Skip to main content

Fourier series of higher-order Bernoulli functions and their applications

Abstract

In this paper, we study the Fourier series related to higher-order Bernoulli functions and give new identities for higher-order Bernoulli functions which are derived from the Fourier series of them.

1 Introduction

As is well known, Bernoulli polynomials are defined by the generating function

$$ \begin{aligned} \frac{t}{e^{t}-1}e^{xt} = \sum _{n=0}^{\infty}B_{n}(x) \frac{t^{n}}{n!}\quad (\mbox{see [1--23]}). \end{aligned} $$
(1.1)

When \(x=0\), \(B_{n}=B_{n}(0)\) are called Bernoulli numbers. From (1.1), we note that

$$ \begin{aligned} B_{n}(x) = \sum _{l=0}^{n} {n \choose l} B_{l} x^{n-l} \in\mathbb{Q}[x]\quad (n \geq0), \end{aligned} $$
(1.2)

with \(\deg B_{n}(x)=n\) (see [911]). By (1.1), we easily get

$$ \begin{aligned} (B+1)^{n} - B_{n} = \textstyle\begin{cases} 1,&\text{if } n=1,\\ 0,&\text{if }n>1, \end{cases}\displaystyle \quad\text{and}\quad B_{0}=1, \end{aligned} $$
(1.3)

with the usual convention about replacing \(B^{n}\) by \(B_{n}\) (see [9, 10]). From (1.2), we note that

$$ \begin{aligned}[b] \frac{dB_{n}(x)}{dx} &=\frac{d}{dx}\sum _{k=0}^{n} {n \choose k}B_{k}x^{n-k} = \sum_{k=0}^{n-1} {n \choose k}B_{k}(n-k) x^{n-k-1} \\ &=n \sum_{k=0}^{n-1} \frac{(n-1)!}{( n-k-1)!k!} B_{k} x^{n-k-1} = n \sum_{k=0}^{n-1} {n-1 \choose k}B_{k} x^{n-1-k} \\ &= nB_{n-1}(x) \quad (n \geq1)\ (\mbox{see [9--18]}). \end{aligned} $$
(1.4)

Thus, by (1.4), we get

$$ \begin{aligned} \int_{0}^{x} B_{n}(x)\,dx = \frac{1}{n+1} \bigl( B_{n+1}(x) - B_{n+1}(0) \bigr) \quad (n \geq0). \end{aligned} $$
(1.5)

For any real number x, we define

$$ \begin{aligned} \langle x \rangle= x-[x] \in[0,1), \end{aligned} $$
(1.6)

where \([x]\) is the integral part of x. Then \(B_{n}( \langle x \rangle)\) are functions defined on \((-\infty, \infty)\) and periodic with period 1, which are called Bernoulli functions. The Fourier series for \(B_{m}( \langle x \rangle)\) is given by

$$ \begin{aligned} B_{m}\bigl( \langle x \rangle \bigr) = -m! \sum_{\substack{n=-\infty\\n \neq0}}^{\infty}\frac{e^{2\pi inx}}{(2 \pi in)^{m}}, \end{aligned} $$
(1.7)

where \(m \geq1\) and \(x \notin\mathbb{Z}\) (see [1, 2, 8, 14, 22]). For a positive integer N, we have

$$ \begin{aligned} \sum_{k=0}^{N-1}B_{m} \biggl( \biggl\langle \frac{x+k}{N} \biggr\rangle \biggr) &=-m! \sum _{k=0}^{N-1} \sum _{\substack{n=-\infty\\n \neq0}}^{\infty}\frac{e^{2\pi in (\frac{x+k}{N} ) }}{(2 \pi in)^{m}} \\ &=-m!\sum_{\substack{n=-\infty\\n \neq0}}^{\infty}\frac{e^{2\pi in \frac {x}{N} }}{(2 \pi in)^{m}} \sum _{k=0}^{N-1} e^{2 \pi in \frac{k}{N}} \\ &=-m! N^{1-m} \sum_{\substack{l=-\infty\\l \neq0}}^{\infty}\frac {e^{2\pi il x }}{(2 \pi il)^{m}} = N^{1-m} B_{m}\bigl( \langle x \rangle \bigr) \quad (x \notin\mathbb{Z}). \end{aligned} $$

For \(r \in\mathbb{N}\), the higher-order Bernoulli polynomials are defined by the generating function

$$ \begin{aligned} \biggl( \frac{t}{e^{t}-1} \biggr)^{r} e^{xt} = \sum_{n=0}^{\infty}B_{n}^{(r)}(x) \frac{t^{n}}{n!}\quad(\mbox{see [1, 10, 11, 22]}). \end{aligned} $$
(1.8)

When \(x=0\), \(B_{n}^{(r)}= B_{n}^{(r)}(0)\) are called Bernoulli numbers of order r (see [1, 22]). Then \(B_{n}^{(r)}( \langle x \rangle)\) are functions defined on \((-\infty, \infty)\) and periodic with period 1, which are called Bernoulli functions of order r. In this paper, we study the Fourier series related to higher-order Bernoulli functions and give some new identities for the higher-order Bernoulli functions which are derived from the Fourier series of them.

2 Fourier series of higher-order Bernoulli functions and their applications

From (1.8), we note that

$$ \begin{aligned} B_{m}^{(r)}(x+1) = B_{m}^{(r)}(x) + m B_{m-1}^{(r-1)}(x) \quad (m \geq0). \end{aligned} $$
(2.1)

Indeed,

$$ \begin{aligned}[b] \sum_{m=0}^{\infty}B_{m}^{(r)}(x+1) \frac{t^{m}}{m!} &= \biggl( \frac {t}{e^{t}-1} \biggr)^{r} e^{(x+1)t}= \biggl( \frac{t}{e^{t}-1} \biggr)^{r} e^{xt}\bigl(e^{t} -1 +1\bigr) \\ &= \biggl( \frac{t}{e^{t}-1} \biggr)^{r-1} te^{xt}+ \biggl( \frac{t}{e^{t}-1} \biggr)^{r} e^{xt} \\ &=\sum_{m=0}^{\infty}B_{m}^{(r-1)}(x) \frac{t^{m+1}}{m!} + \sum_{m=0}^{\infty}B_{m}^{(r)}(x) \frac{t^{m}}{m!} \\ &= \sum_{m=0}^{\infty}\bigl( m B_{m-1}^{(r-1)}(x) + B_{m}^{(r)}(x) \bigr) \frac{t^{m}}{m!}. \end{aligned} $$
(2.2)

Let \(x=0\) in (2.1). Then we have

$$ \begin{aligned} B_{m}^{(r)}(1) = B_{m}^{(r)}(0) + mB_{m-1}^{(r-1)}(0)\quad ( m \geq0). \end{aligned} $$
(2.3)

Now, we assume that \(m \geq1\), \(r \geq2\). \(B_{m}^{(r)}( \langle x \rangle)\) is piecewise \(C^{\infty}\). Further, in view of (2.3), \(B_{m}^{(r)}( \langle x \rangle)\) is continuous for those \((r,m)\) with \(B_{m-1}^{(r-1)}(0) =0\), and is discontinuous with jump discontinuities at integers for those \((r,m)\) with \(B_{m-1}^{(r-1)}(0) \neq0\). The Fourier series of \(B_{m}^{(r)}( \langle x \rangle )\) is

$$ \begin{aligned} \sum_{n=-\infty}^{\infty}C_{n}^{(r,m)}e^{2 \pi inx}\quad (i = \sqrt{-1}), \end{aligned} $$
(2.4)

where

$$ \begin{aligned}[b] C_{n}^{(r,m)} &= \int_{0}^{1} B_{m}^{(r)}\bigl( \langle x \rangle\bigr) e^{-2 \pi inx} \,dx = \int_{0}^{1} B_{m}^{(r)}(x) e^{-2 \pi inx}\,dx \\ &= \biggl[ \frac{1}{m+1} B_{m+1}^{(r)}(x) e^{-2 \pi inx} \biggr]_{0}^{1} + \frac{2 \pi in}{m+1} \int_{0}^{1} B_{m+1}^{(r)}(x) e^{-2 \pi inx} \,dx \\ &= \frac{1}{m+1} \bigl( B_{m+1}^{(r)}(1) - B_{m+1}^{(r)}(0) \bigr) + \frac{2 \pi in}{m+1} C_{n}^{(r,m+1)} \\ &= B_{m}^{(r-1)}(0) + \frac{2 \pi in}{m+1} C_{n}^{(r,m+1)}. \end{aligned} $$
(2.5)

Replacing m by \(m-1\) in (2.5), we get

$$ \begin{aligned} C_{n}^{(r,m-1)} = B_{m-1}^{(r-1)}(0) + \frac{2 \pi in}{m} C_{n}^{(r,m)}. \end{aligned} $$
(2.6)

Case 1. Let \(n \neq0\). Then we have

$$\begin{aligned} C_{n}^{(r,m)}&= \frac{m}{2 \pi in } C_{n}^{(r,m-1)}- \frac{m}{2\pi in}B_{m-1}^{(r-1)} \\ &= \frac{m}{2\pi in} \biggl( \frac{m-1}{2\pi in} C_{n}^{(r,m-2)}- \frac {m-1}{2\pi in} B_{m-2}^{(r-1)} \biggr) - \frac{m}{2\pi in}B_{m-1}^{(r-1)} \\ &= \frac{m(m-1)}{(2\pi in)^{2}}C_{n}^{(r,m-2)} - \frac{m(m-1)}{(2\pi in)^{2}}B_{m-2}^{(r-1)} - \frac{m}{2\pi in}B_{m-1}^{(r-1)} \\ &=\frac{m(m-1)}{(2\pi in)^{2}} \biggl\{ \frac{m-2}{2\pi in} C_{n}^{(r,m-3)}- \frac{m-2}{2\pi in} B_{m-3}^{(r-1)} \biggr\} - \frac {m(m-1)}{(2\pi in)^{2}}B_{m-2}^{(r-1)} - \frac{m}{2\pi in}B_{m-1}^{(r-1)} \\ &= \frac{m(m-1)(m-2)}{(2\pi in)^{3}} C_{n}^{(r,m-3)} - \frac {m(m-1)(m-2)}{(2\pi in)^{3}} B_{m-3}^{(r-1)} \\ &\quad {} - \frac{m(m-1)}{(2\pi in)^{2}}B_{m-2}^{(r-1)} - \frac{m}{2\pi in}B_{m-1}^{(r-1)} \\ &= \cdots \\ &= \frac{m(m-1)(m-2)\cdots2}{(2\pi in)^{m-1}} C_{n}^{(r,1)} - \sum _{k=1}^{m-1} \frac{(m)_{k}}{(2\pi in)^{k}} B_{m-k}^{(r-1)}, \end{aligned}$$
(2.7)

where \((x)_{n} = x(x-1)\cdots(x-n+1)\), for \(n \geq1\), and \((x)_{0}=1\). Now, we observe that

$$ \begin{aligned}[b] C_{n}^{(r,1)} &= \int_{0}^{1} B_{1}^{(r)}(x) e^{-2 \pi inx}\,dx = \int_{0}^{1} \bigl(x+B_{1}^{(r)} \bigr) e^{-2 \pi inx} \,dx \\ &= \int_{0}^{1} xe^{-2 \pi inx}\,dx + B_{1}^{(r)} \int_{0}^{1} e^{-2 \pi inx}\,dx \\ &= - \frac{1}{2 \pi in} \bigl[ x e^{-2 \pi inx} \bigr]_{0}^{1} + \frac {1}{2 \pi in} \int_{0}^{1} e^{-2 \pi inx} \,dx \\ &= - \frac{1}{2 \pi in}. \end{aligned} $$
(2.8)

From (2.7) and (2.8), we can derive equation (2.9):

$$ \begin{aligned}[b] C_{n}^{(r,m)} &= - \frac{m!}{(2 \pi in)^{m}} - \sum_{k=1}^{m-1} \frac {(m)_{k}}{(2 \pi in)^{k}} B_{m-k}^{(r-1)} \\ &= - \sum_{k=1}^{m} \frac {(m)_{k}}{(2 \pi in)^{k}}B_{m-k}^{(r-1)}. \end{aligned} $$
(2.9)

Case 2. Let \(n=0\). Then we have

$$ \begin{aligned}[b] C_{0}^{(r,m)} &= \int_{0}^{1} B_{m}^{(r)}\bigl( \langle x \rangle\bigr) \,dx = \int_{0}^{1} B_{m}^{(r)}(x) \,dx = \frac{1}{m+1} \bigl[ B_{m+1}^{(r)}(x) \bigr]_{0}^{1} \\ &= \frac{1}{m+1} \bigl( B_{m+1}^{(r)}(1) - B_{m+1}^{(r)}(0) \bigr) = B_{m}^{(r-1)}. \end{aligned} $$
(2.10)

Before proceeding, we recall the following equations:

$$ \begin{aligned} B_{m}\bigl( \langle x \rangle \bigr) = -m! \sum_{\substack{n=-\infty\\ n \neq0}}^{\infty}\frac{e^{2 \pi inx}}{(2 \pi in)^{m}}, \quad (m \geq2) \ (\mbox{see [1]}), \end{aligned} $$
(2.11)

and

$$ \begin{aligned} -\sum_{\substack{n=-\infty\\ n \neq0}}^{\infty}\frac{e^{2 \pi inx}}{2 \pi in} = \textstyle\begin{cases} B_{1}( \langle x \rangle),& \text{for } x \notin\mathbb {Z},\\ 0,& \text{for } x \in\mathbb{Z},\ (\mbox{see [1, 22]}). \end{cases}\displaystyle \end{aligned} $$
(2.12)

The series in (2.11) converges uniformly, while that in (2.12) converges pointwise. Assume first that \(B_{m-1}^{(r-1)}(0) =0\). Then we have \(B_{m}^{(r)}(1) = B_{m}^{(r)}(0)\), and \(m \geq2\). As \(B_{m}^{(r)}( \langle x \rangle)\) is piecewise \(C^{\infty}\) and continuous, the Fourier series of \(B_{m}^{(r)}( \langle x \rangle)\) converges uniformly to \(B_{m}^{(r)}( \langle x \rangle)\), and

$$ \begin{aligned}[b] B_{m}^{(r)}\bigl( \langle x \rangle\bigr) &= \sum_{n=-\infty}^{\infty}C_{n}^{(r,m)}e^{2 \pi inx} \\ &= B_{m}^{(r-1)} - \sum_{\substack{n=-\infty\\ n \neq0}}^{\infty}\Biggl(\sum_{k=1}^{m} \frac{(m)_{k}}{(2 \pi in)^{k}}B_{m-k}^{(r-1)} \Biggr) e^{2 \pi inx} \\ &= B_{m}^{(r-1)} + \sum_{k=1}^{m} \frac{(m)_{k}}{k!} B_{m-k}^{(r-1)} \cdot \Biggl( -k! \sum _{\substack{n=-\infty\\ n \neq0}}^{\infty}\frac{e^{2 \pi inx}}{(2 \pi in)^{k}} \Biggr) \\ &= B_{m}^{(r-1)} + \sum_{k=2}^{m} {m \choose k} B_{m-k}^{(r-1)} B_{k} \bigl( \langle x \rangle\bigr) \\ &\quad{}+ {m \choose 1} B_{m-1}^{(r-1)} \times \textstyle\begin{cases} B_{1}( \langle x \rangle),& \text{for } x \notin\mathbb {Z},\\ 0,& \text{for } x \in\mathbb{Z} \end{cases}\displaystyle \\ &= \textstyle\begin{cases} \sum_{k=0}^{m} {m \choose k} B_{m-k}^{(r-1)}B_{k}( \langle x \rangle) & \text{for } x \notin\mathbb{Z},\\ \sum_{\substack{k=0\\k \neq1}}^{m} {m \choose k} B_{m-k}^{(r-1)}B_{k}( \langle x \rangle) & \text{for } x \in\mathbb{Z}. \end{cases}\displaystyle \end{aligned} $$
(2.13)

Note that (2.13) holds whether \(B_{m-1}^{(r-1)}(0)=0\) or not. However, if \(B_{m-1}^{(r-1)}(0)=0\), then

$$ \begin{aligned} B_{m}^{(r)}\bigl( \langle x \rangle \bigr) = \sum_{\substack{k=0 \\ k \neq 1}}^{m} {m \choose k} B_{m-k}^{(r-1)} B_{k} \bigl( \langle x \rangle\bigr), \quad \text{for all } x \in(-\infty, \infty). \end{aligned} $$

Therefore, we obtain the following theorem.

Theorem 2.1

Let \(m \geq2\), \(r \geq2\). Assume that \(B_{m-1}^{(r-1)}(0)=0\).

  1. (a)

    \(B_{m}^{(r)}( \langle x \rangle)\) has the Fourier series expansion

    $$ \begin{aligned} B_{m}^{(r)}\bigl( \langle x \rangle \bigr) = B_{m}^{(r-1)}(0) - \sum_{\substack{n=-\infty\\ n \neq0}}^{\infty}\Biggl(\sum_{k=1}^{m} \frac {(m)_{k}}{(2 \pi in)^{k}}B_{m-k}^{(r-1)} \Biggr) e^{2 \pi inx}, \end{aligned} $$

    for \(x \in(-\infty, \infty)\). Here the convergence is uniform.

  2. (b)

    \(B_{m}^{(r)}( \langle x \rangle) = \sum_{\substack{k=0 \\ k \neq1}}^{m} {m \choose k} B_{m-k}^{(r-1)} B_{k} ( \langle x \rangle)\), for all \(x \in(-\infty, \infty)\), where \(B_{k}( \langle x \rangle)\) is the Bernoulli function.

Assume next that \(B_{m-1}^{(r-1)}(0) \neq0\). Then \(B_{m}^{(r)}(1) \neq B_{m}^{(r)}(0)\), and hence \(B_{m}^{(r)}( \langle x \rangle)\) is piecewise \(C^{\infty}\) and discontinuous with jump discontinuities at integers Thus the Fourier series of \(B_{m}^{(r)}( \langle x \rangle)\) converges pointwise to \(B_{m}^{(r)}( \langle x \rangle)\), for \(x \notin\mathbb{Z}\), and converges to \(\frac{1}{2} ( B_{m}^{(r)}(0) + B_{m}^{(r)}(1) ) = B_{m}^{(r)}(0) + \frac{m}{2} B_{m-1}^{(r-1)}(0)\), for \(x \in\mathbb{Z}\). Thus we obtain the following theorem.

Theorem 2.2

Let \(m \geq1\), \(r \geq2\), Assume that \(B_{m-1}^{(r-1)}(0) \neq0\).

$$ \begin{aligned} (\mathrm{a}) \quad B_{m}^{(r-1)}(0) - \sum_{\substack{n=-\infty\\ n \neq0}}^{\infty}\Biggl(\sum _{k=1}^{m} \frac{(m)_{k}}{(2 \pi in)^{k}}B_{m-k}^{(r-1)} \Biggr) e^{2 \pi inx} = \textstyle\begin{cases} B_{m}^{(r)}( \langle x \rangle),& \textit{for } x \notin \mathbb{Z},\\ B_{m}^{(r)} + \frac{m}{2} B_{m-1}^{(r-1)},& \textit{for } x \in\mathbb{Z}. \end{cases}\displaystyle \end{aligned} $$

Here the convergence is pointwise,

$$ \begin{aligned} (\mathrm{b}) \quad \sum_{k=0}^{m} {m \choose k} B_{m-k}^{(r-1)} B_{k} \bigl( \langle x \rangle\bigr) = B_{m}^{(r)}(x), \quad \textit{for } x \notin\mathbb{Z}, \end{aligned} $$

and

$$ \begin{aligned} \sum_{\substack{k=0 \\ k \neq1}}^{m} {m \choose k} B_{m-k}^{(r-1)} B_{k} \bigl( \langle x \rangle\bigr) = B_{m}^{(r)} + \frac{m}{2} B_{m-1}^{(r-1)}, \quad \textit{for } x \in\mathbb{Z}, \end{aligned} $$

where \(B_{k}( \langle x \rangle)\) is the Bernoulli function.

Remark

Let \(\zeta(s) = \sum_{n=1}^{\infty}\frac{1}{n^{s}}\), \(( \operatorname{Re}(s)>1 )\). From (1.7), we note that, for \(m \geq1\),

$$ \begin{aligned} B_{2m} &= -(2m)! \sum _{\substack{n=-\infty\\n \neq0}}^{\infty}\frac {(-1)^{m}}{(2 \pi n)^{2m}} \\ &= - \frac{(2m)!}{(2\pi)^{2m}} 2 \sum_{n=1}^{\infty}\frac {(-1)^{m}}{n^{2m}} = (-1)^{m+1} \frac{2(2m)!}{(2\pi)^{2m}} \zeta(2m). \end{aligned} $$

3 Results and discussion

In this paper, we studied the Fourier series expansion of the higher-order Bernoulli functions \(B_{m}^{(r)}( \langle x \rangle )\) which are obtained by extending by periodicity of period 1 the higher-order Bernoulli polynomials \(B_{m}^{(r)}(x)\) on \([0, 1)\). As it turns out, the Fourier series of \(B_{m}^{(r)}( \langle x \rangle)\) converges uniformly to \(B_{m}^{(r)}( \langle x \rangle)\), if \(B_{m-1}^{(r-1)}(0)=0\), and converges pointwise to \(B_{m}^{(r)}( \langle x \rangle)\) for \(x\notin \Bbb {Z}\) and converges to \(B_{m}^{(r)}+\frac{m}{2}B_{m-1}^{(r-1)}\) for \(x\in\Bbb {Z}\), if \(B_{m-1}^{(r-1)}(0)\neq0\). Here the Fourier series of the higher-order Bernoulli functions \(B_{m}^{(r)}( \langle x \rangle)\) are explicitly determined. In addition, in each case the Fourier series of the higher-order Bernoulli functions \(B_{m}^{(r)}( \langle x \rangle)\) are expressed in terms of Bernoulli functions which are obtained by extending by periodicity of period 1 the ordinary Bernoulli polynomials \(B_{m}(x)\) on \([0, 1)\). The Fourier series expansion of the Bernoulli functions are useful in computing the special values of the Dirichlet L-functions. For details, one is referred to [24].

It is expected that the Fourier series of the higher-order Bernoulli functions will find some applications in connections with a certain generalization of Dirichlet L-functions and higher-order generalized Bernoulli numbers.

4 Conclusion

In this paper, we considered the Fourier series expansion of the higher-order Bernoulli functions \(B_{m}^{(r)}( \langle x \rangle )\) which are obtained by extending by periodicity of period 1 the higher-order Bernoulli polynomials \(B_{m}^{(r)}(x)\) on \([0, 1)\). The Fourier series are explicitly determined. Depending on whether \(B_{m-1}^{(r-1)}(0)\) is zero or not, the Fourier series of \(B_{m}^{(r)}( \langle x \rangle)\) converges uniformly to \(B_{m}^{(r)}( \langle x \rangle)\) or converges pointwise to \(B_{m}^{(r)}( \langle x \rangle)\) for \(x\notin\Bbb {Z}\) and converges to \(B_{m}^{(r)}+\frac {m}{2}B_{m-1}^{(r-1)}\) for \(x\in\Bbb {Z}\). In addition, the Fourier series of the higher-order Bernoulli functions \(B_{m}^{(r)}( \langle x \rangle)\) are expressed in terms of Bernoulli functions \(B_{k}( \langle x \rangle)\). Thus we established the relations between higher-order Bernoulli functions and Bernoulli functions. Just as the Fourier series expansion of the Bernoulli functions are useful in computing the special values of Dirichlet L-functions, we would like to see some applications to a certain generalization of Dirichlet L-functions and higher-order generalized Bernoulli numbers in near future.

References

  1. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions. Dover, New York (1970)

    MATH  Google Scholar 

  2. Berndt, BC: Periodic Bernoulli numbers, summation formulas and applications. In: Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), pp. 143-189. Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York (1975)

    Google Scholar 

  3. Carlitz, L: A note on Bernoulli numbers and polynomials. Elem. Math. 29, 90-92 (1974)

    MATH  MathSciNet  Google Scholar 

  4. Carlitz, L: Some unusual congruences for the Bernoulli and Genocchi numbers. Duke Math. J. 35, 563-566 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chowla, S, Hartung, P: An “exact” formula for the m-th Bernoulli numbers. Acta Arith. 22, 113-115 (1972)

    MATH  MathSciNet  Google Scholar 

  6. Erdös, P, Wagstaff, SS Jr.: The fractional parts of the Bernoulli numbers. Ill. J. Math. 24(1), 104-112 (1980)

    MATH  MathSciNet  Google Scholar 

  7. Gould, HW: Explicit formulas for Bernoulli numbers. Am. Math. Mon. 79, 44-51 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Herget, W: Minimum periods modulo n for Bernoulli numbers. Fibonacci Q. 16(6), 544-548 (1978)

    MATH  MathSciNet  Google Scholar 

  9. Kim, DS, Kim, T: Some identities of symmetry for q-Bernoulli polynomials uner symmetric group of degree n. Ars Comb. 126, 435-441 (2016)

    MATH  Google Scholar 

  10. Kim, DS, Kim, T: Higher-order Bernoulli and poly-Bernoulli mixed type polynomials. Georgian Math. J. 22(1), 26-33 (2015)

    MATH  MathSciNet  Google Scholar 

  11. Kim, D, Kim, T: A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials. Russ. J. Math. Phys. 22(1), 26-33 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim, DS, Kim, T, Rim, S-H, Dolgy, DV: Barnes’ multiple Bernoulli and Hermite mixed-type polynomials. Proc. Jangjeon Math. Soc. 18(1), 7-19 (2015)

    MATH  MathSciNet  Google Scholar 

  13. Kim, T, Kim, DS, Kwon, HI: Some identities relating to degenerate Bernoulli polynomials. Filomat 30(4), 905-912 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kim, T: Note on the Euler numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 17(2), 131-136 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Kim, T: Euler numbers and polynomials associated with zeta functions. Abstr. Appl. Anal. 2008 Art. ID 581582 (2008)

    MATH  MathSciNet  Google Scholar 

  16. Kim, T, Choi, J, Kim, YH: A note on the values of Euler zeta functions at positive integers. Adv. Stud. Contemp. Math. (Kyungshang) 22(1), 27-34 (2012)

    MATH  MathSciNet  Google Scholar 

  17. Kim, T: Some identities for the Bernoulli the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 20(1), 23-28 (2010)

    MATH  MathSciNet  Google Scholar 

  18. Kim, T, Kim, DS, Dolgy, DV, Seo, J-J: Bernoulli polynomials of the second kind and their identities arising from umbral calculus. J. Nonlinear Sci. Appl. 9(3), 860-869 (2016)

    MATH  MathSciNet  Google Scholar 

  19. Lehmer, DH: A new approach to Bernoulli polynomials. Am. Math. Mon. 95, 905-911 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shiratani, K: Kummer’s congruence for generalized Bernoulli numbers and its applications. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 26, 119-138 (1972)

    MATH  MathSciNet  Google Scholar 

  21. Vasak, JT: Periodic Bernoulli numbers and polynomials. Thesis (Ph.D.), University of Illinois at Urbana-Champaign (1979) 81 pp.

  22. Washington, LC: Introduction to Cyclotomic Fields, 2nd edn. Graduate Text in Mathematics, vol. 83, xiv + 487 pp. Springer, New York (1997). ISBN: 0-387-94762-0

    Book  MATH  Google Scholar 

  23. Yamaguchi, I: On a Bernoulli numbers conjecture. J. Reine Angew. Math. 288, 168-175 (1976)

    MATH  MathSciNet  Google Scholar 

  24. Cohen, H: Number Theory Volume II: Analytic and Modern Tools. Graduate Texts in Math., vol. 240, xxiii + 596 pp. Springer, New York (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

This paper is supported by grant NO 14-11-00022 of Russian Scientific Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T., Kim, D.S., Rim, SH. et al. Fourier series of higher-order Bernoulli functions and their applications. J Inequal Appl 2017, 8 (2017). https://doi.org/10.1186/s13660-016-1282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-016-1282-y

MSC

Keywords