mathbf{S}_{n,\alpha,\beta} ( g,x ) -g(x)\bigr\vert =&\biggl\vert \mathbf{S}_{n,\alpha,\beta} \biggl( \int_{x}^{t} ( t-u ) g^{\prime\prime}(u)\,du,x \biggr) \biggr\vert \\ \leq&\biggl\vert \widetilde{S}_{n,\alpha,\beta} \biggl( \int _{x}^{t} ( t-u ) g^{\prime\prime}(u)\,du,x \biggr) \biggr\vert \\ &{}+\biggl\vert \int_{x}^{\widetilde{S}_{n,\alpha,\beta} ( t,x ) } \bigl( \widetilde{S}_{n,\alpha,\beta} ( t,x ) -u \bigr) g^{\prime \prime }(u)\,du\biggr\vert . \end{aligned}$$
When \(x\in B_{n}\), by (2.15), (3.10), (3.2), and (2.2), we have
$$\begin{aligned} \bigl\vert \mathbf{S}_{n,\alpha,\beta} ( g,x ) -g(x)\bigr\vert \leq&C\bigl\Vert \varphi^{2\lambda}g^{\prime \prime }\bigr\Vert \widetilde{S}_{n,\alpha,\beta} \biggl( \frac{ ( t-x ) ^{2}}{\varphi^{2\lambda}(x)},x \biggr) +\varphi^{-2\lambda}(x) \bigl\Vert \varphi^{2\lambda}g^{\prime\prime}\bigr\Vert \bigl( \widetilde{S}_{n,\alpha,\beta} ( t,x ) -x \bigr) ^{2} \\ \leq&Cn^{-1}\delta_{n}^{2-2\lambda}(x)\bigl\Vert \varphi^{2\lambda }g^{\prime\prime}\bigr\Vert \\ \leq&C\omega_{\varphi^{\lambda}}^{2} \bigl( f,n^{-1/2}\delta _{n}^{1-\lambda}(x) \bigr) , \end{aligned}$$
(3.12)
where in the last inequality, (3.7) is applied.
When \(x\in B_{n}^{c}\), by (2.19), (3.10), (3.2), and (2.2), we have
$$\begin{aligned} \bigl\vert \mathbf{S}_{n,\alpha,\beta} ( g,x ) -g(x)\bigr\vert \leq&C\bigl\Vert \delta_{n}^{2\lambda}g^{\prime \prime }\bigr\Vert \widetilde{S}_{n,\alpha,\beta} \biggl( \frac{ ( t-x ) ^{2}}{\delta_{n}^{2\lambda}(x)},x \biggr) + \delta_{n}^{-2\lambda }(x)\bigl\Vert \delta_{n}^{2\lambda}g^{\prime\prime} \bigr\Vert \bigl( \widetilde{S}_{n,\alpha,\beta} ( t,x ) -x \bigr) ^{2} \\ \leq&Cn^{-1}\delta_{n}^{2-2\lambda}(x) \biggl( \bigl\Vert \varphi ^{2\lambda}g^{\prime\prime}\bigr\Vert +\frac{1}{n^{\lambda}} \bigl\Vert g^{\prime\prime}\bigr\Vert \biggr) \\ \leq&Cn^{-1}\delta_{n}^{2-2\lambda}(x)\bigl\Vert \varphi^{2\lambda }g^{\prime\prime}\bigr\Vert +C \bigl( n^{-1/2} \delta_{n}^{1-\lambda }(x) \bigr) ^{4/ ( 2-\lambda ) }\bigl\Vert g^{\prime\prime }\bigr\Vert \\ \leq&C\omega_{\varphi^{\lambda}}^{2} \bigl( f,n^{-1/2}\delta _{n}^{1-\lambda}(x) \bigr) , \end{aligned}$$
(3.13)
where in the last inequality, we used (3.7) and (3.8).

We complete the proof of Theorem 1 by combining (3.1), (3.5), (3.9), (3.12), and (3.13).

3.2 Proof of Theorem 2

With Lemma 6-Lemma 9, the proof of Theorem 2 can be found exactly in the same way as that of [9]. We omit the details here.

Declarations

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, Hangzhou Normal University, Hangzhou, China

References

  1. Gadjiev, AD, Ghorbanalizaeh, AM: Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables. Appl. Math. Comput. 216, 890-901 (2010) MathSciNetMATHGoogle Scholar
  2. Stancu, DD: Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures Appl. 13, 1173-1194 (1968) MathSciNetMATHGoogle Scholar
  3. Wang, ML, Yu, DS, Zhou, P: On the approximation by operators of Bernstein-Stancu types. Appl. Math. Comput. 246, 79-87 (2014) MathSciNetMATHGoogle Scholar
  4. İçöz, G: A Kantorovich variant of a new type Bernstein-Stancu polynomials. Appl. Math. Comput. 218, 8552-8560 (2012) MathSciNetMATHGoogle Scholar
  5. Taşdelen, F, Başcanbaz-Tunca, G, Erençin, A: On a new type Bernstein-Stancu operators. Fasc. Math. 48, 119-128 (2012) MathSciNetMATHGoogle Scholar
  6. Jung, HS, Deo, N, Dhamija, M: Pointwise approximation by Bernstein type operators in mobile interval. Appl. Math. Comput. 244, 683-694 (2014) MathSciNetMATHGoogle Scholar
  7. Acar, T, Aral, A, Gupta, V: On approximation properties of a new type Bernstein-Durrmeyer operators. Math. Slovaca 65, 1107-1122 (2015) MathSciNetView ArticleMATHGoogle Scholar
  8. Ditzian, Z, Totik, V: Moduli of Smoothness. Springer, New York (1987) View ArticleMATHGoogle Scholar
  9. Guo, S, Liu, L, Liu, X: The pointwise estimate for modified Bernstein operators. Studia Sci. Math. Hung. 37(1), 69-81 (2001) MathSciNetMATHGoogle Scholar

Copyright

© The Author(s) 2017

Advertisement