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1 Introduction
For any f ∈ C[,], the corresponding Bernstein operators and Bernsetin-Durrmeyer oper-
ators are defined by

Bn(f , x) :=
n∑

k=

f
(

k
n

)
pnk(x) (.)

and

Dn(f , x) := (n + )
n∑

k=

pnk(x)
∫ 


f (t)pnk(t) dt, (.)

respectively, where pnk(x) :=
(n

k
)
xk( – x)n–k , k = , , . . . , n. Both Bn(f , x) and Dn(f , x) have

played very important roles in approximation theory and computer science. There are
many generalizations of the operators Bn(f , x) and Dn(f , x). Among them, Gadjiev and
Ghorbanalizadeh [] introduced the following new generalized Bernstein-Stancu type op-
erators with shifted knots:

Sn,α,β (f , x) :=
(

n + β

n

)n n∑

k=

f
(

k + α

n + β

)
qnk(x), (.)

where x ∈ An := [ α
n+β

, n+α
n+β

], and

qnk(x) :=
(

n
k

)(
x –

α

n + β

)k(n + α

n + β
– x

)n–k

, k = , , . . . , n,
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with αk , βk , k = ,  positive numbers satisfying  ≤ α ≤ β,  ≤ α ≤ β. Obviously, when
α = α = β = β = , Sn,α,β (f , x) reduces to the classical Bernstein operators in (.), when
α = β = , it reduces to the so-called Bernstein-Stancu operators which were introduced
by Stancu []:

Bn,α,β (f , x) :=
n∑

k=

f
(

k + α

n + β

)
pnk(x). (.)

Some approximation properties and generalizations of the operators Sn,α,β (f , x) can be
found in [–].

Motivated by (.), we introduce the following generalization of the operators (.):

S̃n,α,β (f , x) :=
(

n + β

n

)n n∑

k=

λ–
nkqnk(x)

∫

An

qnk(t)f
(

nt + α

n + β

)
dt,

where

λnk =
∫

An

qnk(t) dt, k = , , . . . , n,

and αk , βk , k = ,  positive numbers satisfying  ≤ α ≤ β,  ≤ α ≤ β.
By Lemma  in Section , we observe that S̃n,α,β(f , x) can be rewritten as follows:

S̃n,α,β (f , x) =
(

n + β

n

)n+ n∑

k=

qnk(x)(n + )
∫

An

qnk(t)f
(

nt + α

n + β

)
dt.

Especially, when α = α = β = β = , S̃n,α,β (f , x) reduces to the classical Bernstein-
Durrmeyer operators in (.). Many authors have studied some special cases of the oper-
ators S̃n,α,β (f , x). For example, the case α = α = β =  in [] by Jung, Deo, and Dhamija,
the case α = β =  in [] by Acar, Aral, and Gupta.

The main purpose of the present paper is to establish pointwise direct and converse
approximation theorems of approximation by S̃n,α,β(f , x). To state our result, we need some
notations:

ω
ϕλ (f , t) = sup

<h≤t
sup

x±hϕλ∈An

∣∣�
hϕλ f (x)

∣∣, (.)

D
λ =

{
f ∈ C(An), f ′ ∈ A.C.loc,

∥∥ϕλf ′′∥∥ < +∞}
,

Kϕλ

(
f , t) = inf

g∈D
λ

{‖f – g‖ + t∥∥ϕλg ′′∥∥}
, (.)

D
λ =

{
f ∈ D

λ,
∥∥f ′′∥∥ < +∞}

,

Kϕλ

(
f , t) = inf

g∈D
λ

{‖f – g‖ + t∥∥ϕλg ′′∥∥ + t/(–λ)∥∥g ′′∥∥}
, (.)

and ϕ(x) =
√

(x – α
n+β

)( n+α
n+β

– x),  ≤ λ ≤ . It is well known (see [], Theorem ..) that

ω
ϕλ (f , t) ∼ Kϕλ

(
f , t) ∼ Kϕλ

(
f , t), (.)

where x ∼ y means that there exists a positive constant c such that c–y ≤ x ≤ cy.
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Our first result can be read as follows.

Theorem  Let f be a continuous function on An, λ ∈ [, ] be a fixed positive number.
Then there exists a positive constant C only depending on λ, α, α, β, and β such that

∣∣̃Sn,α,β (f , x) – f (x)
∣∣ ≤ C

(
ωϕλ

(
f ,

δ–λ
n (x)√

n

)
+ ω

(
f ,


n

))
, (.)

where δn(x) = ϕ(x)+/
√

n ∼ max{ϕ(x), /
√

n}, and ω(f , t) is the usual modulus of continuity
of f on An.

Throughout the paper, C denotes either a positive absolute constant or a positive con-
stant that may depend on some parameters but not on f , x, and n. Their values may be
different at different locations.

For the converse result, we have the following.

Theorem  Let f be a continuous function on An,  < α < 
–λ

,  ≤ λ ≤ . Then

∣∣̃Sn,α,β (f , x) – f (x)
∣∣ = O

((
n–/δ–λ

n (x)
)α)

(.)

implies that

(i) ω
ϕλ (f , t) = O

(
tα

)
; (ii) ω(f , t) = O

(
tα(–λ/)). (.)

2 Auxiliary lemmas
Lemma  We have

λkn =
∫

An

qnk(t) dt =
(

n
n + β

)n+ 
n + 

, k = , , . . . , n. (.)

Proof For p, q = , , . . . , set

B∗(p, q) :=
∫

An

(
x –

α

n + β

)p–(n + α

n + β
– x

)q–

dx

=
∫ n

n+β


xp–

(
n

n + β
– x

)q–

dx.

Then

B∗(p, q) =
q – 

p

∫ n
n+β


xp

(
n

n + β
– x

)q–

dx

=
q – 

p

∫ n
n+β



(
n

n + β
xp– – xp–

(
n

n + β
– x

))(
n

n + β
– x

)q–

dx

=
q – 

p
· n

n + β
B∗(p, q – ) –

q – 
p

B∗(p, q),

which implies that

B∗(p, q) =
q – 

p + q – 
· n

n + β
B∗(p, q – ).
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Therefore,

λkn =
(

n
k

)
B∗(k + , n – k + )

=
(

n
n + β

)n–k(n
k

)
(n – k)(n – k – ) · · · · 

(n + )n · · · (k + )
B∗(k + , )

=
(

n
n + β

)n–k k + 
(n + )

∫ n
n+β


xk dx

=
(

n
n + β

)n+ 
n + 

. �

Lemma  For any x ∈ An, we have

S̃n,α,β
(
(t – x), x

) ≤ C
n

δ
n(x). (.)

Proof Write

D̃n,α,β(f , x) :=
(

n + β

n

)n+ n∑

k=

qnk(x)(n + )
∫

An

qnk(t)f (t) dt.

Then []

D̃n,α,β(, x) = , D̃n,α,β(t, x) =
n

n + 
x +

n + α

(n + )(n + β)
, (.)

D̃n,α,β
(
t, x

)
=

(
x –

α

n + β

) n(n – )
(n + )(n + )

+
n

n + β

(
x –

α

n + β

)
n

(n + )(n + )

+
(

n
n + β

) 
(n + )(n + )

+
nα

(n + )(n + β)

(
x –

α

n + β

)

+
nα

(n + )(n + β) +
(

α

n + β

)

,

and

D̃n,α,β
(
(t – x), x

) ≤ C
n

δ
n(x).

By the facts that

S̃n,α,β (, x) = D̃n,α,β(, x) = ,

S̃n,α,β (t, x) =
n

n + β
D̃n,α,β (t, x) +

α

n + β
, (.)

and

S̃n,α,β
(
t, x

)
=

n

(n + β) D̃n,α,β
(
t, x

)
+

nα

(n + β) D̃n,α,β(t, x) +
α


(n + β) ,
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we get

S̃n,α,β
(
(t – x), x

)
=

n

(n + β) D̃n,α,β
(
(t – x), x

)

+
(

nx
(n + β) +

nα

(n + β) –
nx

n + β

)
D̃n,α,β (t, x)

+
α


(n + β) –

αx
n + β

+ x –
n

(n + β) x

=
n

(n + β) D̃n,α,β
(
(t – x), x

)
+

(β
 + β)n + β


(n + β)(n + )

x

+
α(β + β + )n + nα(ββ + β + β) + αββ

(n + β)(n + )(n + β)
x

+
α


(n + β)

≤ D̃n,α,β
(
(t – x), x

)
+

C
n

≤ C
n

δ
n(x). �

Lemma  For any given γ ≥ , we have

n∑

k=

∣∣∣∣
k + α

n + β
– x

∣∣∣∣
γ ∣∣qnk(x)

∣∣ ≤ C
δ

γ
n (x)
nγ / , x ∈ [, ]. (.)

Proof It was showed in [] that

n∑

k=

∣∣∣∣
k + α

n + β
– x

∣∣∣∣
γ ∣∣qnk(x)

∣∣ ≤ C
(δ∗

n(x))γ

nγ / , x ∈ [, ], (.)

where δ∗
n(x) := ψ(x) + √

n and ψ(x) =
√

x( – x). We verify that

δ∗
n(x) ∼ δn(x), x ∈ [, ]. (.)

In fact, when x ∈ [ α+
n+β

, n–β+α
n+β

], we have




x ≤ x –
α

n + β
≤ x,




( – x) ≤ n + α

n + β
– x ≤  – x.

Thus,

ψ(x) ∼ ϕ(x),

which implies (.) for x ∈ [ α+
n+β

, n–β+α
n+β

]. When x ∈ [, α+
n+β

) ∪ ( n–β+α
n+β

, ], we have

δ∗
n(x) ∼ δn(x) ∼ √

n
, (.)

and thus (.) also holds.
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Now, by (.) and (.), we have

n∑

k=

∣∣∣∣
k + α

n + β
– x

∣∣∣∣
γ ∣∣qnk(x)

∣∣ ≤
n∑

k=

∣∣∣∣
k + α

n + β
–

k + α

n + β

∣∣∣∣
γ ∣∣qnk(x)

∣∣ +
n∑

k=

∣∣∣∣
k + α

n + β
– x

∣∣∣∣
γ ∣∣qnk(x)

∣∣

≤ C
nγ

n∑

k=

∣∣qnk(x)
∣∣ + C

δ
γ
n (x)
nγ /

≤ C
δ

γ
n (x)
nγ / . �

Lemma  For any x ∈ An, we have

n∑

k=

qnk(x)(n + )
∫

An

δ
n(t)qnk(t) dt ≤ Cδ

n(x) (.)

and

n–∑

k=

qn–,k(x)n
∫

An

δ–
n (t)qn+,k+(t) dt ≤ Cδ–

n (x). (.)

Proof By a similar calculation to that of Lemma , we have

∫

An

ϕ(t)qnk(t) dt =
(

n
n + β

)n+ (n – k + )(k + )
(n + )(n + )(n + )

. (.)

On the other hand, we have

n∑

k=

(
k
n

–
k

n

)
qnk(x) =

(
n

n + β

)n–(
x –

α

n + β

)
–

(
n

n + β

)n– (x – α
n+β

)
n

–
n – 

n

(
n

n + β

)n–(
x –

α

n + β

)

=
n – 

n

(
n

n + β

)n–

ϕ(x).

Therefore,

n∑

k=

qnk(x)(n + )
∫

An

δ
n(t)qnk(t) dt ≤ 

n∑

k=

qnk(x)(n + )
∫

An

(
ϕ(t) +


n

)
qnk(t) dt

≤ 
n∑

k=

qnk(x)
(

n
n + β

)n+ (n – k + )(k + )
(n + )(n + )

+
C
n

n∑

k=

qnk(x)

≤ C
n∑

k=

qnk(x)
(

(n – k)k
n +


n

)
+

C
n

≤ Cδ
n(x),

which proves (.).
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By Lemma , we have

n
∫

An

δ–
n (t)qn+,k+(t) dt ≤ Cn

∫

An

(
ϕ–(t) + n

)
qn+,k+(t) dt

≤ Cn
(∫

An

ϕ–(t)qn+,k+(t) dt + 
)

= Cn
(

(n + )n
(k + )(n – k)

∫

An

qn–,k(t) dt + 
)

≤ Cn
(

(n + )
(k + )(n – k)

+ 
)

≤ Cn.

Then

n–∑

k=

qn–,k(x)n
∫

An

δ–
n (t)qn+,k+(t) dt ≤ Cn

n∑

k=

qn–,k(x)

= Cn ≤ Cδ–
n (x).

Hence, (.) is proved. �

Lemma  If f is r times differentiable on [, ], then

S̃(r)
n,α,β (f , x) =

(
n + β

n

)n+( n
n + β

)r (n + )!n!
(n – r)!(n + r)!

n–r∑

k=

qn–r,k(x)

×
∫ n+α

n+β

α
n+β

qn+r,k+r(t)f (r)
(

nt + α

n + β

)
dt. (.)

Proof By using Leibniz’s theorem, we have

S̃(r)
n,α,β (f , x) =

(
n + β

n

)n+ r∑

i=

n–r+i∑

k=i

(
r
i

)
(–)r–i(n + )!

(k – i)!(n – k – r + i)!

×
(

x –
α

n + β

)k–i(n + α

n + β
– x

)n–k–r+i ∫ n+α
n+β

α
n+β

qnk(t)f
(

nt + α

n + β

)
dt

=
(

n + β

n

)n+ n–r+i∑

k=i

r∑

i=

(
r
i

)
(–)r–i(n + )!

(n – r)!
qn–r,k–i(x)

×
∫ n+α

n+β

α
n+β

qnk(t)f
(

nt + α

n + β

)
dt

=
(

n + β

n

)n+ (n + )!
(n – r)!

n–r∑

k=

(–)rqn–r,k(x)

×
∫ n+α

n+β

α
n+β

r∑

i=

(
r
i

)
(–)iqn,k+i(t)f

(
nt + α

n + β

)
dt.
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Since

dr

dtr qn+r,k+r(t) =
r∑

i=

(
r
i

)
(–)i (n + r)!

n!
qn,k+i(t),

we have

S̃(r)
n,α,β (f , x) =

(
n + β

n

)n+ (n + )!n!
(n – r)!(n + r)!

n–r∑

k=

qn–r,k(x)

×
∫ n+α

n+β

α
n+β

(–)rq(r)
n+r,k+r(t)f

(
nt + α

n + β

)
dt.

We obtain the required result by integrating by parts r times. �

Set

‖f ‖ = sup
x∈An

{∣∣δα(λ–)
n (x)f (x)

∣∣};

Cα,λ =
{

f ∈ C(An),‖f ‖ < +∞}
;

‖f ‖ = sup
x∈An

{∣∣δ( 
–λ

–α)(–λ)
n (x)f ′(x)

∣∣};

C
α,λ =

{
f ∈ Cα,λ,‖f ‖ < +∞}

;

‖f ‖ = sup
x∈An

{∣∣δ+α(λ–)
n (x)f ′′(x)

∣∣};

C
α,λ =

{
f ∈ Cα,λ, f ′ ∈ A.C.loc,‖f ‖ < +∞}

;

K 
α,λ(f , t) = inf

g∈C
α,λ

{‖f – g‖ + t‖g‖
}

;

K
α,λ(f , t) = inf

g∈C
α,λ

{‖f – g‖ + t‖g‖
}

.

Lemma  If  ≤ λ ≤ ,  < α < , then

∥∥̃Sn,α,β (f )
∥∥

 ≤ Cn/(–λ)‖f ‖, f ∈ Cα,λ, (.)
∥∥̃Sn,α,β (f )

∥∥
 ≤ C‖f ‖, f ∈ C

α,λ. (.)

Proof Firstly, we prove (.) by considering the following two cases.
Case . x ∈ Bn := [ α+

n+β
, n+α–

n+β
]. In this case, we have

ϕ(x) ≥ min

(
ϕ

(
α + 
n + β

)
,ϕ

(
n + α – 

n + β

))
≥ C√

n
,

which means that

δn(x) ∼ ϕ(x) for x ∈ Bn. (.)
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By simple calculations, we have

q′
nk(x) = nϕ–(x)

(
k + α

n + β
– x

)
qnk(x) (.)

and

δn

(
nt + α

n + β

)
=

√(
t –

α

n + β
+

α – βt
n + β

)(
n + α

n + β
– t +

βt – α

n + β

)
+

√
n

=

√

ϕ(t) + O
(


n

)
+

√
n

∼ ϕ(t) +
√
n

= δn(t). (.)

By (.), (.)-(.), and Hölder’s inequality, we have

∣∣δ( 
–λ

–α)(–λ)
n (x)̃S′

n,α,β(f , x)
∣∣

≤ Cnϕ( 
–λ

–α)(–λ)–(x)
(

n + β

n

)n+

×
n∑

k=

qnk(x)
∣∣∣∣
k + α

n + β
– x

∣∣∣∣(n + )
∣∣∣∣
∫

An

f
(

nt + α

n + β

)
qnk(t) dt

∣∣∣∣

≤ Cn‖f ‖ϕ
( 

–λ
–α)(–λ)–(x)

n∑

k=

qnk(x)
∣∣∣∣
k + α

n + β
– x

∣∣∣∣(n + )
∣∣∣∣
∫

An

δα(–λ)
n (t)qnk(t) dt

∣∣∣∣

≤ Cn‖f ‖ϕ
( 

–λ
–α)(–λ)–(x)

n∑

k=

qnk(x)
∣∣∣∣
k + α

n + β
– x

∣∣∣∣

(
(n + )

∫

An

δ
n(t)qnk(t) dt

)α(–λ)/

×
(

(n + )
∫

An

qnk(t) dt
)–α(–λ)/

≤ Cn‖f ‖ϕ
( 

–λ
–α)(–λ)–(x)

n∑

k=

qnk(x)
∣∣∣∣
k + α

n + β
– x

∣∣∣∣

(
(n + )

∫

An

δ
n(t)qnk(t) dt

)α(–λ)/

.

By (.), (.) (.), and Hölder’s inequality again, we have

∣∣δ( 
–λ

–α)(–λ)
n (x)̃S′

n,α,β(f , x)
∣∣

≤ Cn‖f ‖ϕ
( 

–λ
–α)(–λ)–(x)

( n∑

k=

qnk(x)
∣∣∣∣
k + α

n + β
– x

∣∣∣∣


–α(–λ)/

)–α(–λ)/

×
( n∑

k=

qnk(x)(n + )
∫

An

δ
n(t)qnk(t) dt

)α(–λ)/

≤ Cn/‖f ‖ϕ
(–λ)

–λ
–(x) ≤ Cn/(–λ)‖f ‖. (.)

Case . x ∈ Bc
n = [ α

n+β
, α+

n+β
) ∪ ( n+α–

n+β
, n+α

n+β
]. In this case, we have

δn(x) ∼ √
n

, x ∈ Bc
n. (.)
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Noting that

q′
nk(x) = n

(
qn–,k–(x) – qn–,k(x)

)

with qn–,–(x) = qn–,n(x) = , we get

S̃′
n,α,β (f , x) = n

n–∑

k=

qn–,k(x)(x)(n + )
∫

An

f
(

nt + α

n + β

)(
qn,k+(t) – qn,k(t)

)
dt.

Then, by using (.) and Hölder’s inequality twice,

∣∣δ( 
–λ

–α)(–λ)
n (x)̃S′

n,α,β(f , x)
∣∣

≤ Cnδ
( 

–λ
–α)(–λ)

n (x)‖f ‖

∣∣∣∣∣

n–∑

k=

qn–,k(x)(n + )
∫

An

δα(–λ)
n (t)

(
qn,k+(t) + qn,k(t)

)
dt

∣∣∣∣∣

≤ Cnδ
( 

–λ
–α)(–λ)

n (x)‖f ‖

n–∑

k=

qn–,k(x)
(

(n + )
∫

An

δ
n(t)

(
qn,k+(t) + qn,k(t)

)
dt

) α(–λ)


≤ Cnδ
( 

–λ
–α)(–λ)

n (x)‖f ‖

( n–∑

k=

qn–,k(x)(n + )
∫

An

δ
n(t)

(
qn,k+(t) + qn,k(t)

)
dt

) α(–λ)


≤ Cnδ
( 

–λ
–α)(–λ)

n (x)‖f ‖δ
α(–λ)
n

≤ Cn


–λ ‖f ‖, (.)

where in the fourth inequality, we used the following fact, which can be deduced exactly
in the same way as (.):

n–∑

k=

qn–,k(x)(n + )
∫

An

δ
n(t)qnk∗ (t) dt ≤ Cδ

n(x).

We obtain (.) by combining (.) and (.).
Now, we begin to prove (.). If ( 

–λ
– α)(λ – ) < , by (.) and using Hölder’s in-

equality twice, we get

∣∣δ( 
–λ

–α)(–λ)
n (x)̃S′

n,α,β(f , x)
∣∣

≤ C‖f ‖

∣∣∣∣∣δ
( 

–λ
–α)(–λ)

n (x)n
n–∑

k=

qn–,k(x)
∫

An

qn+,k+(t)δ( 
–λ

–α)(λ–)
n (t) dt

∣∣∣∣∣

≤ C‖f ‖δ
( 

–λ
–α)(–λ)

n (x)
n–∑

k=

qn–,k(x)
(

n
∫

An

qn+,k+(t)δ–
n (t) dt

) 
 ( 

–λ
–α)(–λ)

×
(

n
∫

An

qn+,k+(t) dt
)– 

 ( 
–λ

–α)(–λ)

≤ C‖f ‖δ
( 

–λ
–α)(–λ)

n (x)
n–∑

k=

qn–,k(x)
(

n
∫

An

qn+,k+(t)δ–
n (t) dt

) 
 ( 

–λ
–α)(–λ)

(by (.))
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≤ C‖f ‖δ
( 

–λ
–α)(–λ)

n (x)

( n–∑

k=

qn–,k(x)n
∫

An

qn+,k+(t)δ–
n (t) dt

) 
 ( 

–λ
–α)(–λ)

≤ C‖f ‖,

where, in the last inequality, (.) is applied.
If ( 

–λ
– α)(λ – ) > , by using (.) instead of (.), we also can deduce that

∣∣δ( 
–λ

–α)(–λ)
n (x)̃S′

n,α,β(f , x)
∣∣ ≤ C‖f ‖. �

Lemma  If  ≤ λ ≤ ,  < α < , then

∥∥̃Sn,α,β (f )
∥∥

 ≤ Cn‖f ‖, f ∈ Cα,λ, (.)
∥∥̃Sn,α,β (f )

∥∥
 ≤ C‖f ‖, f ∈ C

α,λ. (.)

Proof It can be proved in a way similar to Lemma . �

Lemma  For  < t < 
 , t

 ≤ x ≤  – t
 , x ∈ [, ], β < , we have

∫ t/

–t/
δ–β

n (x + u) du ≤ C(β)tδ–β
n (x). (.)

Lemma  For  < t < 
 , t ≤ x ≤  – t, x ∈ [, ],  ≤ β ≤ , we have

∫ t/

–t/

∫ t/

–t/
δ–β

n (x + u + v) du dv ≤ Ctδ–β
n (x). (.)

It has been shown in [] that Lemma  and Lemma  are valid when δn(t) is replaced by
δ∗

n(t), which combining with (.) proves Lemma  and Lemma .

3 Proofs of theorems
3.1 Proof of Theorem 1
Define the auxiliary operators Sn,α,β(f , x) as follows:

Sn,α,β(f , x) = S̃n,α,β (f , x) + Ln,α,β (f , x), (.)

where

Ln,α,β (f , x) = f (x) – f
(̃
Sn,α,β (t, x)

)
.

By (.) and (.), we have

∣∣̃Sn,α,β (t, x) – x
∣∣ ≤ C

n
, (.)

Sn,α,β(, x) = , Sn,α,β (t – x, x) = , (.)

and

‖Sn,α,β‖ ≤ . (.)
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It follows from (.) that

∣∣Ln,α,β (f , x)
∣∣ ≤ ω

(
f ,

∣∣̃Sn,α,β (t, x) – x
∣∣) ≤ Cω

(
f ,


n

)
. (.)

From (.) and (.), for any fixed x, λ, and n, we may choose a gn,x,λ(t) ∈ D
λ such that

‖f – g‖ ≤ Cω
ϕλ

(
f , n–/δ–λ

n (x)
)
, (.)

(
n–/δ–λ

n (x)
)∥∥ϕλg ′′∥∥ ≤ Cω

ϕλ

(
f , n–/δ–λ

n (x)
)
, (.)

(
n–/δ–λ

n (x)
)/(–λ)∥∥g ′′∥∥ ≤ Cω

ϕλ

(
f , n–/δ–λ

n (x)
)
. (.)

By (.) and (.), we have

∣∣Sn,α,β (f , x) – f (x)
∣∣ ≤ ∣∣Sn,α,β

(
(f – g), x

)∣∣ +
∣∣f (x) – g(x)

∣∣ +
∣∣Sn,α,β(g, x) – g(x)

∣∣

≤ ‖f – g‖ +
∣∣Sn,α,β(g, x) – g(x)

∣∣

≤ Cω
ϕλ

(
f , n–/δ–λ

n (x)
)

+
∣∣Sn,α,β(g, x) – g(x)

∣∣. (.)

Noting that ϕλ(x) and δλ
n (x) are concave functions on [, ], for any t, x ∈ [, ], and u

between x and t, say u = θx + ( – θ )t,  ≤ θ ≤ , we have

|t – u|
ϕλ(u)

=
θ |t – x|

ϕλ(θx + ( – θ )t)
≤ θ |t – x|

θϕλ(x) + ( – θ )ϕλ(t)
≤ |t – x|

ϕλ(x)
, (.)

|t – u|
δλ

n (u)
≤ |t – x|

δλ
n (x)

. (.)

By using Taylor’s expansion

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – u)g ′′(u) du,

(.), and (.),

∣∣Sn,α,β (g, x) – g(x)
∣∣ =

∣∣∣∣Sn,α,β

(∫ t

x
(t – u)g ′′(u) du, x

)∣∣∣∣

≤
∣∣∣∣̃Sn,α,β

(∫ t

x
(t – u)g ′′(u) du, x

)∣∣∣∣

+
∣∣∣∣
∫ S̃n,α,β (t,x)

x

(̃
Sn,α,β (t, x) – u

)
g ′′(u) du

∣∣∣∣.

When x ∈ Bn, by (.), (.), (.), and (.), we have

∣∣Sn,α,β (g, x) – g(x)
∣∣ ≤ C

∥∥ϕλg ′′∥∥̃Sn,α,β

(
(t – x)

ϕλ(x)
, x

)
+ ϕ–λ(x)

∥∥ϕλg ′′∥∥(̃
Sn,α,β (t, x) – x

)

≤ Cn–δ–λ
n (x)

∥∥ϕλg ′′∥∥

≤ Cω
ϕλ

(
f , n–/δ–λ

n (x)
)
, (.)

where in the last inequality, (.) is applied.
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When x ∈ Bc
n, by (.), (.), (.), and (.), we have

∣∣Sn,α,β (g, x) – g(x)
∣∣ ≤ C

∥∥δλ
n g ′′∥∥̃Sn,α,β

(
(t – x)

δλ
n (x)

, x
)

+ δ–λ
n (x)

∥∥δλ
n g ′′∥∥(̃

Sn,α,β (t, x) – x
)

≤ Cn–δ–λ
n (x)

(∥∥ϕλg ′′∥∥ +


nλ

∥∥g ′′∥∥
)

≤ Cn–δ–λ
n (x)

∥∥ϕλg ′′∥∥ + C
(
n–/δ–λ

n (x)
)/(–λ)∥∥g ′′∥∥

≤ Cω
ϕλ

(
f , n–/δ–λ

n (x)
)
, (.)

where in the last inequality, we used (.) and (.).
We complete the proof of Theorem  by combining (.), (.), (.), (.), and (.).

3.2 Proof of Theorem 2
With Lemma -Lemma , the proof of Theorem  can be found exactly in the same way
as that of []. We omit the details here.
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