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Abstract
In this paper, we present the monotonicity and absolute monotonicity properties for
the two-parameter hyperbolic and trigonometric functions. As applications, we find
several complete monotonicity properties for the functions involving the gamma
function and provide the bounds for the error function.
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1 Introduction
Let p, q ∈R and a, b >  with a �= b. Then the Stolarsky mean Sp,q(a, b) [] is given by

Sp,q(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ q(ap–bp)
p(aq–bq) ]/(p–q), pq(p – q) �= ,

[ ap–bp

p(log a–log b) ]/p, p �= , q = ,

[ aq–bq

q(log a–log b) ]/q, p = , q �= ,

exp[ ap log a–bp log b
ap–bp – 

p ], p = q �= ,
√

ab, p = q = .

It is well known that Sp,q(a, b) is continuous and symmetric on the domain {(p, q, a, b) :
p, q ∈R, a > , b > } and strictly increasing with respect to its parameters p, q ∈R for fixed
a, b >  with a �= b. Many bivariate means are particular cases of the Stolarksy mean, and
many remarkable inequalities and properties for this mean can be found in the literature
[–]. We clearly see that the value Sp,q(a, b) in the case of pq(p – q) =  is the limit of the
case of pq(p – q) �= .

Let b > a >  and t = log
√

b/a ∈ (,∞). Then the Stolarsky mean Sp,q(a, b) can be ex-
pressed by a hyperbolic function as follows:

Sp,q(a, b) =
√

abHp,q(t), (.)
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where

Hp,q(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( q sinh(pt)
p sinh(qt) )/(p–q), pq(p – q) �= ,

( sinh(pt)
pt )/p, p �= , q = ,

( sinh(qt)
qt )/q, p = , q �= ,

exp(t coth(pt) – 
p ), p = q �= ,

, p = q = ,

(.)

is the two-parameter hyperbolic sine function [].
Let p, q ∈ [–, ] and t ∈ (,π/). Then the two-parameter trigonometric sine function

Tp,q(t) [] is given by

Tp,q(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( q sin(pt)
p sin(qt) )/(p–q), pq(p – q) �= ,

( sin(pt)
pt )/p, p �= , q = ,

( sin(qt)
qt )/q, p = , q �= ,

exp(t cot(pt) – 
p ), p = q �= ,

, p = q = .

(.)

The main purpose of this paper is to deal with the monotonicity of the functions
t �→ [log Hp,q(t)]/t and t �→ [log Hp,q(t)]/t on the interval (,∞) and with the absolute
monotonicity of the functions t �→ log Tp,q(t), t �→ [log Tp,q(t)]/t and t �→ [log Tp,q(t)]/t

on the interval (,π/). As applications, we shall present several complete monotonicity
properties for the functions involving the gamma function and provide bounds for the
error function.

2 Main results
Theorem . Let p, q ∈ R, t > , and Hp,q(t) be defined by (.). Then the function t �→
[log Hp,q(t)]/t is strictly increasing (decreasing) and strictly concave (convex) from (,∞)
onto (, (p + q)/(|p| + |q|)) (((p + q)/(|p| + |q|), )) if p + q >  (< ).

Proof We only prove the desired result in the case of pq(p + q) �= ; the other cases can be
derived easily from the continuity and limit values. Let

f(t) = t
[

p cosh(pt)
sinh(pt)

–
q cosh(qt)
sinh(qt)

]

– log sinh
(|p|t)

+ log sinh
(|q|t) + log |p| – log |q|,

f(t) = tf ′
 (t) – f(t),

F(u) =
u

sinh(u)
, F(u) =

u cosh(u)
sinh(u)

.

Then elaborated computations lead to

f
(
+)

= f
(
+)

= lim
t→+

log Hp,q(t)
t

= , (.)
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log Hp,q(t) =


p – q
log

(
q sinh(pt)
p sinh(qt)

)

=


p – q
log

( |q| sinh(|p|t)
|p| sinh(|q|t)

)

=
|p| – |q|

p – q
t +


p – q

log

[ |q|( – e–|p|t)
|p|( – e–|q|t)

]

,

lim
t→∞

log Hp,q(t)
t

=
|p| – |q|

p – q
=

p + q
|p| + |q| , (.)

[
log Hp,q(t)

t

]′
=

f(t)
(p – q)t =

p + q
(|p| + |q|)t × f(t)

|p| – |q| , (.)

f ′
 (t) =


t

[
(qt)

sinh(qt)
–

(pt)

sinh(pt)

]

,

f ′
 (t)

|p| – |q| =
F

 (qt) – F
 (pt)

(|p| – |q|)t =
F

 (|qt|) – F
 (|pt|)

|pt| – |qt|

= –
[
F

(|qt|) + F
(|pt|)]F(|qt|) – F(|pt|)

|qt| – |pt| , (.)

[
log Hp,q(t)

t

]′′
=

f(t)
(p – q)t =

p + q
(|p| + |q|)t × f(t)

|p| – |q| , (.)

f ′
(t) =


t

[
(pt) cosh(pt)

sinh(pt)
–

(qt) cosh(qt)
sinh(qt)

]

,

f ′
(t)

|p| – |q| =
[F(|pt|) – F(|qt|)]

|pt| – |qt| , (.)

F ′
(u) = –

cosh(u)
sinh(u)

[
u – tanh(u)

]
< , (.)

F ′
(u) = –

u

sinh(u)

[
sinh(u)

u
–

 + cosh(u)


]

<  (.)

for u > , where the inequality in (.) is the Cusa-type inequality given in [].
It follows from (.), (.), and (.)-(.) that

f(t)
|p| – |q| >  (.)

and

f(t)
|p| – |q| <  (.)

for t ∈ (,∞).
Therefore, Theorem . follows easily from (.)-(.), (.), (.), and (.). �

Theorem . Let p, q ∈ R and t > , and let Hp,q(t) be defined by (.). Then the function
t �→ [log Hp,q(t)]/t is strictly decreasing (increasing) from (,∞) onto (, (p + q)/) (((p +
q)/, )) if p + q >  (< ).

Proof Let g(t) = [log Hp,q(t)]/t and g(t) = t. Then we clearly see that

g ′
(t)

g ′
(t)

= g ′
(t) =

[
log Hp,q(t)

t

]′
, (.)
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and (.) leads

log Hp,q(t)
t =

g(t)
g(t)

=
g(t) – g(+)
g(t) – g(+)

. (.)

From Theorem ., (.), (.), and the well-known monotone form of l’Hôpital’s rule
[] we know that the function t �→ [log Hp,q(t)]/t is strictly decreasing (increasing) on
(,∞) if p + q >  (< ).

It follows from l’Hôpital’s rule and (.) that

lim
t→+

log Hp,q(t)
t =

p + q


and lim
t→∞

log Hp,q(t)
t = . �

From (.) and Theorem . we get the following corollary.

Corollary . For a, b >  with a �= b, we have the double inequality

√
ab < (>) Sp,q(a, b) < (>)

√
abe

p+q
 (log b–log a)

if p + q >  (< ).

Letting b > a > , t = log
√

b/a > , and (p, q) = (, ), (, ), (/, /) in Corollary ., we
get the following corollary.

Corollary . We have the inequalities

sinh(t)
t

< et/, et cosh(t)– < et/,
 cosh(t) + 


< et/

for all t > .

Next, we recall the definition of absolutely monotonic function []. A real-valued func-
tion f is said to be absolutely monotonic on the interval I if f has derivatives of all orders
on I and

f (n)(x) > 

for all x ∈ I and n ≥ .

Theorem . Let p, q ∈ [–, ] and t ∈ (,π/), and let Tp,q(t) be defined by (.). Then the
functions t → log Tp,q(t), t → [log Tp,q(t)]/t, and t → [log Tp,q(t)]/t are absolutely mono-
tonic on (,π/) if p + q < . Moreover, the functions t → – log Tp,q(t), t → –[log Tp,q(t)]/t,
and t → –[log Tp,q(t)]/t are absolutely monotonic on (,π/) if p + q > .

Proof We only prove the desired result in the case of pq(p + q) �= ; the other cases can be
derived easily from the continuity and limit values.

Let i = , , . Then from (.) and the power series formula

log
sin(t)

t
= –

∞∑

n=

n–|Bn|
n(n)!

tn, |t| < π ,
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listed in [], .., we get

log Tp,q(t) =


p – q
log

(
q sin(pt)
p sin(qt)

)

=


p – q
log

( |qt| sin(|pt|)
|pt| sin(|qt|)

)

= –(p + q)t
∞∑

n=

n|Bn|(pn – qn)
n(n)!(p – q)

tn–,

log Tp,q(t)
ti = –(p + q)t–i

∞∑

n=

n|Bn|(pn – qn)
n(n)!(p – q)

tn–, (.)

where Bn are the Bernoulli numbers.
Therefore, Theorem . follows easily from (.). �

Let (p, q) = (, ), (, ), (/, /) in Theorem .. Then we immediately get the following
corollary.

Corollary . We have the inequalities

(

π

)t/π

<
sin(t)

t
< e–t/, (.)

 –
t

π <
t

tan(t)
<  –

t


, (.)

–t/π
<

 cos(t) + 


< e–t/

for all t ∈ (,π/).

Remark . The second inequality in (.) was first proved by Yang [], and the double
inequality (.) can be found in [], which is better than the Redheffer-type inequality
in Theorem  of [].

Remark . Bhayo and Sándor [], equation (.), presented the double inequality

 –
t

π <
t

tan(t)
<

π


–

t


(.)

for all t ∈ (,π/). The second inequality in (.) is better than the second inequality in
(.) for t ∈ (

√
π/ – ,π/).

3 Applications
Recall that a real-valued function f is said to be completely monotonic [] on the interval
I if f has derivatives of all order on I and

(–)nf (n)(x) ≥ 

for all n ≥  and x ∈ I . The set of all completely monotonic functions on I is denoted by
CM[I]. A positive function f is said to be logarithmically completely monotonic on the
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interval I if its logarithm log f is completely monotonic on I . The class of all logarithmi-
cally completely monotonic functions on I is denoted by LCM[I]. The famous Bernstein
theorem [] implies that the function

f (x) =
∫ ∞


e–xtg(t) dt

is completely monotonic on (,∞) if and only if g(t) ≥  for all t ∈ (,∞) if g(t) is contin-
uous on (,∞).

Theorem . Let s, t, r ∈R, ρ = min{s, t, r}, x ∈ (–ρ,∞), let �(u) =
∫ ∞

 e–ttu– dt (u > ) be
the gamma function, ψ(u) = �′(u)/�(u) be the psi function, and the function x → v(s, t, r; x)
be defined by

v(s, t, r; x) =

⎧
⎨

⎩

e–ψ(x+r)[ �(x+t)
�(x+s) ]/(t–s), t �= s,

e–ψ(x+r) limt→s[ �(x+t)
�(x+s) ]/(t–s) = eψ(x+s)–ψ(x+r), t = s.

(.)

Then v(s, t, r; x) ∈ LCM[(–ρ,∞)] if and only if r ≤ min{s, t}, and /v(s, t, r; x) ∈ LCM[(–ρ,
∞)] if and only if r ≥ (s + t)/.

Proof We only prove the desired result in the case of t �= s because the case of t = s can be
derived easily from the continuity and limit values.

Let L(a, b) = (b – a)/(log b – log a) be the logarithmic mean of two distinct positive real
numbers a and b, u > , y = |(t –s)u/|, and p(s, t, r; u) and q(s, t, r; u) be respectively defined
by

p(s, t, r; u) =
log e(ρ–r)u – log e(ρ–s)u–e(ρ–t)u

(t–s)u

u
,

q(s, t, r; u) =
e(ρ–r)u – e(ρ–s)u–e(ρ–t)u

(t–s)u

 – e–u .

Then we clearly see that

p(s, t, r; u) = –r –

u

log
e–su – e–tu

(t – s)u
= –r +

t + s


–
|t – s|



(

y

log
sinh(y)

y

)

, (.)

q(s, t, r; u) =
u

 – e–u L
(

e(ρ–r)u,
e(ρ–s)u – e(ρ–t)u

(t – s)u

)

p(s, t, r; u). (.)

It follows from (.) and Theorem . that the function y → [log(sinh(y)/y)]/y is strictly
increasing from (,∞) onto (, ). Then (.) leads to the conclusion that

min{s, t} – r = –r +
t + s


–

|t – s|


< p(s, t, r; u) < –r +
t + s


.

Therefore,

p(s, t, r; u) ≥  (.)
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for all u >  if and only if r ≤ min{s, t}, and

p(s, t, r; u) ≤  (.)

for all u >  if and only if r ≥ (s + t)/.
From (.) and the integral formulas

log�(x) =
∫ ∞




u

(

(x – )e–u –
e–u – e–xu

 – e–u

)

du,

ψ(x) =
∫ ∞



(
e–u

u
–

e–xu

 – e–u

)

du,

given in [], .., .., we get

log v(s, t, r; x) =
log�(x + t) – log�(x + x)

t – s
– ψ(x + r)

=
∫ ∞



e–xu

 – e–u

[
e–tu – e–su

(t – s)u
+ e–ru

]

du

=
∫ ∞


e–(x+ρ)uq(s, t, r; u) du. (.)

Therefore, Theorem . follows easily from (.)-(.) and the Bernstein theorem. �

Remark . Qi and Guo [] gave a sufficient condition for v(s, t, r; x) ∈ LCM[(–ρ,∞)]
and a necessary and sufficient condition for /v(s, t, r; x) ∈ LCM[(–ρ,∞)] by using different
methods.

Theorem . Let a, b, c ∈ R, ρ = min{a, b, c}, x ∈ (–ρ,∞), and let the function x →
U(a, b, c; x) be defined by

U(a, b, c; x) =

⎧
⎨

⎩


x+c ( �(x+a)

�(x+b) )/(a–b), b �= a,

limb→a


x+c ( �(x+a)
�(x+b) )/(a–b) = 

x+c eψ(x+a), b = a.
(.)

Then U(a, b, c; x) ∈ LCM[(–ρ,∞)] if and only if c ≤ (a + b – max{|a – b|, })/, and
/U(a, b, c; x) ∈ LCM[(–ρ,∞)] if and only if c ≥ (a + b – min{|a – b|, })/.

Proof We only prove the desired result in the case of b �= a because the case of b = a can
be derived easily from the continuity and limit values.

We clearly see that U(a, b, c; x) ∈ LCM[(–ρ,∞)] if and only if –[log U(a, b, c; x)]′ ∈
CM[(–ρ,∞)] and that /U(a, b, c; x) ∈ LCM[(–ρ,∞)] if and only if [log U(a, b, c; x)]′ ∈
CM[(–ρ,∞)].

Let t > , Hp,q(t) be defined by (.), and p(a, b, c; t) and q(a, b, c; t) be respectively defined
by

p(a, b, c; t) =
log e(ρ–c)t – log e(ρ–a)t–e(ρ–b)t

(b–a)(–e–t )

t
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and

q(a, b, c; t) = e(ρ–c)t –
e(ρ–a)t – e(ρ–b)t

(b – a)( – e–t)
.

Then we clearly see that

p(a, b, c; t) = – c –

t

log
e–at – e–bt

(b – a)( – e–t)

=
a + b – 


– c –


t

log

[
sinh(| (b–a)t

 |)
|b – a| sinh( t

 )

]

=
a + b – c – 


–

|b – a| – 


log H|b–a|,(t/)
t/

(.)

and

q(a, b, c; t) = tL
(

e(ρ–c)t ,
e(ρ–a)t – e(ρ–b)t

(b – a)( – e–t)

)

p(a, b, c; t). (.)

It follows from Theorem . and (.) that the function t → p(a, b, c; t) is strictly mono-
tonic on (,∞) and

p
(
a, b, c; +)

=
a + b – c


, p(a, b, c;∞) =

a + b – c


–
|b – a| – 


. (.)

The monotonicity of the function t → p(a, b, c; t) on the interval (,∞) and (.) lead
to the conclusion that

p(a, b, c; t) ≥ (≤)  (.)

for all t ∈ (,∞) if and only if min(max){p(a, b, c; +), p(a, b, c;∞)} ≥ (≤) , that is, c ≤ (≥)
(a + b – max(min){|a – b|, })/.

From (.) and the formulas

ψ(x) =
∫ ∞



(
e–t

t
–

e–xt

 – e–t

)

dt,

x

=
∫ ∞


e–xt dt

we have

–
(
log U(a, b, c; x)

)′ =


x + c
–

ψ(x + b) – ψ(x + a)
b – a

=
∫ ∞


e–(x+c)t dt –

∫ ∞



e–(x+a)t – e–(x+b)t

(b – a)( – e–t)
dt

=
∫ ∞


e–(x+ρ)tq(a, b, c; t) dt. (.)

Therefore, Theorem . follows from (.), (.), (.), and the Bernstein theorem.
�

Remark . Qi [] presented a sufficient condition for U(a, b, c; x) ∈ LCM[(–ρ,∞)] or
/U(a, b, c; x) ∈ LCM[(–ρ,∞)].
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Theorem . Let erf(x) = 
∫ x

 e–t dt/
√

π be the error function. Then we have the double
inequality

√
π

arctan
e

√
x + √


+  – 

√
π < erf(x) <

√
π

arctan
e

√
x + √


–


√

π



for all x > .

Proof It follows from the third inequality in Corollary . that

e–u
–


 cosh(

√
u) + 

<  (.)

for u > .
Let

F(x) =
√
π

∫ x



(

e–u
–


 cosh(

√
u) + 

)

du

= erf(x) –
√
π

∫ x




 cosh(

√
u) + 

du. (.)

Then

F() = , F(∞) =  –

√

π


. (.)

It follows from (.)-(.) that

√
π

∫ x




 cosh(

√
u) + 

du +  –

√

π


< erf(x) <

√
π

∫ x




 cosh(

√
u) + 

du (.)

for x > .
Therefore, Theorem . follows easily from (.). �
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