Skip to content

Advertisement

  • Research
  • Open Access

Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions

Journal of Inequalities and Applications20162016:212

https://doi.org/10.1186/s13660-016-1157-2

  • Received: 1 July 2016
  • Accepted: 31 August 2016
  • Published:

Abstract

In this paper, we present Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions.

Keywords

  • inverse trigonometric functions
  • lemniscate function
  • inequalities

MSC

  • 26D07

1 Introduction

Shafer [1] indicated several elementary quadratic approximations of selected functions without proof. Subsequently, Shafer [2] established these results as analytic inequalities. For example, Shafer [2] proved that for \(x>0\),
$$ \frac{8x}{3+\sqrt{25+\frac{80}{3}x^{2}}}< \arctan x. $$
(1.1)
The inequality (1.1) can also be found in [3]. Also in [2], Shafer proved that for \(0< x<1\),
$$ \frac{8x}{3\sqrt{1-x^{2}}+\sqrt{25+\frac{5}{3}x^{2}}}< \arcsin x. $$
(1.2)
Zhu [4] proved that the function
$$ F(x)=\frac{ (\frac{8x}{\arctan x}-3 )^{2}-25}{x^{2}} $$
is strictly decreasing for \(x>0\), and
$$ \lim_{x\to0^{+}}F(x)=\frac{80}{3}\quad \text{and} \quad \lim _{x\to \infty}F(x)=\frac{256}{\pi^{2}}. $$
From this one derives the following double inequality:
$$ \frac{8x}{3+\sqrt{25+\frac{80}{3}x^{2}}}< \arctan x< \frac{8x}{3+\sqrt {25+\frac{256}{\pi^{2}}x^{2}}}, \quad x>0. $$
(1.3)
The constants \(80/3\) and \(256/\pi^{2}\) are the best possible. In [4], (1.3) is called Shafer-type inequality.
Using the Maple software, we find that
$$ \arctan x \biggl(3+\sqrt{25+\frac{80}{3}x^{2}} \biggr)=8x+ \frac {32}{4\text{,}725}x^{7}-\frac{64}{4\text{,}725}x^{9}+ \frac{25\text{,}376}{1\text{,}299\text{,}375}x^{11}-\cdots. $$
This fact motivated us to present a new upper bound for arctanx, which is the first aim of the present paper.

Theorem 1.1

For \(x>0\),
$$ \arctan x< \frac{8x+\frac{32}{4\text{,}725}x^{7}}{3+\sqrt{25+\frac{80}{3}x^{2}}}. $$
(1.4)

The second aim of the present paper is to develop (1.2) to produce a symmetric double inequality.

Theorem 1.2

For \(0< x<1\), we have
$$ \frac{8x}{3\sqrt{1-x^{2}}+\sqrt{25+ax^{2}}}< \arcsin x< \frac{8x}{3\sqrt {1-x^{2}}+\sqrt{25+bx^{2}}} $$
(1.5)
with the best possible constants
$$ a=\frac{5}{3}=1.666666\ldots \quad \textit{and}\quad b= \frac{256-25\pi ^{2}}{\pi^{2}}=0.938223\ldots. $$
(1.6)

Recently, some famous inequalities for trigonometric and inverse trigonometric functions have been improved (see, for example, [58]).

The lemniscate, also called the lemniscate of Bernoulli, is the locus of points \((x, y)\) in the plane satisfying the equation \((x^{2} + y^{2})^{2} = x^{2} + y^{2}\). In polar coordinates \((r, \theta)\), the equation becomes \(r^{2} = \cos(2\theta)\) and its arc length is given by the function
$$ \operatorname {arcsl}x= \int_{0}^{x}\frac{1}{\sqrt{1-t^{4}}}\,\mathrm{d}t,\quad |x|\leq1, $$
(1.7)
where arcslx is called the arc lemniscate sine function studied by Gauss in 1797-1798. Another lemniscate function investigated by Gauss is the hyperbolic arc lemniscate sine function, defined as
$$ \operatorname {arcslh}x= \int_{0}^{x}\frac{1}{\sqrt{1+t^{4}}}\,\mathrm{d}t,\quad x \in \mathbb{R}. $$
(1.8)
Functions (1.7) and (1.8) can be found (see [9], Chapter 1, [10], p.259 and [1119]).
Another pair of lemniscate functions, the arc lemniscate tangent arctl and the hyperbolic arc lemniscate tangent arctlh, have been introduced in [12], (3.1)-(3.2). Therein it has been proven that
$$ \operatorname {arctl}x=\operatorname {arcsl}\biggl(\frac{x}{\sqrt[4]{1+x^{4}}} \biggr), \quad x\in \mathbb{R} $$
(1.9)
and
$$ \operatorname {arctlh}x=\operatorname {arcslh}\biggl(\frac{x}{\sqrt[4]{1-x^{4}}} \biggr),\quad |x|< 1 $$
(1.10)
(see [12], Proposition 3.1).

In analogy with (1.1), we here establish Shafer-type inequalities for the lemniscate functions, which is the last aim of the present paper.

Theorem 1.3

For \(0< x<1\),
$$ \frac{10x}{5+\sqrt{25-10x^{4}}}< \operatorname {arcsl}x $$
(1.11)
and
$$ \frac{10x}{5+\sqrt{25-15x^{4}}}< \operatorname {arctlh}x. $$
(1.12)

Theorem 1.4

For \(x>0\),
$$ \frac{95x}{80+\sqrt{225+285x^{4}}}< \operatorname {arcslh}x. $$
(1.13)

We present the following conjecture.

Conjecture 1.1

For \(x>0\),
$$ \operatorname {arcslh}x< \frac{95x+\frac{931}{2\text{,}925}x^{13}}{80+\sqrt{225+285x^{4}}} $$
(1.14)
and
$$ \frac{1\text{,}210x}{940+9\sqrt{900+1\text{,}210x^{4}}}< \operatorname {arctl}x< \frac{1\text{,}210x+\frac {2\text{,}078\text{,}417}{280\text{,}800}x^{13}}{940+9\sqrt{900+1\text{,}210x^{4}}}. $$
(1.15)

2 Lemmas

The following lemmas have been proved in [17].

Lemma 2.1

For \(|x|<1\),
$$ \operatorname {arcsl}x =\sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{1}{2})}{\sqrt{\pi }(4n+1)\cdot n!}x^{4n+1}=x+\frac{1}{10} x^{5}+ \frac{1}{24} x^{9}+\cdots. $$
(2.1)

Lemma 2.2

For \(0< x<1\),
$$ \operatorname {arctlh}x=\sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{3}{4})}{\Gamma(\frac {3}{4})\cdot (4n+1)\cdot n!}x^{4n+1}=x+\frac{3}{20}x^{5}+ \frac{7}{96}x^{9}+\cdots. $$
(2.2)

3 Proofs of Theorems 1.1 to 1.4

Proof of Theorem 1.1

The inequality (1.11) is obtained by considering the function \(f(x)\) defined by
$$ f(x)=\arctan x-\frac{8x+\frac{32}{4\text{,}725}x^{7}}{3+\sqrt{25+\frac {80}{3}x^{2}}}, \quad x>0. $$
Differentiation yields
$$ f'(x)=-\frac{2g(x)}{(1+x^{2})(9+\sqrt{225+240x^{2}})^{2}\sqrt{225+240x^{2}}}, $$
where
$$\begin{aligned} g(x) =&\bigl(-7\text{,}875-2\text{,}100x^{2}+112x^{6}+112x^{8} \bigr)\sqrt{225+240x^{2}} \\ &{} +118\text{,}125+94\text{,}500x^{2}+2\text{,}800x^{6}+5 \text{,}360x^{8}+2\text{,}560x^{10}. \end{aligned}$$
We now show that
$$ g(x)>0, \quad x>0. $$
(3.1)
By an elementary change of variable
$$ t=\sqrt{225+240x^{2}}, \quad t>15, $$
the inequality (3.1) is equivalent to
$$\begin{aligned}& \biggl[-7\text{,}875-2\text{,}100 \biggl(\frac{t^{2}-225}{240} \biggr)+112 \biggl( \frac {t^{2}-225}{240} \biggr)^{3}+112 \biggl(\frac{t^{2}-225}{240} \biggr)^{4} \biggr]t \\& \qquad {}+118\text{,}125+94\text{,}500 \biggl(\frac{t^{2}-225}{240} \biggr)+2 \text{,}800 \biggl(\frac{t^{2}-225}{240} \biggr)^{3}+5\text{,}360 \biggl( \frac{t^{2}-225}{240} \biggr)^{4} \\& \qquad {}+2\text{,}560 \biggl(\frac{t^{2}-225}{240} \biggr)^{5} \\& \quad =\frac {(2t^{6}+141t^{5}+4\text{,}515t^{4}+93\text{,}690t^{3}+1\text{,}562\text{,}400t^{2}+24\text{,}053\text{,}625t+362\text{,}626\text{,}875)(t-15)^{4}}{622\text{,}080\text{,}000} \\& \quad >0\quad \text{for } t>15, \end{aligned}$$
which is true. Hence, we have
$$ g(x)>0\quad \text{and} \quad f'(x)< 0\quad \text{for } x>0. $$
So, \(f(x)\) is strictly decreasing for \(x>0\), and we have
$$ f(x)< f(0)=0, \quad x>0. $$
The proof is complete. □

Remark 3.1

Let \(x_{0}=1.4243\ldots\) . Then we have
$$ \frac{8x+\frac{32}{4\text{,}725}x^{7}}{3+\sqrt{25+\frac{80}{3}x^{2}}}< \frac {8x}{3+\sqrt{25+\frac{256}{\pi^{2}}x^{2}}},\quad 0< x< x_{0}. $$
This shows that for \(0< x< x_{0}\), the upper bound in (1.11) is better than the upper bound in (1.3). In fact, for \(x\to0\), we have
$$\begin{aligned}& \arctan x-\frac{8x}{3+\sqrt{25+\frac{256}{\pi^{2}}x^{2}}}=O\bigl(x^{3}\bigr), \\& \arctan x-\frac{8x}{3+\sqrt{25+\frac{80}{3}x^{2}}}=O\bigl(x^{7}\bigr), \end{aligned}$$
and
$$ \arctan x-\frac{8x+\frac{32}{4\text{,}725}x^{7}}{3+\sqrt{25+\frac{80}{3}x^{2}}}=O\bigl(x^{9}\bigr). $$

Proof of Theorem 1.2

The double inequality (1.11) can be written for \(0< x<1\) as
$$ b< F(x)< a, $$
where
$$ F(x)=\frac{ (\frac{8x}{\arcsin x}-3\sqrt{1-x^{2}} )^{2}-25}{x^{2}}, \quad 0< x< 1. $$
By an elementary change of variable,
$$ x=\sin t,\quad 0< t< \frac{\pi}{2}, $$
we have
$$ G(t)=F(\sin t)=\frac{ (\frac{8\sin t}{t}-3\cos t )^{2}-25}{\sin^{2}t},\quad 0< t< \frac{\pi}{2}. $$
We now prove that \(F(x)\) is strictly decreasing for \(0< x<1\). It suffices to show that \(G(t)\) is strictly decreasing for \(0< t<\pi/2\). Differentiation yields
$$\begin{aligned} \begin{aligned}[b] -\frac{t^{3}\sin^{3}t}{16}G'(t)={}&8\sin^{3} t-3t^{2}\sin t-\bigl(2t^{3}+3t\bigr)\cos t+3t \cos^{3}t \\ ={}&8 \biggl(\frac{3\sin t-\sin(3t)}{4} \biggr)-3t^{2}\sin t- \bigl(2t^{3}+3t\bigr)\cos t \\ &{}+3t \biggl(\frac{\cos(3t)+3\cos t}{4} \biggr) \\ ={}&\bigl(6-3t^{2}\bigr)\sin t-2\sin(3t)+\frac{3}{4}t\cos(3t)- \biggl(\frac {3}{4}t+2t^{3} \biggr)\cos t \\ ={}&\frac{16}{945}t^{9}-\frac{16}{4\text{,}725}t^{11}+\sum _{n=6}^{\infty }(-1)^{n}u_{n}(t), \end{aligned} \end{aligned}$$
(3.2)
where
$$ u_{n}(t)=\frac{21+2n+48n^{2}+64n^{3}+(6n-21)\cdot9^{n}}{4\cdot(2n+1)!}t^{2n+1}. $$
Elementary calculations reveal that for \(0< t<\pi/2\) and \(n\geq6\),
$$\begin{aligned} \frac{u_{n+1}(t)}{u_{n}(t)}&=\frac{t^{2} (135+290n+240n^{2}+64n^{3}+(54n-135)\cdot9^{n} )}{2(n+1)(2n+3) (21+2n+48n^{2}+64n^{3}+(6n-21)\cdot9^{n} )} \\ &< \frac{(\pi/2)^{2}}{n+1}\frac{135+290n+240n^{2}+64n^{3}+(54n-135)\cdot 9^{n}}{2(2n+3) (21+2n+48n^{2}+64n^{3}+(6n-21)\cdot9^{n} )} \\ &< \frac{135+290n+240n^{2}+64n^{3}+(54n-135)\cdot9^{n}}{2(2n+3) (21+2n+48n^{2}+64n^{3}+(6n-21)\cdot9^{n} )} \end{aligned}$$
and
$$\begin{aligned}& 2(2n+3) \bigl(21+2n+48n^{2}+64n^{3}+(6n-21) \cdot9^{n} \bigr) \\& \qquad {}- \bigl(135+290n+240n^{2}+64n^{3}+(54n-135) \cdot9^{n} \bigr) \\& \quad =\bigl(24n^{2}-102n+9\bigr)9^{n}+256n^{4}+512n^{3}+56n^{2}-194n-9>0. \end{aligned}$$
We then obtain, for \(0< t<\pi/2\) and \(n\geq6\),
$$ \frac{u_{n+1}(t)}{u_{n}(t)}< 1. $$
Hence, for every \(t\in(0,\pi/2)\), the sequence \(n\longmapsto u_{n}(t)\) is strictly decreasing for \(n\geq6\). We then obtain from (3.2)
$$ -\frac{t^{3}\sin^{3}t}{16}G'(t)>t^{9} \biggl( \frac{16}{945}-\frac {16}{4\text{,}725}t^{2} \biggr)>0,\quad 0< t< \frac{\pi}{2}, $$
which implies \(G'(t)<0\) for \(0< t<\pi/2\). Hence, \(G(t)\) is strictly decreasing for \(0< t<\pi/2\), and \(F(x)\) is strictly decreasing for \(0< x<1\). So, we have
$$ \frac{256-25\pi^{2}}{\pi^{2}}=\lim_{t\to1}F(t)< F(x)=\frac{ (\frac{8x}{\arcsin x}-3\sqrt{1-x^{2}} )^{2}-25}{x^{2}}< \lim _{t\to 0}F(t)=\frac{5}{3} $$
for all \(x\in(0, 1)\), with the constants \(5/3\) and \((256-25\pi^{2})/\pi^{2}\) being best possible. The proof is complete. □

Proof of Theorem 1.3

By (2.1), we find that for \(0< x<1\),
$$\begin{aligned} \bigl(25-10x^{4}\bigr)- \biggl(\frac{10x}{\operatorname {arcsl}x}-5 \biggr)^{2}&>\bigl(25-10x^{4}\bigr)- \biggl( \frac{10x}{x+\frac{1}{10}x^{5}+\frac{1}{24}x^{9}}-5 \biggr)^{2} \\ &=\frac{10x^{8}(3\text{,}120-1\text{,}344x^{4}-120x^{8}-25x^{12})}{(120+12x^{4}+5x^{8})^{2}}. \end{aligned}$$
Noting that
$$ 3\text{,}120-1\text{,}344t-120t^{2}-25t^{3}>0\quad \text{for } 0< t< 1, $$
we obtain, for \(0< x<1\),
$$ \bigl(25-10x^{4}\bigr)- \biggl(\frac{10x}{\operatorname {arcsl}x}-5 \biggr)^{2}>0, $$
which implies (1.11).
By (2.2), we find that for \(0< x<1\),
$$\begin{aligned} \bigl(25-15x^{4}\bigr)- \biggl(\frac{10x}{\operatorname {arctlh}x}-5 \biggr)^{2}&>\bigl(25-15x^{4}\bigr)- \biggl( \frac{10x}{x+\frac{1}{10}x^{5}+\frac{1}{24}x^{9}}-5 \biggr)^{2} \\ & =\frac{15x^{8}A(x)}{(24\text{,}960+3\text{,}744x^{4}+1\text{,}820x^{8}+1\text{,}155x^{12})^{2}}, \end{aligned}$$
(3.3)
where
$$\begin{aligned} A(x) =&\bigl(115\text{,}947\text{,}520-71\text{,}285\text{,}760x^{8}-4 \text{,}204\text{,}200x^{16}\bigr) \\ &{} +x^{4}\bigl(87\text{,}320\text{,}064-11\text{,}961 \text{,}040x^{8}-1\text{,}334\text{,}025x^{16}\bigr). \end{aligned}$$
Noting that for \(0< t<1\),
$$ 115\text{,}947\text{,}520-71\text{,}285\text{,}760t-4\text{,}204 \text{,}200t^{2}>0 $$
and
$$ 87\text{,}320\text{,}064-11 \text{,}961\text{,}040t-1\text{,}334\text{,}025t^{2}>0, $$
we obtain \(A(x)>0\) for \(0< x<1\). From (3.3), we obtain (1.12). The proof is complete. □

Proof of Theorem 1.4

The inequality (1.13) is obtained by considering the function \(h(x)\) defined by
$$ h(x)=\operatorname {arcslh}x-\frac{95x}{80+\sqrt{225+285x^{4}}}, \quad x>0. $$
Differentiation yields
$$ h'(x)=\frac{1}{\sqrt{1+x^{4}}}-\frac{475(16\sqrt {225+285x^{4}}+45-57x^{4})}{(80+\sqrt{225+285x^{4}})^{2}\sqrt{225+285x^{4}}}. $$
By an elementary change of variable
$$ t=\sqrt{225+285x^{4}}, \quad x>0 \qquad \biggl(\text{or } x=\sqrt [4]{\frac{t^{2}-225}{285}}, t>15 \biggr), $$
(3.4)
we have
$$\begin{aligned}& \frac{1}{\sqrt{1+x^{4}}}-\frac{475(16\sqrt {225+285x^{4}}+45-57x^{4})}{(80+\sqrt{225+285x^{4}})^{2}\sqrt{225+285x^{4}}} \\& \quad =\frac{285}{\sqrt{17\text{,}100+285t^{2}}}+\frac {95(t^{2}-80t-450)}{t(80+t)^{2}}=\frac{95I(t)}{t(80+t)^{2}}, \end{aligned}$$
where
$$ I(t)=\frac{19\text{,}200t+480t^{2}+3t^{3}}{\sqrt {17\text{,}100+285t^{2}}}+t^{2}-80t-450, \quad t>15. $$
We now prove that
$$ h'(x)>0, \quad x>0. $$
It suffices to show that
$$ I(t)>0, \quad t>15. $$
Differentiation yields
$$\begin{aligned}& I'(t)=\frac{6(192\text{,}000+9\text{,}600t+90t^{2}+80t^{3}+t^{4})}{(60+t^{2})\sqrt {17\text{,}100+285t^{2}}}+2t-80, \\& I''(t)=\frac{6(576\text{,}000-565\text{,}200t-4\text{,}800t^{2}+150t^{3}+t^{5})}{(60+t^{2})^{2}\sqrt {17\text{,}100+285t^{2}}}+2, \end{aligned}$$
and
$$ I'''(t)=\frac{10\text{,}800(-18\text{,}840-1\text{,}920t+1\text{,}271t^{2}+8t^{3})}{(60+t^{2})^{3}\sqrt {17\text{,}100+285t^{2}}}>0 \quad \text{for } t>15. $$
Thus, we have, for \(t>15\),
$$ I''(t)>I''(15)=0\quad \Longrightarrow\quad I'(t)>I'(15)=0\quad \Longrightarrow\quad I(t)>I(15)=0. $$
Hence, \(h'(x)>0\) holds for \(x>0\), and we have
$$ h(x)>h(0)=0, \quad x>0. $$
The proof is complete. □

Declarations

Acknowledgements

The authors thank the referees for helpful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454000, China

References

  1. Shafer, RE: On quadratic approximation. SIAM J. Numer. Anal. 11, 447-460 (1974) MathSciNetView ArticleMATHGoogle Scholar
  2. Shafer, RE: Analytic inequalities obtained by quadratic approximation. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 577-598, 96-97 (1977) MathSciNetMATHGoogle Scholar
  3. Shafer, RE: On quadratic approximation, II. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 602-633, 163-170 (1978) MathSciNetMATHGoogle Scholar
  4. Zhu, L: On a quadratic estimate of Shafer. J. Math. Inequal. 2, 571-574 (2008) MathSciNetView ArticleMATHGoogle Scholar
  5. Mortici, C: A subtly analysis of Wilker inequality. Appl. Math. Comput. 231, 516-520 (2014) MathSciNetGoogle Scholar
  6. Mortici, C, Debnath, L, Zhu, L: Refinements of Jordan-Steckin and Becker-Stark inequalities. Results Math. 67, 207-215 (2015) MathSciNetView ArticleMATHGoogle Scholar
  7. Mortici, C, Srivastava, HM: Estimates for the arctangent function related to Shafer’s inequality. Colloq. Math. 136, 263-270 (2014) MathSciNetView ArticleMATHGoogle Scholar
  8. Nenezić, M, Malesević, B, Mortici, C: New approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 283, 299-315 (2016) MathSciNetGoogle Scholar
  9. Siegel, CL: Topics in Complex Function Theory, vol. 1. Wiley, New York (1969) MATHGoogle Scholar
  10. Borwein, JM, Borwein, PB: Pi and the AGM: A Study in the Analytic Number Theory and Computational Complexity. Wiley, New York (1987) MATHGoogle Scholar
  11. Carlson, BC: Algorithms involving arithmetic and geometric means. Am. Math. Mon. 78, 496-505 (1971) MathSciNetView ArticleMATHGoogle Scholar
  12. Neuman, E: On Gauss lemniscate functions and lemniscatic mean. Math. Pannon. 18, 77-94 (2007) MathSciNetMATHGoogle Scholar
  13. Neuman, E: Two-sided inequalities for the lemniscate functions. J. Inequal. Spec. Funct. 1, 1-7 (2010) MathSciNetMATHGoogle Scholar
  14. Neuman, E: On Gauss lemniscate functions and lemniscatic mean II. Math. Pannon. 23, 65-73 (2012) MathSciNetMATHGoogle Scholar
  15. Neuman, E: Inequalities for Jacobian elliptic functions and Gauss lemniscate functions. Appl. Math. Comput. 218, 7774-7782 (2012) MathSciNetMATHGoogle Scholar
  16. Neuman, E: On lemniscate functions. Integral Transforms Spec. Funct. 24, 164-171 (2013) MathSciNetView ArticleMATHGoogle Scholar
  17. Chen, CP: Wilker and Huygens type inequalities for the lemniscate functions. J. Math. Inequal. 6, 673-684 (2012) MathSciNetView ArticleMATHGoogle Scholar
  18. Chen, CP: Wilker and Huygens type inequalities for the lemniscate functions, II. Math. Inequal. Appl. 16, 577-586 (2013) MathSciNetMATHGoogle Scholar
  19. Deng, JE, Chen, CP: Sharp Shafer-Fink type inequalities for Gauss lemniscate functions. J. Inequal. Appl. 2014, 35 (2014) MathSciNetView ArticleMATHGoogle Scholar

Copyright

Advertisement