Open Access

Improvements of the bounds for Ramanujan constant function

Journal of Inequalities and Applications20162016:196

https://doi.org/10.1186/s13660-016-1140-y

Received: 19 April 2016

Accepted: 2 August 2016

Published: 12 August 2016

Abstract

In the article, we establish several inequalities for the Ramanujan constant function \(R(x)=-2\gamma-\psi(x)-\psi(1-x)\) on the interval \((0, 1/2]\), where \(\psi(x)\) is the classical psi function and \(\gamma=0.577215\cdots\) is the Euler-Mascheroni constant.

Keywords

Ramanujan constant functiongamma functionpsi functionEuler-Mascheroni constant

MSC

33B1526D07

1 Introduction

For \(x>0\), the classical gamma function \(\Gamma(x)\) and the psi function \(\psi(x)\) are, respectively, defined by
$$ \Gamma(x)= \int_{0}^{\infty}t^{x-1}e^{-t}\,dt, \qquad \psi(x)=\frac{\Gamma ^{\prime}(x)}{\Gamma(x)}, $$
they satisfy
$$\begin{aligned}& \Gamma(x+1)=x\Gamma(x),\qquad\psi(x+1)=\psi(x)+\frac{1}{x}, \\& \psi(x)=\sum_{n=0}^{\infty}\frac{x-1}{(n+1)(n+x)}- \gamma, \qquad\psi^{\prime}(x)=\sum_{n=0}^{\infty} \frac{1}{(n+x)^{2}},\qquad\psi^{\prime\prime}(x)=-2\sum _{n=0}^{\infty}\frac{1}{(n+x)^{3}}, \\& \psi(1)=-\gamma,\qquad\psi\biggl(\frac{1}{2} \biggr)=-2\log2-\gamma, \end{aligned}$$
where \(\gamma=\lim_{n\rightarrow\infty} (\sum_{k=1}^{n}1/k-\log n )=0.577215\cdots\) is the Euler-Mascheroni constant.

It is well known that the gamma and psi functions have many applications in the areas of mathematics, physics, and engineering technology. Recently, the bounds for the gamma and psi functions have attracted the interest of many researchers. In particular, many remarkable inequalities for the psi function \(\psi(x)\) can be found in the literature [115].

Let \(x\in(0, 1/2]\). Then the Ramanujan constant function \(R(x)\) [16] is given by
$$ R(x)=-2\gamma-\psi(x)-\psi(1-x). $$
(1.1)
Very recently, Wang et al. [17] proved that the double inequality
$$ \frac{R^{2}(x)}{ (1+x-x^{2} )R(x)-1}< \frac{\pi}{\sin(\pi x)}< \bigl(1+x-x^{2} \bigr)R(x) $$
(1.2)
holds for all \(x\in(0, 1/2]\).

The main purpose of this paper is to improve inequality (1.2).

2 Lemmas

In order to prove our main results we need several lemmas, which we present in this section.

Lemma 2.1

(See [18, 19])

Let \(-\infty< a< b<\infty\), \(f, g: [a, b]\rightarrow\mathbb{R}\) be continuous on \([a, b]\) and differentiable on \((a, b)\), and \(g^{\prime}(x)\neq0\) on \((a, b)\). Then the functions
$$ \frac{f(x)-f(a)}{g(x)-g(a)} $$
and
$$ \frac{f(x)-f(b)}{g(x)-g(b)} $$
both are increasing (decreasing) on \((a, b)\) if \(f^{\prime}(x)/g^{\prime }(x)\) is increasing (decreasing) on \((a, b)\). If \(f^{\prime }(x)/g^{\prime}(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2

(See [20])

The double inequality
$$ \frac{x^{2}+1}{x+1}< \Gamma(x+1)< \frac{x^{2}+2}{x+2} $$
holds for all \(x\in(0, 1)\).

Lemma 2.3

(See [21], Section 3, in the proof of Theorem 5, pp. 2500-2502)

Let \(x\in(0, \pi/2)\), \(k, n\in\mathbb{N}\), the sequence \(\{a_{k}\}_{k=0}^{\infty}\) and function \(F_{n}(x)\) be, respectively, defined by
$$\begin{aligned}& a_{0}=\frac{2}{\pi}, \qquad a_{1}= \frac{1}{\pi^{3}}, \end{aligned}$$
(2.1)
$$\begin{aligned}& a_{k+1}=\frac{2k+1}{2(k+1)\pi^{2}}a_{k}-\frac{1}{16k(k+1)\pi ^{2}}a_{k-1} \quad(k\geq1), \end{aligned}$$
(2.2)
$$\begin{aligned}& F_{n}(x)=\frac{\frac{\sin x}{x}-\sum_{k=0}^{n}a_{k} (\pi ^{2}-4x^{2} )^{k}}{ (\pi^{2}-4x^{2} )^{n+1}}. \end{aligned}$$
(2.3)
Then \(F_{n}(x)\) is strictly decreasing from \((0, \pi/2)\) onto \((a_{n+1}, (1-\sum_{k=0}^{n}a_{k}\pi^{2k})/\pi^{2n+2})\).

Lemma 2.4

Let \(k, n\in\mathbb{N}\), \(\{a_{k}\}_{k=0}^{\infty}\) be defined by (2.1) and (2.2), and \(\{b_{k}\}_{k=0}^{\infty}\) be defined by
$$\begin{aligned}& b_{0}=0, \qquad b_{1}=\frac{1}{4\pi}, \end{aligned}$$
(2.4)
$$\begin{aligned}& b_{k+1}=\frac{2k-1}{2(k+1)\pi^{2}}b_{k}-\frac{1}{16k(k+1)\pi ^{2}}b_{k-1} \quad(k\geq1). \end{aligned}$$
(2.5)
Then \(a_{k}=8(k+1)b_{k+1}\) for all \(k\in\mathbb{N}\).

Proof

We use mathematical induction to prove Lemma 2.4. From (2.1), (2.4), and (2.5) we clearly see that Lemma 2.4 holds for \(k=0\) and \(k=1\).

Suppose that \(k_{0}\geq1\) and
$$ a_{k}=8(k+1)b_{k+1} $$
(2.6)
holds for all \(k\leq k_{0}\). Then it follows from (2.2), (2.5), and (2.6) that
$$\begin{aligned} a_{k_{0}+1}&=\frac{2k_{0}+1}{2(k_{0}+1)\pi^{2}}a_{k_{0}}- \frac {1}{16k_{0}(k_{0}+1)\pi^{2}}a_{k_{0}-1} \\ &=\frac{2k_{0}+1}{2(k_{0}+1)\pi^{2}}\times8(k_{0}+1)b_{k_{0}+1}- \frac {1}{16k_{0}(k_{0}+1)\pi^{2}}\times8k_{0}b_{k_{0}} \\ &=8(k_{0}+2)b_{k_{0}+2}=8\bigl[(k_{0}+1)+1 \bigr]b_{(k_{0}+1)+1}. \end{aligned}$$
(2.7)

Equation (2.7) shows that (2.6) also holds for \(k=k_{0}+1\). Therefore, Lemma 2.4 follows from (2.7) and the induction hypothesis (2.6). □

Lemma 2.5

The double inequality
$$\begin{aligned} &\frac{1}{4\pi} \bigl(\pi^{2}-4x^{2} \bigr)+\frac{1}{16\pi^{3}} \bigl(\pi^{2}-4x^{2} \bigr)^{2} +\frac{12-\pi^{2}}{384\pi^{5}} \bigl(\pi^{2}-4x^{2} \bigr)^{3} \\ &\quad< \cos x < \frac{1}{4\pi} \bigl(\pi^{2}-4x^{2} \bigr)+ \frac{1}{16\pi^{3}} \bigl(\pi^{2}-4x^{2} \bigr)^{2} +\frac{16-5\pi}{16\pi^{6}} \bigl(\pi^{2}-4x^{2} \bigr)^{3} \end{aligned}$$
(2.8)
holds for all \(x\in(0, \pi/2)\).

Proof

Let \(x\in(0, \pi/2)\), \(k, n\in\mathbb{N}\), \(\{a_{k}\} _{k=0}^{\infty}\) and \(\{b_{k}\}_{k=0}^{\infty}\) be, respectively, defined by (2.1), (2.2), (2.4), and (2.5), \(F_{n}(x)\) be defined by (2.3), and \(f_{n}(x)\) and \(g_{n}(x)\) be defined by
$$ f_{n}(x)=\cos x-\sum_{k=0}^{n}b_{k} \bigl(\pi^{2}-4x^{2} \bigr)^{k},\qquad g_{n}(x)= \bigl(\pi^{2}-4x^{2} \bigr)^{n+1}. $$
(2.9)
Then it follows from (2.1)-(2.5), Lemma 2.4, and equation (2.9) that
$$\begin{aligned}& a_{2}=\frac{12-\pi^{2}}{16\pi^{5}},\qquad b_{2}=\frac{1}{16\pi^{3}}, \qquad\frac{f_{2}(0^{+})}{g_{2}(0^{+})}=\frac{1-\sum_{k=0}^{2}b_{k}\pi ^{2k}}{\pi^{6}}=\frac{16-5\pi}{16\pi^{6}}, \end{aligned}$$
(2.10)
$$\begin{aligned}& \frac{f_{n}(0^{+})}{g_{n}(0^{+})}=\frac{1-\sum_{k=0}^{n}b_{k}\pi ^{2k}}{\pi^{2n+2}}, \end{aligned}$$
(2.11)
$$\begin{aligned}& \frac{f_{n}(x)}{g_{n}(x)}=\frac{f_{n}(x)-f_{n} (\frac{\pi}{2} )}{g_{n}(x)-g_{n} (\frac{\pi}{2} )}, \end{aligned}$$
(2.12)
$$\begin{aligned}& \frac{f_{n}^{\prime}(x)}{g_{n}^{\prime}(x)}=\frac{\frac{\sin x}{x}-\sum _{k=0}^{n-1}8(k+1)b_{k+1} (\pi^{2}-4x^{2} )^{k}}{8(n+1) (\pi^{2}-4x^{2} )^{n}}=\frac{F_{n-1}(x)}{8(n+1)}. \end{aligned}$$
(2.13)
From Lemma 2.1, Lemma 2.3, (2.12), and (2.13) we clearly see that
$$ \frac{a_{n}}{8(n+1)}=\lim_{x\rightarrow{\pi/2}^{-}}\frac {f_{n}(x)}{g_{n}(x)}< \frac{f_{n}(x)}{g_{n}(x)}< \lim_{x\rightarrow 0^{+}}\frac{f_{n}(x)}{g_{n}(x)} $$
(2.14)
for all \(x\in(0, \pi/2)\).
Equations (2.9) and (2.11) together with inequality (2.14) lead to the conclusion that
$$ \frac{a_{n}}{8(n+1)}< \frac{\cos x-\sum_{k=0}^{n}b_{k} (\pi ^{2}-4x^{2} )^{k}}{ (\pi^{2}-4x^{2} )^{n+1}} < \frac{1-\sum _{k=0}^{n}b_{k}\pi^{2k}}{\pi^{2n+2}} $$
(2.15)
for all \(x\in(0, \pi/2)\).

Letting \(n=2\), then inequality (2.8) follows easily from (2.4), (2.10), and (2.15). □

Remark 2.1

We clearly see that both the first and the second inequalities in (2.8) become to equations if \(x=\pi/2\). If \(x=0\), then the first inequality of (2.8) also holds and the second inequality of (2.8) becomes to equation.

Lemma 2.6

Let \(n\in\mathbb{N}\) and \(R(x)\) be the Ramanujan constant function given by (1.1). Then the double inequality
$$\begin{aligned} &\sum_{k=0}^{n-1} \frac{2k+1}{(k+x)(k+1-x)}+2\psi(1)-2\psi\biggl(n+\frac {1}{2} \biggr) \\ &\quad\leq R(x) < \sum_{k=0}^{n-1} \frac{2k+1}{(k+x)(k+1-x)}+2\psi(1)-\psi(n)-\psi(n+1) \end{aligned}$$
(2.16)
holds for all \(x\in(0, 1/2]\) and \(n\geq1\).

Proof

Let \(n\in\mathbb{N}\), \(x\in(0, 1/2]\), and
$$ h_{n}(x)=2\psi(1)-\psi(n+x)-\psi(n+1-x). $$
(2.17)
Then (1.1) and (2.17) together with the mean value theorem lead to
$$\begin{aligned}& h_{n}(x)=R(x)-\sum_{k=0}^{n-1} \frac{1}{k+x}-\sum_{k=0}^{n-1} \frac{1}{k+1-x}=R(x)-\sum_{k=0}^{n-1} \frac{2k+1}{(k+x)(k+1-x)}, \end{aligned}$$
(2.18)
$$\begin{aligned}& h^{\prime}_{n}(x)=-\psi^{\prime}(n+x)+\psi^{\prime}(n+1-x)=(1-2x) \psi^{\prime\prime}\bigl[n+x+\theta(1-2x)\bigr]< 0 \end{aligned}$$
(2.19)
for \(x\in(0, 1/2]\), where \(\theta\in(0, 1)\).
It follows from (2.17) and (2.19) that
$$\begin{aligned} 2\psi(1)-2 \psi\biggl(n+\frac{1}{2} \biggr)&=h_{n} \biggl( \frac{1}{2} \biggr)\leq h_{n}(x) < h_{n} \bigl(0^{+}\bigr) =2\psi(1)-\psi(n)-\psi(n+1). \end{aligned}$$
(2.20)
Therefore, Lemma 2.6 follows from (2.18) and (2.20). □

Lemma 2.7

Let \(A(t)\) and \(B(t)\) be defined by
$$\begin{aligned} A(t)=\frac{8 (320t^{3}-1{,}936t^{2}+1{,}292t+945 )^{2}}{3(1-4t)(9-4t)(25-4t) (-1{,}280t^{4}+9{,}728t^{3}-18{,}208t^{2}+8{,}896t+3{,}375 )} \end{aligned}$$
(2.21)
and
$$ B(t)=\frac{236}{3(125-28t)}+\frac{4}{1-4t}-\frac{12}{9-4t}- \frac{4}{25-4t}. $$
(2.22)
Then \(0< A(t)< B(t)\) for \(t\in[0, 1/4)\).

Proof

We clearly see that
$$ A(t)>0,\qquad880t^{2}-6{,}488t+10{,}207>0 $$
(2.23)
and
$$ -1{,}280t^{4}+9{,}728t^{3}-18{,}208t^{2}+8{,}896t+3{,}375>0 $$
(2.24)
for \(t\in[0, 1/4)\).
Therefore, Lemma 2.7 follows from (2.23) and (2.24) together with the elaborated computations result
$$ A(t)-B(t)=- \frac{32t(1-4t) (880t^{2}-6{,}488t+10{,}207 )}{(125-28t) (-1{,}280t^{4}+9{,}728t^{3}-18{,}208t^{2}+8{,}896t+3{,}375 )}. $$
(2.25)
 □

Lemma 2.8

Let \(B(t)\) be defined by (2.22). Then
$$ B(t)< \frac{\pi}{\cos(\sqrt{t}\pi)}. $$
(2.26)
for \(t\in[0, 1/4)\).

Proof

From (2.22) we clearly see that \(B(0)=1{,}176/375=3.136<\pi\), which implies that inequality (2.26) holds for \(t=0\).

Let \(t\in(0, 1/4)\). Then \(\sqrt{t}\pi\in(0, \pi/2)\) and the second inequality in (2.8) leads to
$$ \cos(\sqrt{t} \pi)< \frac{\pi}{4}(1-4t)+\frac{\pi}{16}(1-4t)^{2}+ \frac {16-5\pi}{16}(1-4t)^{3}. $$
(2.27)
It follows from (2.22) and (2.27) that
$$\begin{aligned} &B(t)- \frac{\pi}{\cos(\sqrt{t}\pi)} \\ &\quad< \frac{236}{3(125-28t)}+\frac {4}{1-4t}- \frac{12}{9-4t}- \frac{4}{25-4t} \\ &\qquad{}-\frac{\pi}{\frac{\pi}{4}(1-4t)+\frac{\pi}{16}(1-4t)^{2}+\frac {16-5\pi }{16}(1-4t)^{3}} \\ &\quad=\bigl(4(1-4t) \bigl[(1{,}024-320\pi)t^{3}+(3{,}864\pi -12{,}416)t^{2}+(32{,}128-9{,}750\pi)t \\ &\qquad{}+264{,}600-84{,}375\pi\bigr]\bigr) \\ &\qquad{}/\bigl( 3(9-4t)(25-4t)(125-28t) \bigl[(64-20\pi)t^{2}+(9\pi-32)t+4 \bigr]\bigr). \end{aligned}$$
(2.28)
Note that
$$\begin{aligned}& \frac{(1-4t)}{(9-4t)(25-4t)(125-28t)}>0, \end{aligned}$$
(2.29)
$$\begin{aligned}& (64-20\pi)t^{2}+(9\pi-32)t+4>\frac{9\pi-32}{4}+4= \frac{9\pi-16}{4}>0, \end{aligned}$$
(2.30)
$$\begin{aligned}& (1{,}024-320\pi)t^{3}+(3{,}864\pi-12{,}416)t^{2}+(32{,}128-9{,}750 \pi)t+264{,}600-84{,}375\pi \\& \quad< \frac{1{,}024-320\pi}{64}+\frac{32{,}128-9{,}750\pi}{4}+264{,}600-84{,}375\pi \\& \quad=272{,}648-86{,}817.5\times\pi=-97.2202\cdots \end{aligned}$$
(2.31)
for \(t\in(0, 1/4)\).

Therefore, Lemma 2.8 follows from (2.28)-(2.31). □

3 Main results

Theorem 3.1

Let \(R(x)\) be the Ramanujan constant function given by (1.1) and \(C(x)\) be defined by
$$ C(x)=\frac{2 [320 (\frac{1}{2}-x )^{6}-1{,}936 (\frac {1}{2}-x )^{4}+1{,}292 (\frac{1}{2}-x )^{2}+945 ]}{ 3 [1-4 (\frac{1}{2}-x )^{2} ] [9-4 (\frac {1}{2}-x )^{2} ] [25-4 (\frac{1}{2}-x )^{2} ]}. $$
(3.1)
Then
$$ 4\log2\leq\frac{1}{x(1-x)}-4+4\log2\leq R(x)< C(x) $$
(3.2)
for \(x\in(0, 1/2]\).

Proof

Let \(n=1\), then the first inequality of (2.16) leads
$$\begin{aligned} R(x)&\geq\frac{1}{x(1-x)}+2 \biggl[\psi(1)-\psi\biggl(\frac{3}{2} \biggr) \biggr]=\frac{1}{x(1-x)}+2 \biggl[\psi(1)-\psi\biggl(\frac{1}{2} \biggr)-2 \biggr] \\ &=\frac{1}{x(1-x)}-4+4\log2\geq4\log2 \end{aligned}$$
for \(x\in(0, 1/2]\).
Let \(n=3\) and \(x\in(0, 1/2)\), then (3.1) and the second inequality of (2.16) give
$$\begin{aligned} R(x)&< \sum_{k=0}^{2}\frac{2k+1}{(k+x)(k+1-x)}+2 \psi(1)-\psi(3)-\psi(4) \\ &=\sum_{k=0}^{2}\frac{2k+1}{ (k+\frac{1}{2} )^{2}- (\frac {1}{2}-x )^{2}}+2 \psi(1)-2 \biggl[\psi(1)+\frac{3}{2} \biggr]-\frac{1}{3} \\ &=\frac{1}{\frac{1}{4}- (\frac{1}{2}-x )^{2}}+\frac{3}{\frac {9}{4}- (\frac{1}{2}-x )^{2}} +\frac{5}{\frac{25}{4}- (\frac{1}{2}-x )^{2}}-\frac{10}{3} \\ &=\frac{2 [320 (\frac{1}{2}-x )^{6}-1{,}936 (\frac {1}{2}-x )^{4}+1{,}292 (\frac{1}{2}-x )^{2}+945 ]}{ 3 [1-4 (\frac{1}{2}-x )^{2} ] [9-4 (\frac {1}{2}-x )^{2} ] [25-4 (\frac{1}{2}-x )^{2} ]}=C(x). \end{aligned}$$
If \(x=1/2\), then (1.1) and (3.1) lead to
$$ R \biggl(\frac{1}{2} \biggr)=4\log2=2.7725\cdots< C \biggl( \frac{1}{2} \biggr)=\frac{378}{135}=2.8. $$
 □

Theorem 3.2

Let \(R(x)\) be the Ramanujan constant function, given by (1.1), and the function \(A(t)\) be defined by (2.21). Then the inequality
$$ \frac{R^{2}(x)}{ (1+x-x^{2} )R(x)-1}< A \biggl[ \biggl(\frac {1}{2}-x \biggr)^{2} \biggr] $$
(3.3)
for all \(x\in(0, 1/2]\).

Proof

Let \(C(x)\) be defined by (3.1). Then from (3.2) and \(4\log 2=2.7725\cdots>2\) together with
$$ \frac{\partial[\frac{y}{ (1+x-x^{2} )y-1} ]}{\partial y}=\frac{[x(1-x)y+(y-2)]y}{ [ (1+x-x^{2} )y-1 ]^{2}}>0 $$
for \(y>2\) and \(x\in(0, 1/2]\) we clearly see that
$$ \frac{R^{2}(x)}{ (1+x-x^{2} )R(x)-1}< \frac{C^{2}(x)}{ (1+x-x^{2} )C(x)-1}. $$
(3.4)
for \(x\in(0, 1/2]\).
Elaborated computations give
$$ \frac{C^{2}(x)}{ (1+x-x^{2} )C(x)-1}=A \biggl[ \biggl(\frac {1}{2}-x \biggr)^{2} \biggr]. $$
(3.5)

Therefore, Theorem 3.2 follows from (3.4) and (3.5). □

Theorem 3.3

Let \(R(x)\) be the Ramanujan constant function given by (1.1). Then
$$ R(x)>\frac{\pi}{ (1+x-x^{2} )\sin(\pi x)}+\frac{125\log 2-81}{4 (1+x-x^{2} ) (6+x-x^{2} )} $$
(3.6)
for \(x\in(0, 1/2]\).

Proof

It is well known that
$$ \Gamma(x)\Gamma(1-x)=\frac{\pi}{\sin(\pi x)} $$
(3.7)
for \(x\in(0, 1)\).
It follows from Lemma 2.2 and (3.2) that
$$\begin{aligned} &\frac{\pi}{\sin(\pi x)}- \bigl(1+x-x^{2} \bigr)R(x) \\ &\quad=\Gamma(x)\Gamma(1-x)- \bigl(1+x-x^{2} \bigr)R(x) =\frac{\Gamma(x+1)}{x}\frac{\Gamma[(1-x)+1]}{1-x}- \bigl(1+x-x^{2} \bigr)R(x) \\ &\quad< \frac{x^{2}+2}{x(x+2)}\frac{(1-x)^{2}+2}{(1-x)(3-x)}- \bigl(1+x-x^{2} \bigr) \biggl[\frac{1}{x(1-x)}+4\log2-4 \biggr] \\ &\quad=\frac{4(1-\log2)x(1-x) (7+x-x^{2} )-(24\log2-13)}{6+x-x^{2}} \end{aligned}$$
(3.8)
for \(x\in(0, 1/2]\).
Note that
$$ x(1-x) \bigl(7+x-x^{2} \bigr)\leq\frac{1}{4}\times \frac{29}{4}=\frac{29}{16} $$
(3.9)
for \(x\in(0, 1/2]\).
It follows from (3.8) and (3.9) that
$$ \frac{\pi}{\sin(\pi x)}- \bigl(1+x-x^{2} \bigr)R(x)< -\frac{125\log 2-81}{4 (6+x-x^{2} )} $$
(3.10)
for \(x\in(0, 1/2]\).

Therefore, Theorem 3.3 follows easily from (3.10). □

Corollary 3.1

Let \(R(x)\) be the Ramanujan constant function given by (1.1). Then
$$ R(x)>\frac{\pi}{ (1+x-x^{2} )\sin(\pi x)}+4\log2-\frac {324}{125}=\frac{\pi}{ (1+x-x^{2} )\sin(\pi x)}+0.18058872 \cdots $$
for \(x\in(0, 1/2]\).

Proof

Corollary 3.1 follows easily from (3.6) and
$$ 4 \bigl(1+x-x^{2} \bigr) \bigl(6+x-x^{2} \bigr)\leq4\times \biggl(1+\frac {1}{4} \biggr) \biggl(6+\frac{1}{4} \biggr)= \frac{125}{4} $$
for \(x\in(0, 1/2]\). □

Remark 3.1

Let \(A(t)\) and \(B(t)\) be, respectively, defined by (2.21) and (2.22). Then it follows from Lemmas 2.7 and 2.8 that
$$ A \biggl[ \biggl(\frac{1}{2}-x \biggr)^{2} \biggr]< B \biggl[ \biggl(\frac {1}{2}-x \biggr)^{2} \biggr] < \frac{\pi}{\cos[\pi(\frac{1}{2}-x ) ]}= \frac{\pi }{\sin(\pi x)} $$
for \(x\in(0, 1/2]\).

Therefore, inequality (3.3) is an improvement of the first inequality given by (1.2).

Remark 3.2

We clearly see that inequality (3.6) is an improvement of the second inequality given by (1.2).

Declarations

Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 11371125, 61374086 and 11401191, and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics and Computation Sciences, Hunan City University
(2)
Customer Service Center, State Grid Zhejiang Electric Power Research Institute
(3)
Albert Einstein College of Medicine, Yeshiva University

References

  1. Alzer, H: On some inequalities for the gamma and psi functions. Math. Comput. 66(217), 373-389 (1997) MathSciNetView ArticleMATHGoogle Scholar
  2. Palumbo, B: Determinantal inequalities for the psi function. Math. Inequal. Appl. 2(2), 223-231 (1999) MathSciNetMATHGoogle Scholar
  3. Qiu, S-L, Vuorinen, M: Some properties of the gamma and psi functions, with applications. Math. Comput. 74(250), 723-742 (2005) MathSciNetView ArticleMATHGoogle Scholar
  4. Simić, S: Inequalities for Ψ function. Math. Inequal. Appl. 10(1), 45-48 (2007) MathSciNetMATHGoogle Scholar
  5. Wu, L-L, Chu, Y-M: An inequality for the psi functions. Appl. Math. Sci. 2(9-12), 545-550 (2008) MathSciNetMATHGoogle Scholar
  6. Chu, Y-M, Zhang, X-M, Tang, X-M: An elementary inequality for psi function. Bull. Inst. Math. Acad. Sin. 3(3), 373-380 (2008) MathSciNetMATHGoogle Scholar
  7. Wu, L-L, Chu, Y-M, Tang, X-M: Inequalities for the generalized logarithmic mean and psi functions. Int. J. Pure Appl. Math. 48(1), 117-122 (2008) MathSciNetMATHGoogle Scholar
  8. Chen, C-P, Srivastava, HM: Some inequalities and monotonicity properties associated with the gamma and psi functions and the Barnes G-function. Integral Transforms Spec. Funct. 22(1), 1-15 (2011) MathSciNetView ArticleMATHGoogle Scholar
  9. Mortici, C: Accurate estimates of the gamma function involving the PSI function. Numer. Funct. Anal. Optim. 32(4), 469-476 (2011) MathSciNetView ArticleMATHGoogle Scholar
  10. Batir, N: Sharp bounds for the psi function and harmonic numbers. Math. Inequal. Appl. 14(4), 917-925 (2011) MathSciNetMATHGoogle Scholar
  11. Chen, C-P, Batir, N: Some inequalities and monotonicity properties associated with the gamma and psi function. Appl. Math. Comput. 218(17), 8217-8225 (2012) MathSciNetMATHGoogle Scholar
  12. Guo, B-N, Qi, F: Sharp inequalities for the psi function and harmonic numbers. Analysis 34(2), 201-208 (2014) MathSciNetMATHGoogle Scholar
  13. Elezović, N: Estimations of psi function and harmonic numbers. Appl. Math. Comput. 258, 192-205 (2015) MathSciNetMATHGoogle Scholar
  14. Yang, Z-H, Chu, Y-M, Zhang, X-H: Sharp bounds for psi function. Appl. Math. Comput. 268(17), 1055-1063 (2015) MathSciNetGoogle Scholar
  15. Chen, C-P: Inequalities and asymptotic expansions for the psi function and the Euler-Mascheroni constant. J. Number Theory 163, 596-607 (2016) MathSciNetView ArticleMATHGoogle Scholar
  16. Qiu, S-L, Vuorinen, M: Special functions in geometric function theory. In: Handbook of Complex Analysis: Geometric Function Theory, vol. 2, pp. 621-659. Elsevier, Amsterdam (2005) View ArticleGoogle Scholar
  17. Wang, M-K, Chu, Y-M, Qiu, S-L: Sharp bounds for generalized elliptic integrals of the first kind. J. Math. Anal. Appl. 429(2), 744-757 (2015) MathSciNetView ArticleMATHGoogle Scholar
  18. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATHGoogle Scholar
  19. Anderson, GD, Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Generalized elliptic integrals and modular equations. Pac. J. Math. 192(1), 1-37 (2000) MathSciNetGoogle Scholar
  20. Ivády, P: A note on a gamma function inequality. J. Math. Inequal. 3(3), 227-236 (2009) MathSciNetView ArticleMATHGoogle Scholar
  21. Zhu, L: A general refinement of Jordan-type inequality. Comput. Math. Appl. 55(11), 2498-2505 (2008) MathSciNetView ArticleMATHGoogle Scholar

Copyright

© Chu et al. 2016