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Abstract
In this paper, we study the Fourier series related to higher-order Bernoulli functions
and give new identities for higher-order Bernoulli functions which are derived from
the Fourier series of them.
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1 Introduction
As is well known, Bernoulli polynomials are defined by the generating function
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with the usual convention about replacing Bn by Bn (see [, ]). From (.), we note that
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Thus, by (.), we get

∫ x


Bn(x) dx =


n + 

(
Bn+(x) – Bn+()

)
(n ≥ ). (.)

For any real number x, we define

〈x〉 = x – [x] ∈ [, ), (.)

where [x] is the integral part of x. Then Bn(〈x〉) are functions defined on (–∞,∞) and
periodic with period , which are called Bernoulli functions. The Fourier series for Bm(〈x〉)
is given by
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where m ≥  and x /∈ Z (see [, , , , ]). For a positive integer N, we have
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For r ∈N, the higher-order Bernoulli polynomials are defined by the generating function

(
t
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)r

ext =
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n=

B(r)
n (x)

tn

n!
(see [, , , ]). (.)

When x = , B(r)
n = B(r)

n () are called Bernoulli numbers of order r (see [, ]). Then
B(r)

n (〈x〉) are functions defined on (–∞,∞) and periodic with period , which are called
Bernoulli functions of order r. In this paper, we study the Fourier series related to higher-
order Bernoulli functions and give some new identities for the higher-order Bernoulli
functions which are derived from the Fourier series of them.

2 Fourier series of higher-order Bernoulli functions and their applications
From (.), we note that

B(r)
m (x + ) = B(r)

m (x) + mB(r–)
m– (x) (m ≥ ). (.)



Kim et al. Journal of Inequalities and Applications  (2017) 2017:8 Page 3 of 7

Indeed,
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Let x =  in (.). Then we have
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The series in (.) converges uniformly, while that in (.) converges pointwise. Assume
first that B(r–)

m– () = . Then we have B(r)
m () = B(r)
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Note that (.) holds whether B(r–)
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Therefore, we obtain the following theorem.
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Theorem . Let m ≥ , r ≥ , Assume that B(r–)
m– () �= .
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Here the convergence is pointwise,
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where Bk(〈x〉) is the Bernoulli function.

Remark Let ζ (s) =
∑∞

n=


ns , (Re(s) > ). From (.), we note that, for m ≥ ,

Bm = –(m)!
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∞∑
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3 Results and discussion
In this paper, we studied the Fourier series expansion of the higher-order Bernoulli func-
tions B(r)

m (〈x〉) which are obtained by extending by periodicity of period  the higher-order
Bernoulli polynomials B(r)

m (x) on [, ). As it turns out, the Fourier series of B(r)
m (〈x〉) con-

verges uniformly to B(r)
m (〈x〉), if B(r–)

m– () = , and converges pointwise to B(r)
m (〈x〉) for x /∈ Z

and converges to B(r)
m + m

 B(r–)
m– for x ∈ Z, if B(r–)

m– () �= . Here the Fourier series of the
higher-order Bernoulli functions B(r)

m (〈x〉) are explicitly determined. In addition, in each
case the Fourier series of the higher-order Bernoulli functions B(r)

m (〈x〉) are expressed in
terms of Bernoulli functions which are obtained by extending by periodicity of period
 the ordinary Bernoulli polynomials Bm(x) on [, ). The Fourier series expansion of the
Bernoulli functions are useful in computing the special values of the Dirichlet L-functions.
For details, one is referred to [].

It is expected that the Fourier series of the higher-order Bernoulli functions will find
some applications in connections with a certain generalization of Dirichlet L-functions
and higher-order generalized Bernoulli numbers.

4 Conclusion
In this paper, we considered the Fourier series expansion of the higher-order Bernoulli
functions B(r)

m (〈x〉) which are obtained by extending by periodicity of period  the higher-
order Bernoulli polynomials B(r)

m (x) on [, ). The Fourier series are explicitly determined.
Depending on whether B(r–)

m– () is zero or not, the Fourier series of B(r)
m (〈x〉) converges
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uniformly to B(r)
m (〈x〉) or converges pointwise to B(r)

m (〈x〉) for x /∈ Z and converges to
B(r)

m + m
 B(r–)

m– for x ∈ Z. In addition, the Fourier series of the higher-order Bernoulli func-
tions B(r)

m (〈x〉) are expressed in terms of Bernoulli functions Bk(〈x〉). Thus we established
the relations between higher-order Bernoulli functions and Bernoulli functions. Just as
the Fourier series expansion of the Bernoulli functions are useful in computing the special
values of Dirichlet L-functions, we would like to see some applications to a certain gener-
alization of Dirichlet L-functions and higher-order generalized Bernoulli numbers in near
future.
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