Skip to main content

# Monotonicity and absolute monotonicity for the two-parameter hyperbolic and trigonometric functions with applications

## Abstract

In this paper, we present the monotonicity and absolute monotonicity properties for the two-parameter hyperbolic and trigonometric functions. As applications, we find several complete monotonicity properties for the functions involving the gamma function and provide the bounds for the error function.

## Introduction

Let $$p, q\in\mathbb{R}$$ and $$a, b>0$$ with $$a\neq b$$. Then the Stolarsky mean $$S_{p, q}(a,b)$$ [1] is given by

$$S_{p, q}(a,b)= \textstyle\begin{cases} [\frac{q (a^{p}-b^{p} )}{p (a^{q}-b^{q} )} ]^{1/(p-q)}, &pq(p-q)\neq0, \\ {}[\frac{a^{p}-b^{p}}{p(\log a-\log b)} ]^{1/p}, &p\neq0, q=0, \\ {}[\frac{a^{q}-b^{q}}{q(\log a-\log b)} ]^{1/q}, &p=0, q\neq 0, \\ \exp [\frac{a^{p}\log a-b^{p}\log b}{a^{p}-b^{p}}-\frac{1}{p} ], &p=q\neq0, \\ \sqrt{ab}, &p=q=0. \end{cases}$$

It is well known that $$S_{p, q}(a,b)$$ is continuous and symmetric on the domain $$\{(p, q, a, b): p, q\in\mathbb{R}, a>0, b>0\}$$ and strictly increasing with respect to its parameters $$p, q\in \mathbb{R}$$ for fixed $$a, b>0$$ with $$a\neq b$$. Many bivariate means are particular cases of the Stolarksy mean, and many remarkable inequalities and properties for this mean can be found in the literature [213]. We clearly see that the value $$S_{p,q}(a,b)$$ in the case of $$pq(p-q)=0$$ is the limit of the case of $$pq(p-q)\neq0$$.

Let $$b>a>0$$ and $$t=\log\sqrt{b/a}\in(0, \infty)$$. Then the Stolarsky mean $$S_{p, q}(a,b)$$ can be expressed by a hyperbolic function as follows:

$$S_{p, q}(a,b)=\sqrt{ab}H_{p, q}(t),$$
(1.1)

where

$$H_{p, q}(t)= \textstyle\begin{cases} (\frac{q\sinh(pt)}{p\sinh(qt)} )^{1/(p-q)}, &pq(p-q)\neq0, \\ (\frac{\sinh(pt)}{pt} )^{1/p}, &p\neq0, q=0, \\ (\frac{\sinh(qt)}{qt} )^{1/q}, &p=0, q\neq0, \\ \exp (t\coth(pt)-\frac{1}{p} ), &p=q\neq0, \\ 1, &p=q=0, \end{cases}$$
(1.2)

is the two-parameter hyperbolic sine function [14].

Let $$p, q\in[-2, 2]$$ and $$t\in(0, \pi/2)$$. Then the two-parameter trigonometric sine function $$T_{p, q}(t)$$ [14] is given by

$$T_{p, q}(t)= \textstyle\begin{cases} (\frac{q\sin(pt)}{p\sin(qt)} )^{1/(p-q)}, &pq(p-q)\neq0, \\ (\frac{\sin(pt)}{pt} )^{1/p}, &p\neq0, q=0, \\ (\frac{\sin(qt)}{qt} )^{1/q}, &p=0, q\neq0, \\ \exp (t\cot(pt)-\frac{1}{p} ), &p=q\neq0, \\ 1, &p=q=0. \end{cases}$$
(1.3)

The main purpose of this paper is to deal with the monotonicity of the functions $$t\mapsto[\log H_{p, q}(t)]/t$$ and $$t\mapsto[\log H_{p, q}(t)]/t^{2}$$ on the interval $$(0, \infty)$$ and with the absolute monotonicity of the functions $$t\mapsto\log T_{p, q}(t)$$, $$t\mapsto [\log T_{p, q}(t)]/t$$ and $$t\mapsto[\log T_{p, q}(t)]/t^{2}$$ on the interval $$(0, \pi/2)$$. As applications, we shall present several complete monotonicity properties for the functions involving the gamma function and provide bounds for the error function.

## Main results

### Theorem 2.1

Let $$p, q\in\mathbb{R}$$, $$t>0$$, and $$H_{p, q}(t)$$ be defined by (1.2). Then the function $$t\mapsto[\log H_{p, q}(t)]/t$$ is strictly increasing (decreasing) and strictly concave (convex) from $$(0, \infty)$$ onto $$(0, (p+q)/(|p|+|q|))$$ ($$((p+q)/(|p|+|q|), 0)$$) if $$p+q>0$$ (<0).

### Proof

We only prove the desired result in the case of $$pq(p+q)\neq0$$; the other cases can be derived easily from the continuity and limit values. Let

\begin{aligned}& f_{1}(t)=t \biggl[\frac{p\cosh(pt)}{\sinh(pt)}-\frac{q\cosh(qt)}{\sinh (qt)} \biggr]-\log \sinh\bigl(\vert p\vert t\bigr) \\& \hphantom{f_{1}(t)={}}{}+\log\sinh\bigl(\vert q\vert t\bigr)+\log \vert p\vert -\log{ \vert q\vert }, \\& f_{2}(t)=tf^{\prime}_{1}(t)-2f_{1}(t), \\& F_{1}(u)=\frac{u}{\sinh(u)},\qquad F_{2}(u)= \frac{u^{3}\cosh(u)}{\sinh^{3}(u)}. \end{aligned}

Then elaborated computations lead to

\begin{aligned}& f_{1}\bigl(0^{+}\bigr)=f_{2}\bigl(0^{+} \bigr)=\lim_{t\rightarrow0^{+}}\frac{\log H_{p, q}(t)}{t}=0, \end{aligned}
(2.1)
\begin{aligned}& \log H_{p,q}(t)= \frac{1}{p-q}\log \biggl(\frac{q\sinh(pt)}{p\sinh(qt)} \biggr) =\frac{1}{p-q}\log \biggl(\frac{|q|\sinh(|p|t)}{|p|\sinh(|q|t)} \biggr) \\& \hphantom{\log H_{p,q}(t)}= \frac{|p|-|q|}{p-q}t+\frac{1}{p-q}\log \biggl[ \frac{|q| (1-e^{-2|p|t} )}{|p| (1-e^{-2|q|t} )} \biggr], \\& \lim_{t\rightarrow\infty}\frac{\log H_{p, q}(t)}{t}=\frac{|p|-|q|}{p-q}= \frac{p+q}{|p|+|q|}, \end{aligned}
(2.2)
\begin{aligned}& \biggl[\frac{\log H_{p, q}(t)}{t} \biggr]^{\prime}=\frac{f_{1}(t)}{(p-q)t^{2}}= \frac {p+q}{(|p|+|q|)t^{2}}\times\frac{f_{1}(t)}{|p|-|q|}, \end{aligned}
(2.3)
\begin{aligned}& f^{\prime}_{1}(t)=\frac{1}{t} \biggl[\frac{(qt)^{2}}{\sinh^{2}(qt)}- \frac {(pt)^{2}}{\sinh^{2}(pt)} \biggr], \\& \frac{f^{\prime}_{1}(t)}{|p|-|q|}= \frac {F^{2}_{1}(qt)-F^{2}_{1}(pt)}{(|p|-|q|)t}=\frac {F^{2}_{1}(|qt|)-F^{2}_{1}(|pt|)}{|pt|-|qt|} \\& \hphantom{\frac{f^{\prime}_{1}(t)}{|p|-|q|}} = -\bigl[F_{1}\bigl(|qt|\bigr)+F_{1}\bigl(|pt|\bigr)\bigr] \frac{F_{1}(|qt|)-F_{1}(|pt|)}{|qt|-|pt|}, \end{aligned}
(2.4)
\begin{aligned}& \biggl[\frac{\log H_{p, q}(t)}{t} \biggr]^{\prime\prime}=\frac{f_{2}(t)}{(p-q)t^{3}}= \frac {p+q}{(|p|+|q|)t^{3}}\times\frac{f_{2}(t)}{|p|-|q|}, \end{aligned}
(2.5)
\begin{aligned}& f^{\prime}_{2}(t)=\frac{2}{t} \biggl[\frac{(pt)^{3}\cosh(pt)}{\sinh ^{3}(pt)}- \frac{(qt)^{3}\cosh(qt)}{\sinh^{3}(qt)} \biggr], \\& \frac{f^{\prime}_{2}(t)}{|p|-|q|}=\frac{2[F_{2}(|pt|)-F_{2}(|qt|)]}{|pt|-|qt|}, \end{aligned}
(2.6)
\begin{aligned}& F^{\prime}_{1}(u)=-\frac{\cosh(u)}{\sinh^{2}(u)}\bigl[u-\tanh(u) \bigr]< 0, \end{aligned}
(2.7)
\begin{aligned}& F^{\prime}_{2}(u)=-\frac{3u^{3}}{\sinh^{4}(u)} \biggl[\frac{\sinh (2u)}{2u}- \frac{2+\cosh(2u)}{3} \biggr]< 0 \end{aligned}
(2.8)

for $$u>0$$, where the inequality in (2.8) is the Cusa-type inequality given in [15].

It follows from (2.1), (2.4), and (2.6)-(2.8) that

$$\frac{f_{1}(t)}{|p|-|q|}>0$$
(2.9)

and

$$\frac{f_{2}(t)}{|p|-|q|}< 0$$
(2.10)

for $$t\in(0, \infty)$$.

Therefore, Theorem 2.1 follows easily from (2.1)-(2.3), (2.5), (2.9), and (2.10). □

### Theorem 2.2

Let $$p, q\in\mathbb{R}$$ and $$t>0$$, and let $$H_{p, q}(t)$$ be defined by (1.2). Then the function $$t\mapsto[\log H_{p, q}(t)]/t^{2}$$ is strictly decreasing (increasing) from $$(0, \infty)$$ onto $$(0, (p+q)/6)$$ ($$((p+q)/6, 0)$$) if $$p+q>0$$ (<0).

### Proof

Let $$g_{1}(t)=[\log H_{p, q}(t)]/t$$ and $$g_{2}(t)=t$$. Then we clearly see that

$$\frac{g^{\prime}_{1}(t)}{g^{\prime}_{2}(t)}=g^{\prime}_{1}(t)= \biggl[ \frac{\log H_{p, q}(t)}{t} \biggr]^{\prime},$$
(2.11)

and (2.1) leads

$$\frac{\log H_{p, q}(t)}{t^{2}}=\frac{g_{1}(t)}{g_{2}(t)}=\frac {g_{1}(t)-g_{1}(0^{+})}{g_{2}(t)-g_{2}(0^{+})}.$$
(2.12)

From Theorem 2.1, (2.11), (2.12), and the well-known monotone form of l’Hôpital’s rule [16] we know that the function $$t\mapsto[\log H_{p, q}(t)]/t^{2}$$ is strictly decreasing (increasing) on $$(0, \infty)$$ if $$p+q>0$$ (<0).

It follows from l’Hôpital’s rule and (2.2) that

$$\lim_{t\rightarrow0^{+}}\frac{\log H_{p, q}(t)}{t^{2}}=\frac{p+q}{6} \quad \mbox{and}\quad \lim_{t\rightarrow \infty}\frac{\log H_{p, q}(t)}{t^{2}}=0.$$

□

From (1.1) and Theorem 2.2 we get the following corollary.

### Corollary 2.1

For $$a, b>0$$ with $$a\neq b$$, we have the double inequality

$$\sqrt{ab}< (>)\, S_{p, q}(a,b)< (>)\, \sqrt{ab} e^{\frac{p+q}{24}(\log b-\log a)^{2}}$$

if $$p+q>0$$ (<0).

Letting $$b>a>0$$, $$t=\log\sqrt{b/a}>0$$, and $$(p,q)=(1,0),(1,1),(3/2,1/2)$$ in Corollary 2.1, we get the following corollary.

### Corollary 2.2

We have the inequalities

$$\frac{\sinh(t)}{t}< e^{t^{2}/6},\qquad e^{t\cosh(t)-1}< e^{t^{2}/3}, \qquad \frac{2\cosh(t)+1}{3}< e^{t^{2}/3}$$

for all $$t>0$$.

Next, we recall the definition of absolutely monotonic function [17]. A real-valued function f is said to be absolutely monotonic on the interval I if f has derivatives of all orders on I and

$$f^{(n)}(x)>0$$

for all $$x\in I$$ and $$n\geq0$$.

### Theorem 2.3

Let $$p, q\in[-2, 2]$$ and $$t\in(0, \pi/2)$$, and let $$T_{p, q}(t)$$ be defined by (1.3). Then the functions $$t\rightarrow\log T_{p, q}(t)$$, $$t\rightarrow[\log T_{p, q}(t)]/t$$, and $$t\rightarrow[\log T_{p, q}(t)]/t^{2}$$ are absolutely monotonic on $$(0, \pi/2)$$ if $$p+q<0$$. Moreover, the functions $$t\rightarrow-\log T_{p, q}(t)$$, $$t\rightarrow-[\log T_{p,q}(t)]/t$$, and $$t\rightarrow-[\log T_{p, q}(t)]/t^{2}$$ are absolutely monotonic on $$(0,\pi/2)$$ if $$p+q>0$$.

### Proof

We only prove the desired result in the case of $$pq(p+q)\neq0$$; the other cases can be derived easily from the continuity and limit values.

Let $$i=0,1,2$$. Then from (1.3) and the power series formula

$$\log\frac{\sin(t)}{t}=-\sum_{n=1}^{\infty} \frac{2^{2n-1}|B_{2n}|}{n(2n)!}t^{2n},\quad |t|< \pi,$$

listed in [18], 4.3.71, we get

\begin{aligned}& \log T_{p, q}(t)=\frac{1}{p-q}\log \biggl( \frac{q\sin(pt)}{p\sin(qt)} \biggr)=\frac {1}{p-q}\log \biggl(\frac{|qt|\sin(|pt|)}{|pt|\sin(|qt|)} \biggr) \\& \hphantom{\log T_{p, q}(t)}=-(p+q)t^{2}\sum_{n=1}^{\infty} \frac{2^{2n}|B_{2n}| (p^{2n}-q^{2n} )}{2n(2n)! (p^{2}-q^{2} )}t^{2n-2}, \\& \frac{\log T_{p, q}(t)}{t^{i}}=-(p+q)t^{2-i}\sum_{n=1}^{\infty} \frac{2^{2n}|B_{2n}| (p^{2n}-q^{2n} )}{2n(2n)! (p^{2}-q^{2} )}t^{2n-2}, \end{aligned}
(2.13)

where $$B_{n}$$ are the Bernoulli numbers.

Therefore, Theorem 2.3 follows easily from (2.13). □

Let $$(p,q)=(1,0), (1,1), (3/2,1/2)$$ in Theorem 2.3. Then we immediately get the following corollary.

### Corollary 2.3

We have the inequalities

\begin{aligned}& \biggl(\frac{2}{\pi} \biggr)^{4t^{2}/\pi^{2}}< \frac{\sin (t)}{t}< e^{-t^{2}/6}, \end{aligned}
(2.14)
\begin{aligned}& 1-\frac{4t^{2}}{\pi^{2}}< \frac{t}{\tan(t)}< 1-\frac{t^{2}}{3}, \\& 3^{-4t^{2}/\pi^{2}}< \frac{2\cos(t)+1}{3}< e^{-t^{2}/3} \end{aligned}
(2.15)

for all $$t\in(0,\pi/2)$$.

### Remark 2.1

The second inequality in (2.14) was first proved by Yang [19], and the double inequality (2.15) can be found in [20], which is better than the Redheffer-type inequality in Theorem 3 of [21].

### Remark 2.2

Bhayo and Sándor [22], equation (3.3), presented the double inequality

$$1-\frac{4t^{2}}{\pi^{2}}< \frac{t}{\tan(t)}< \frac{\pi^{2}}{8}- \frac{t^{2}}{2}$$
(2.16)

for all $$t\in(0, \pi/2)$$. The second inequality in (2.16) is better than the second inequality in (2.15) for $$t\in(\sqrt{3\pi^{2}/4-6},\pi/2)$$.

## Applications

Recall that a real-valued function f is said to be completely monotonic [23] on the interval I if f has derivatives of all order on I and

$$(-1)^{n}f^{(n)}(x)\geq0$$

for all $$n\geq0$$ and $$x\in I$$. The set of all completely monotonic functions on I is denoted by $$\operatorname{CM}[I]$$. A positive function f is said to be logarithmically completely monotonic on the interval I if its logarithm logf is completely monotonic on I. The class of all logarithmically completely monotonic functions on I is denoted by $$\operatorname{LCM}[I]$$. The famous Bernstein theorem [17] implies that the function

$$f(x)= \int_{0}^{\infty}e^{-xt}g(t)\, dt$$

is completely monotonic on $$(0, \infty)$$ if and only if $$g(t)\geq0$$ for all $$t\in(0,\infty)$$ if $$g(t)$$ is continuous on $$(0, \infty)$$.

### Theorem 3.1

Let $$s, t, r\in\mathbb{R}$$, $$\rho=\min\{s, t, r\}$$, $$x\in(-\rho, \infty)$$, let $$\Gamma(u)=\int_{0}^{\infty}e^{-t}t^{u-1}\,dt$$ ($$u>0$$) be the gamma function, $$\psi(u)=\Gamma^{\prime}(u)/\Gamma(u)$$ be the psi function, and the function $$x\rightarrow v(s, t, r; x)$$ be defined by

$$v(s, t, r; x)= \textstyle\begin{cases} e^{-\psi(x+r)} [\frac{\Gamma(x+t)}{\Gamma(x+s)} ]^{1/(t-s)}, &t\neq s, \\ e^{-\psi(x+r)}\lim_{t\rightarrow s} [\frac{\Gamma(x+t)}{\Gamma (x+s)} ]^{1/(t-s)}=e^{\psi(x+s)-\psi(x+r)}, &t=s. \end{cases}$$
(3.1)

Then $$v(s, t, r; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ if and only if $$r\leq \min\{s, t\}$$, and $$1/v(s, t, r; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ if and only if $$r\geq(s+t)/2$$.

### Proof

We only prove the desired result in the case of $$t\neq s$$ because the case of $$t=s$$ can be derived easily from the continuity and limit values.

Let $$L(a,b)=(b-a)/(\log b-\log a)$$ be the logarithmic mean of two distinct positive real numbers a and b, $$u>0$$, $$y=|(t-s)u/2|$$, and $$p(s, t, r; u)$$ and $$q(s,t,r;u)$$ be respectively defined by

\begin{aligned}& p(s,t,r;u)=\frac{\log e^{(\rho-r)u}-\log\frac{e^{(\rho-s)u}-e^{(\rho-t)u}}{(t-s)u}}{u}, \\& q(s, t, r; u)=\frac{e^{(\rho-r)u}-\frac{e^{(\rho-s)u}-e^{(\rho-t)u}}{(t-s)u}}{1-e^{-u}}. \end{aligned}

Then we clearly see that

\begin{aligned}& p(s,t,r;u)=-r-\frac{1}{u}\log\frac{e^{-su}-e^{-tu}}{(t-s)u} =-r+\frac{t+s}{2}- \frac{|t-s|}{2} \biggl(\frac{1}{y}\log\frac{\sinh (y)}{y} \biggr), \end{aligned}
(3.2)
\begin{aligned}& q(s, t, r; u)=\frac{u}{1-e^{-u}}L \biggl(e^{(\rho-r)u}, \frac{e^{(\rho-s)u}-e^{(\rho-t)u}}{(t-s)u} \biggr)p(s,t,r; u). \end{aligned}
(3.3)

It follows from (1.2) and Theorem 2.1 that the function $$y\rightarrow[\log(\sinh(y)/y)]/y$$ is strictly increasing from $$(0, \infty)$$ onto $$(0, 1)$$. Then (3.2) leads to the conclusion that

$$\min\{s, t\}-r=-r+\frac{t+s}{2}-\frac{|t-s|}{2}< p(s, t, r; u)< -r+ \frac{t+s}{2}.$$

Therefore,

$$p(s, t, r; u)\geq0$$
(3.4)

for all $$u>0$$ if and only if $$r\leq\min\{s, t\}$$, and

$$p(s, t, r; u)\leq0$$
(3.5)

for all $$u>0$$ if and only if $$r\geq(s+t)/2$$.

From (3.1) and the integral formulas

\begin{aligned}& \log\Gamma(x)= \int_{0}^{\infty}\frac{1}{u} \biggl((x-1)e^{-u}-\frac {e^{-u}-e^{-xu}}{1-e^{-u}} \biggr)\,du, \\& \psi(x)= \int_{0}^{\infty} \biggl(\frac{e^{-u}}{u}- \frac {e^{-xu}}{1-e^{-u}} \biggr)\,du, \end{aligned}

given in [18], 6.1.50, 6.3.21, we get

\begin{aligned} \log v(s,t,r;x)&=\frac{\log\Gamma(x+t)-\log\Gamma(x+x)}{t-s}-\psi (x+r) \\ &= \int_{0}^{\infty}\frac{e^{-xu}}{1-e^{-u}} \biggl[ \frac {e^{-tu}-e^{-su}}{(t-s)u}+e^{-ru} \biggr]\,du \\ &= \int_{0}^{\infty}e^{-(x+\rho)u}q(s, t, r; u)\,du. \end{aligned}
(3.6)

Therefore, Theorem 3.1 follows easily from (3.3)-(3.6) and the Bernstein theorem. □

### Remark 3.1

Qi and Guo [24] gave a sufficient condition for $$v(s, t, r; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ and a necessary and sufficient condition for $$1/v(s, t, r; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ by using different methods.

### Theorem 3.2

Let $$a, b, c\in\mathbb{R}$$, $$\rho=\min\{a, b, c\}$$, $$x\in(-\rho, \infty)$$, and let the function $$x\rightarrow U(a, b, c; x)$$ be defined by

$$U(a, b, c; x)= \textstyle\begin{cases} \frac{1}{x+c} (\frac{\Gamma(x+a)}{\Gamma(x+b)} )^{1/(a-b)},& b\neq a, \\ \lim_{b\rightarrow a}\frac{1}{x+c} (\frac{\Gamma(x+a)}{\Gamma (x+b)} )^{1/(a-b)}=\frac{1}{x+c}e^{\psi(x+a)},& b=a. \end{cases}$$
(3.7)

Then $$U(a, b, c; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ if and only if $$c\leq(a+b-\max\{|a-b|, 1\})/2$$, and $$1/U(a, b, c; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ if and only if $$c\geq(a+b-\min\{|a-b|, 1\})/2$$.

### Proof

We only prove the desired result in the case of $$b\neq a$$ because the case of $$b=a$$ can be derived easily from the continuity and limit values.

We clearly see that $$U(a, b, c; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ if and only if $$-[\log U(a, b, c; x)]^{\prime}\in \operatorname{CM}[(-\rho, \infty)]$$ and that $$1/U(a, b, c; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ if and only if $$[\log U(a, b, c; x)]^{\prime}\in \operatorname{CM}[(-\rho, \infty)]$$.

Let $$t>0$$, $$H_{p,q}(t)$$ be defined by (1.2), and $$p(a, b, c; t)$$ and $$q(a, b, c; t)$$ be respectively defined by

$$p(a, b, c; t)=\frac{\log e^{(\rho-c)t}-\log\frac{e^{(\rho-a)t}-e^{(\rho-b)t}}{(b-a) (1-e^{-t} )}}{t}$$

and

$$q(a, b, c; t)=e^{(\rho-c)t}-\frac{e^{(\rho-a)t}-e^{(\rho-b)t}}{(b-a) (1-e^{-t} )}.$$

Then we clearly see that

\begin{aligned} p(a,b,c;t)=&-c-\frac{1}{t}\log\frac{e^{-at}-e^{-bt}}{(b-a) (1-e^{-t} )} \\ =&\frac{a+b-1}{2}-c-\frac{1}{t}\log \biggl[\frac{\sinh (\vert \frac {(b-a)t}{2}\vert )}{|b-a|\sinh (\frac{t}{2} )} \biggr] \\ =&\frac{a+b-2c-1}{2}-\frac{|b-a|-1}{2}\frac{\log H_{|b-a|,1}(t/2)}{t/2} \end{aligned}
(3.8)

and

$$q(a, b, c; t)=tL \biggl(e^{(\rho-c)t}, \frac{e^{(\rho-a)t}-e^{(\rho-b)t}}{(b-a) (1-e^{-t} )} \biggr)p(a, b, c; t).$$
(3.9)

It follows from Theorem 2.1 and (3.8) that the function $$t\rightarrow p(a, b, c; t)$$ is strictly monotonic on $$(0, \infty)$$ and

$$p\bigl(a, b, c; 0^{+}\bigr)=\frac{a+b-2c}{2},\qquad p(a, b, c; \infty)=\frac{a+b-2c}{2}-\frac{|b-a|-1}{2}.$$
(3.10)

The monotonicity of the function $$t\rightarrow p(a, b, c; t)$$ on the interval $$(0, \infty)$$ and (3.10) lead to the conclusion that

$$p(a, b, c;t)\geq(\leq)\, 0$$
(3.11)

for all $$t\in(0, \infty)$$ if and only if $$\min(\max)\{p(a, b, c; 0^{+}), p(a, b, c; \infty)\}\geq(\leq)\, 0$$, that is, $$c\leq (\geq)\,(a+b-\max(\min)\{|a-b|, 1\})/2$$.

From (3.7) and the formulas

$$\psi(x)= \int_{0}^{\infty} \biggl(\frac{e^{-t}}{t}- \frac {e^{-xt}}{1-e^{-t}} \biggr)\,dt,\qquad \frac{1}{x}= \int_{0}^{\infty}e^{-xt}\,dt$$

we have

\begin{aligned} - \bigl(\log U(a, b, c; x) \bigr)^{\prime}&=\frac{1}{x+c}- \frac{\psi(x+b)-\psi (x+a)}{b-a} \\ &= \int_{0}^{\infty}e^{-(x+c)t}\,dt- \int_{0}^{\infty}\frac {e^{-(x+a)t}-e^{-(x+b)t}}{(b-a) (1-e^{-t} )}\,dt \\ &= \int_{0}^{\infty}e^{-(x+\rho)t}q(a, b, c; t)\,dt. \end{aligned}
(3.12)

Therefore, Theorem 3.2 follows from (3.9), (3.11), (3.12), and the Bernstein theorem. □

### Remark 3.2

Qi [25] presented a sufficient condition for $$U(a, b, c; x)\in \operatorname{LCM}[(-\rho, \infty)]$$ or $$1/U(a, b, c; x)\in \operatorname{LCM}[(-\rho, \infty)]$$.

### Theorem 3.3

Let $$\operatorname {erf}(x)=2\int_{0}^{x}e^{-t^{2}}\,dt/\sqrt{\pi}$$ be the error function. Then we have the double inequality

$$\frac{4}{\sqrt{\pi}}\arctan\frac{2e^{\sqrt{3}x}+1}{\sqrt{3}}+1-2\sqrt {\pi}< \operatorname {erf}(x) < \frac{4}{\sqrt{\pi}}\arctan\frac{2e^{\sqrt{3}x}+1}{\sqrt{3}}-\frac {4\sqrt{\pi}}{3}$$

for all $$x>0$$.

### Proof

It follows from the third inequality in Corollary 2.2 that

$$e^{-u^{2}}-\frac{3}{2\cosh(\sqrt{3}u)+1}< 0$$
(3.13)

for $$u>0$$.

Let

\begin{aligned} F(x)&=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \biggl(e^{-u^{2}}- \frac{3}{2\cosh (\sqrt{3}u)+1} \biggr)\,du \\ &=\operatorname {erf}(x)-\frac{6}{\sqrt{\pi}} \int_{0}^{x}\frac{1}{2\cosh(\sqrt{3}u)+1}\,du. \end{aligned}
(3.14)

Then

$$F(0)=0, \qquad F(\infty)=1-\frac{2\sqrt{\pi}}{3}.$$
(3.15)

It follows from (3.13)-(3.15) that

$$\frac{6}{\sqrt{\pi}} \int_{0}^{x}\frac{1}{2\cosh(\sqrt{3}u)+1}\,du+1- \frac {2\sqrt{\pi}}{3}< \operatorname {erf}(x)< \frac{6}{\sqrt{\pi}} \int_{0}^{x}\frac{1}{2\cosh(\sqrt{3}u)+1}\,du$$
(3.16)

for $$x>0$$.

Therefore, Theorem 3.3 follows easily from (3.16). □

## References

1. Stolarsky, KB: Generalizations of the logarithmic mean. Math. Mag. 48, 87-92 (1975)

2. Leach, EB, Sholander, MC: Extended mean values. Am. Math. Mon. 85(2), 84-90 (1978)

3. Leach, EB, Sholander, MC: Extended mean values II. J. Math. Anal. Appl. 92(1), 207-223 (1983)

4. Qi, F: Logarithmic convexity of the extended mean values. Proc. Am. Math. Soc. 130(6), 1787-1796 (2002)

5. Yang, Z-H: On the homogeneous functions with two parameters and its monotonicity. JIPAM. J. Inequal. Pure Appl. Math. 6(4), Article ID 101 (2005)

6. Yang, Z-H: On the log-convexity of two-parameter homogeneous functions. Math. Inequal. Appl. 10(3), 499-516 (2007)

7. Chu, Y-M, Zhang, X-M: Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave. J. Math. Kyoto Univ. 48(1), 229-238 (2008)

8. Yang, Z-H: On the monotonicity and log-convexity of a four-parameter homogeneous mean. J. Inequal. Appl. 2008, Article ID 149286 (2008)

9. Chu, Y-M, Zhang, X-M, Wang, G-D: The Schur geometrical convexity of the extended mean values. J. Convex Anal. 15(4), 707-718 (2008)

10. Witkowsik, A: Comparison theorem for two-parameter means. Math. Inequal. Appl. 12(1), 11-20 (2009)

11. Yang, Z-H: Hölder, Chebyshev and Minkowski type inequality for Stolarsky means. Int. J. Math. Anal. 4(33-36), 1687-1696 (2010)

12. Xia, W-F, Wang, G-D, Chu, Y-M: Necessary and sufficient conditions for the Schur harmonic convexity or concavity of the extended means. Rev. Unión Mat. Argent. 52(1), 121-132 (2011)

13. Yang, Z-H, Chu, Y-M, Zhang, W: Accurate approximations for the complete elliptic integral of the second kind. J. Math. Anal. Appl. 438(2), 875-888 (2016)

14. Yang, Z-H: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, Article ID 541 (2013)

15. Neuman, E, Sándor, J: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13(4), 715-723 (2010)

16. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Monotonicity rules in calculus. Am. Math. Mon. 113(9), 805-816 (2006)

17. Widder, DV: The Laplace Transform. Princeton University Press, Princeton (1941)

18. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1970)

19. Yang, Z-H: Refinements of a two-sided inequality for trigonometric functions. J. Math. Inequal. 7(4), 601-615 (2013)

20. Yang, Z-H, Jiang, Y-L, Song, Y-Q, Chu, Y-M: Sharp inequalities for trigonometric functions. Abstr. Appl. Anal. 2014, Article ID 601839 (2014)

21. Zhou, L, Sun, J-J: Six new Redheffer-type inequalities for circular and hyperbolic functions. Comput. Math. Appl. 56(2), 522-529 (2008)

22. Bhayo, BA, Sándor, J: On Jordan’s, Redheffer’s and Wilker’s inequality. http://files.ele-math.com/preprints/mia-4389-pre.pdf

23. Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)

24. Qi, F, Guo, B-N: A class of logarithmically completely monotonic functions and the best bounds in the second Kershaw’s double inequality. J. Comput. Appl. Math. 212(2), 444-456 (2008)

25. Qi, F: A class of logarithmically completely monotonic functions and the best bounds in the first Kershaw’s double inequality. J. Comput. Appl. Math. 206(2), 1007-1014 (2007)

Download references

## Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 61374086, 11371125, and 11401191 and by the Natural Science Foundation of Zhejiang Province under Grant LY13A010004.

## Author information

Authors

### Corresponding author

Correspondence to Yu-Ming Chu.

## Additional information

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

## Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

## About this article

### Cite this article

Yang, ZH., Chu, YM. Monotonicity and absolute monotonicity for the two-parameter hyperbolic and trigonometric functions with applications. J Inequal Appl 2016, 200 (2016). https://doi.org/10.1186/s13660-016-1143-8

Download citation

• Received:

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/s13660-016-1143-8

• 33B10
• 33B15
• 33B20
• 26A48
• 26D07

### Keywords

• Stolarsky mean
• hyperbolic function
• trigonometric function
• gamma function
• error function
• complete monotonicity
• absolute monotonicity