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Abstract
In this paper, we present Shafer-type inequalities for inverse trigonometric functions
and Gauss lemniscate functions.
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1 Introduction
Shafer [] indicated several elementary quadratic approximations of selected functions
without proof. Subsequently, Shafer [] established these results as analytic inequalities.
For example, Shafer [] proved that for x > ,

x

 +
√

 + 
 x

< arctan x. (.)

The inequality (.) can also be found in []. Also in [], Shafer proved that for  < x < ,

x


√

 – x +
√

 + 
 x

< arcsin x. (.)

Zhu [] proved that the function

F(x) =
( x

arctan x – ) – 
x

is strictly decreasing for x > , and

lim
x→+

F(x) =



and lim
x→∞ F(x) =


π .

From this one derives the following double inequality:

x

 +
√

 + 
 x

< arctan x <
x

 +
√

 + 
π x

, x > . (.)
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The constants / and /π are the best possible. In [], (.) is called Shafer-type
inequality.

Using the Maple software, we find that

arctan x
(

 +
√

 +



x
)

= x +


,
x –


,

x +
,

,,
x – · · · .

This fact motivated us to present a new upper bound for arctan x, which is the first aim of
the present paper.

Theorem . For x > ,

arctan x <
x + 

, x

 +
√

 + 
 x

. (.)

The second aim of the present paper is to develop (.) to produce a symmetric double
inequality.

Theorem . For  < x < , we have

x

√

 – x +
√

 + ax
< arcsin x <

x

√

 – x +
√

 + bx
(.)

with the best possible constants

a =



= . . . . and b =
 – π

π = . . . . . (.)

Recently, some famous inequalities for trigonometric and inverse trigonometric func-
tions have been improved (see, for example, [–]).

The lemniscate, also called the lemniscate of Bernoulli, is the locus of points (x, y) in the
plane satisfying the equation (x + y) = x + y. In polar coordinates (r, θ ), the equation
becomes r = cos(θ ) and its arc length is given by the function

arcsl x =
∫ x



√
 – t

dt, |x| ≤ , (.)

where arcsl x is called the arc lemniscate sine function studied by Gauss in -.
Another lemniscate function investigated by Gauss is the hyperbolic arc lemniscate sine
function, defined as

arcslh x =
∫ x



√
 + t

dt, x ∈R. (.)

Functions (.) and (.) can be found (see [], Chapter , [], p. and [–]).
Another pair of lemniscate functions, the arc lemniscate tangent arctl and the hyperbolic

arc lemniscate tangent arctlh, have been introduced in [], (.)-(.). Therein it has been
proven that

arctl x = arcsl

(
x

√ + x

)
, x ∈R (.)
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and

arctlh x = arcslh

(
x

√ – x

)
, |x| <  (.)

(see [], Proposition .).
In analogy with (.), we here establish Shafer-type inequalities for the lemniscate func-

tions, which is the last aim of the present paper.

Theorem . For  < x < ,

x
 +

√
 – x

< arcsl x (.)

and

x
 +

√
 – x

< arctlh x. (.)

Theorem . For x > ,

x
 +

√
 + x

< arcslh x. (.)

We present the following conjecture.

Conjecture . For x > ,

arcslh x <
x + 

, x

 +
√

 + x
(.)

and

,x
 + 

√
 + ,x

< arctl x <
,x + ,,

, x

 + 
√

 + ,x
. (.)

2 Lemmas
The following lemmas have been proved in [].

Lemma . For |x| < ,

arcsl x =
∞∑

n=

�(n + 
 )√

π (n + ) · n!
xn+ = x +




x +



x + · · · . (.)

Lemma . For  < x < ,

arctlh x =
∞∑

n=

�(n + 
 )

�( 
 ) · (n + ) · n!

xn+ = x +



x +




x + · · · . (.)
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3 Proofs of Theorems 1.1 to 1.4
Proof of Theorem . The inequality (.) is obtained by considering the function f (x)
defined by

f (x) = arctan x –
x + 

, x

 +
√

 + 
 x

, x > .

Differentiation yields

f ′(x) = –
g(x)

( + x)( +
√

 + x)
√

 + x
,

where

g(x) =
(
–, – ,x + x + x)√ + x

+ , + ,x + ,x + ,x + ,x.

We now show that

g(x) > , x > . (.)

By an elementary change of variable

t =
√

 + x, t > ,

the inequality (.) is equivalent to

[
–, – ,

(
t – 



)
+ 

(
t – 



)

+ 
(

t – 


)]
t

+ , + ,
(

t – 


)
+ ,

(
t – 



)

+ ,
(

t – 


)

+ ,
(

t – 


)

= (t + t + ,t + ,t + ,,t + ,,t + ,,)(t – )

,,

>  for t > ,

which is true. Hence, we have

g(x) >  and f ′(x) <  for x > .

So, f (x) is strictly decreasing for x > , and we have

f (x) < f () = , x > .

The proof is complete. �
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Remark . Let x = . . . . . Then we have

x + 
, x

 +
√

 + 
 x

<
x

 +
√

 + 
π x

,  < x < x.

This shows that for  < x < x, the upper bound in (.) is better than the upper bound in
(.). In fact, for x → , we have

arctan x –
x

 +
√

 + 
π x

= O
(
x),

arctan x –
x

 +
√

 + 
 x

= O
(
x),

and

arctan x –
x + 

, x

 +
√

 + 
 x

= O
(
x).

Proof of Theorem . The double inequality (.) can be written for  < x <  as

b < F(x) < a,

where

F(x) =
( x

arcsin x – 
√

 – x) – 
x ,  < x < .

By an elementary change of variable,

x = sin t,  < t <
π


,

we have

G(t) = F(sin t) =
(  sin t

t –  cos t) – 
sin t

,  < t <
π


.

We now prove that F(x) is strictly decreasing for  < x < . It suffices to show that G(t) is
strictly decreasing for  < t < π/. Differentiation yields

–
t sin t


G′(t) =  sin t – t sin t –

(
t + t

)
cos t + t cos t

= 
(

 sin t – sin(t)


)
– t sin t –

(
t + t

)
cos t

+ t
(

cos(t) +  cos t


)

=
(
 – t) sin t –  sin(t) +




t cos(t) –
(




t + t
)

cos t

=



t –


,

t +
∞∑

n=

(–)nun(t), (.)
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where

un(t) =
 + n + n + n + (n – ) · n

 · (n + )!
tn+.

Elementary calculations reveal that for  < t < π/ and n ≥ ,

un+(t)
un(t)

=
t( + n + n + n + (n – ) · n)

(n + )(n + )( + n + n + n + (n – ) · n)

<
(π/)

n + 
 + n + n + n + (n – ) · n

(n + )( + n + n + n + (n – ) · n)

<
 + n + n + n + (n – ) · n

(n + )( + n + n + n + (n – ) · n)

and

(n + )
(
 + n + n + n + (n – ) · n)

–
(
 + n + n + n + (n – ) · n)

=
(
n – n + 

)
n + n + n + n – n –  > .

We then obtain, for  < t < π/ and n ≥ ,

un+(t)
un(t)

< .

Hence, for every t ∈ (,π/), the sequence n 	−→ un(t) is strictly decreasing for n ≥ . We
then obtain from (.)

–
t sin t


G′(t) > t

(



–


,

t
)

> ,  < t <
π


,

which implies G′(t) <  for  < t < π/. Hence, G(t) is strictly decreasing for  < t < π/,
and F(x) is strictly decreasing for  < x < . So, we have

 – π

π = lim
t→

F(t) < F(x) =
( x

arcsin x – 
√

 – x) – 
x < lim

t→
F(t) =




for all x ∈ (, ), with the constants / and ( – π)/π being best possible. The proof
is complete. �

Proof of Theorem . By (.), we find that for  < x < ,

(
 – x) –

(
x

arcsl x
– 

)

>
(
 – x) –

(
x

x + 
 x + 

 x
– 

)

=
x(, – ,x – x – x)

( + x + x) .
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Noting that

, – ,t – t – t >  for  < t < ,

we obtain, for  < x < ,

(
 – x) –

(
x

arcsl x
– 

)

> ,

which implies (.).
By (.), we find that for  < x < ,

(
 – x) –

(
x

arctlh x
– 

)

>
(
 – x) –

(
x

x + 
 x + 

 x
– 

)

=
xA(x)

(, + ,x + ,x + ,x) , (.)

where

A(x) =
(
,, – ,,x – ,,x)

+ x(,, – ,,x – ,,x).

Noting that for  < t < ,

,, – ,,t – ,,t > 

and

,, – ,,t – ,,t > ,

we obtain A(x) >  for  < x < . From (.), we obtain (.). The proof is complete. �

Proof of Theorem . The inequality (.) is obtained by considering the function h(x)
defined by

h(x) = arcslh x –
x

 +
√

 + x
, x > .

Differentiation yields

h′(x) =
√

 + x
–

(
√

 + x +  – x)
( +

√
 + x)

√
 + x

.

By an elementary change of variable

t =
√

 + x, x > 
(

or x = 

√
t – 


, t > 

)
, (.)
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we have

√
 + x

–
(

√
 + x +  – x)

( +
√

 + x)
√

 + x

=
√

, + t
+

(t – t – )
t( + t) =

I(t)
t( + t) ,

where

I(t) =
,t + t + t

√
, + t

+ t – t – , t > .

We now prove that

h′(x) > , x > .

It suffices to show that

I(t) > , t > .

Differentiation yields

I ′(t) =
(, + ,t + t + t + t)

( + t)
√

, + t
+ t – ,

I ′′(t) =
(, – ,t – ,t + t + t)

( + t)
√

, + t
+ ,

and

I ′′′(t) =
,(–, – ,t + ,t + t)

( + t)
√

, + t
>  for t > .

Thus, we have, for t > ,

I ′′(t) > I ′′() =  
⇒ I ′(t) > I ′() =  
⇒ I(t) > I() = .

Hence, h′(x) >  holds for x > , and we have

h(x) > h() = , x > .

The proof is complete. �
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