Skip to main content

Approximation of functions in Besov space by deferred Cesàro mean

Abstract

In this paper we study the degree of approximation of functions (signals) in a Besov space by trigonometric polynomials using deferred Cesàro mean. We also deduce a few corollaries of our main result and compare them with the existing results.

Introduction

During the last few decades, various investigators such as Alexits [1], Chandra [2, 3], Das et al. [4, 5], Leindler [6, 7], Mittal et al. [810], Mohapatra and Chandra [11], Prössdorf [12], Quade [13], etc. have studied the approximation properties of functions in Lipschitz and Hölder spaces using different summability methods. Here it is difficult to mention all the relevant published research papers in this area. However, some of the well-known results regarding the Lipschitz and Hölder norms are presented in survey papers [1416] in an elegant way. Besov spaces are a much more general tool in describing the smoothness properties of functions and contain a large number of fundamental spaces such as Sobolev spaces, Hölder spaces, Lipschitz spaces, etc. [17]. This has motivated us to work on the degree of approximation of functions in Besov spaces.

We recall a few definitions and some notation from DeVore and Lorentz [18] that are necessary before introducing our results. Let \(C_{2 \pi}:=C[0, 2 \pi]\) denote the Banach space of all 2π-periodic continuous functions (signals) f defined on \([0, 2 \pi]\) under the supremum norm, and \(L_{p}:= L^{p} [0, 2 \pi]:= \{f: [0, 2\pi] \to\mathbb{R}; \int_{0}^{2 \pi} |f(x)|^{p}\,dx < \infty\}\), \(p \ge 1\), be the space of all 2π-periodic integrable functions. The \(L_{p}\)-norm of a function f is defined by

$$ \|f\|_{p} := \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (\frac{1}{2\pi} \int_{0}^{2\pi} |f(x)|^{p}\,dx )^{1/p}, & 1 \le p < \infty, \\ \operatorname{ess} \sup_{0 < x \le2 \pi} |f(x)|, & p=\infty. \end{array}\displaystyle \right . $$

The kth-order modulus of smoothness of a signal \(f \in L_{p}\), \(0 < p \le\infty\), is defined by

$$ \omega_{k}(f, t)_{p} := \sup_{0 < h \le t} \bigl\| \triangle_{h}^{k} (f, \cdot)\bigr\| _{p}, \quad t > 0, $$

where \(\triangle_{h}^{k} (f, x)= \sum_{i=0}^{k} (-1)^{k-i} \bigl ({\scriptsize\begin{matrix}{}k \cr i\end{matrix}} \bigr ) f(x + ih)\), \(k \in\mathbb{N}\). For \(p=\infty\), \(k=1\), and a continuous function f, the modulus of smoothness \(\omega_{k}(f, t)_{p}\) reduces to the well-known modulus of continuity \(\omega(f, t)\), and for \(0 < p <\infty\) and \(k=1\), \(\omega _{k}(f, t)_{p}\) becomes the integral modulus of continuity \(\omega(f, t)_{p}\).

Lipschitz spaces

If a signal \(f \in C_{2 \pi}\) and \(\omega(f, t)= O(t^{\alpha})\), \(0 < \alpha\le1\), then \(f \in\operatorname{Lip} \alpha\). If a signal \(f \in L_{p}\), \(0 < p < \infty\), and \(\omega(f, t)_{p}= O(t^{\alpha})\), \(0 < \alpha\le1\), then \(f \in\operatorname{Lip} (\alpha, p)\). For \(p = \infty\), the class \(\operatorname{Lip} (\alpha, p)\) reduces to the class Lipα.

Let \(\alpha> 0\) be given, and let k denote the smallest integer \(k > \alpha\), that is, \(k=[\alpha]+1\). For \(f \in L_{p}\), if

$$ \omega_{k}(f, t)_{p}= O\bigl(t^{\alpha} \bigr),\quad t > 0, $$
(1.1)

then the signal f belongs to the generalized Lipschitz space \(\operatorname{Lip}^{*} (\alpha, p)\). Then the seminorm is \(|f|_{\operatorname{Lip}^{*}(\alpha, p)} = \sup_{t > 0} (t^{-\alpha} \omega _{k}(f, t)_{p} )\). Thus, \(\operatorname{Lip} (\alpha, p) \subseteq\operatorname{Lip}^{*} (\alpha, p)\).

Hölder spaces

For \(0 < \alpha\le1\), let \(H_{\alpha} = \{f \in C_{2 \pi} : \omega(f, t)= O(t^{\alpha})\}\). It is well known that \(H_{\alpha}\) is a Banach space with norm

$$\|f\|_{\alpha} =\|f\|_{C} + \sup_{t>0} \bigl( t^{-\alpha} \omega(t) \bigr) \quad\mbox{for } 0 < \alpha\le1 \mbox{ and } \|f\|_{0} =\|f\|_{C} , $$

and \(H_{\alpha}\subseteq H_{\beta}\subseteq C_{2 \pi}\) for \(0 < \beta\le \alpha\le1\). The metric induced by the norm \(\|\cdot\|_{\alpha}\) on \(H_{\alpha}\) is called the Hölder metric.

For \(0 < \alpha\le1\) and \(0 < p \le\infty\), let \(H_{\alpha, p}:= H_{\alpha, p}[0, 2\pi] = \{f \in L_{p}: \omega(f, t)_{p} = O(t^{\alpha})\} \) with the norm \(\|\cdot\|_{\alpha, p}\) defined as follows:

$$\|f\|_{\alpha, p} = \|f\|_{p} + \sup_{t>0} \bigl(t^{-\alpha} \omega(f, t)_{p} \bigr) \quad \mbox{for } 0 < \alpha\le1 \mbox{ and } \|f\|_{0, p} =\|f\|_{p}. $$

Then \(H_{\alpha, p}\) is a Banach space for \(p \ge1\) and a complete p-normed space (Maddox [19], p.87) for \(0 < p < 1\). Also, \(H_{\alpha, p} \subseteq H_{\beta, p} \subseteq L_{p}\) for \(0 < \beta\le\alpha\le1\).

Besov space

Let \(\alpha> 0\) be given, and let \(k=[\alpha] +1\). For \(0 < p, q \le \infty\), the Besov space \(B_{q}^{\alpha} (L_{p})\) is the collection of all the signals (2π-periodic functions) \(f \in L_{p}\) such that

$$ |f|_{B_{q}^{\alpha} (L_{p})} :=\bigl\| \omega_{k} (f, \cdot) \bigr\| _{\alpha, q}= \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (\int_{0}^{\pi} [t^{-\alpha} \omega_{k}(f, t)_{p}]^{q} \frac {dt}{t} )^{1/q}, & \mbox{$0 < q < \infty$,} \\ \sup_{t > 0} ( t^{-\alpha} \omega_{k}(f, t)_{p} ), & \mbox{$q=\infty$,} \end{array}\displaystyle \right . $$
(1.2)

is finite (Wojtaszczyk [20], p.237). It is known that (1.2) is a seminorm if \(1 \le p, q \le\infty\) and a quasi-seminorm in other cases (DeVore and Lorentz [18], p.55). The (quasi-)norm for \(B_{q}^{\alpha} (L_{p})\) is

$$ \|f\|_{B_{q}^{\alpha} (L_{p})}:= \|f\|_{p} + |f|_{B_{q}^{\alpha} (L_{p})} = \|f\|_{p} + \bigl\| \omega_{k} (f, \cdot)\bigr\| _{\alpha, q}. $$
(1.3)

Note 1

  1. (i)

    In particular, for \(q = \infty\), \(B_{\infty}^{\alpha} (L_{p}) = \operatorname{Lip}^{*} (\alpha, p)\).

  2. (ii)

    When \(0<\alpha<1\), the space \(B_{\infty}^{\alpha} (L_{p})\) reduces to the space \(H_{\alpha, p}\) (Das et al. [4]).

  3. (iii)

    By taking \(p=\infty=q\) and \(0<\alpha<1\), the Besov space reduces to the space \(H_{\alpha}\) (Prössdorf [12]).

  4. (iv)

    In this paper, we consider the cases where \(p\ge1\) and \(1 < q \le\infty\).

Preliminaries

Deferred Cesàro mean (\(DCM\))

Let \(\sum u_{n}\) be a given infinite series with the sequence of partial sums \(\{s_{n}\}\). The \(DCM\) of sequence \(\{s_{n}\}\) is defined by [21], p.414,

$$ \mathcal{D} (a_{n}, b_{n}; s_{n})= \frac{s_{a_{n}+1}+ s_{a_{n}+2}+ \cdots+ s_{b_{n}}}{b_{n} - a_{n}}, $$
(2.1)

where \(\{a_{n}\}\) and \(\{b_{n}\}\) be sequences of nonnegative integers satisfying

$$ a_{n} < b_{n} \quad \mbox{and} \quad \lim _{n \to\infty} b_{n} = \infty. $$
(2.2)

In the notation of matrix transformation,

$$\mathcal{D} (a_{n}, b_{n}; s_{n})= \sum _{k=0}^{\infty} a_{n, k} s_{k}, \quad \mbox{where } a_{n, k}= \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{1}{b_{n} - a_{n}}, & a_{n} < k \le b_{n}, \\ 0 & \mbox{otherwise}. \end{array}\displaystyle \right . $$

This method is regular [21] under condition (2.2). If \(a_{n} = n-1\) and \(b_{n} = n\), then \(\mathcal{D} (a_{n}, b_{n}; s_{n})\) is the identity transformation, and if \(a_{n} = 0\) and \(b_{n} = n\), then \(\mathcal{D} (a_{n}, b_{n}; s_{n})\) is the Cesàro transformation (of order 1) of \(s_{n}\), that is, \(\sigma_{n}\).

It is known that [21]

$$(C, 1) \subset\mathcal{D}(a_{n}, b_{n}) \quad \mbox{if and only if} \quad \frac{a_{n}}{b_{n} - a_{n}}=O(1). $$

Also, note that

$$ \mathcal{D} (n-1, n+k-1; s_{n})= \sigma_{n, k} = \biggl(1+\frac {n}{k} \biggr) \sigma_{n+k-1} - \frac{n}{k} \sigma_{n-1}, $$
(2.3)

which is called the delayed arithmetic mean (\(DAM\)) of sequence \(\{s_{n}\}\) [22], p.79. Some of its interesting properties can also be found in [22, 23]. Putting \(k=n, 2n, 3n, \ldots\) in (2.3) gives a variety of \(DAM\). For \(k=2n\), \(\sigma_{n, k}\) is called the second-type \(DAM\) [24], p.566.

For a given signal \(f \in L_{p}\), let

$$ s_{n}(f; x)\equiv\frac{a_{0}}{2} + \sum _{k=1}^{n} ( a_{k} \cos kx + b_{k} \sin kx )= \sum_{k=0}^{n} u_{k}(f; x) $$
(2.4)

denote the partial sums, called trigonometric polynomials of degree (or order) n, of the first \((n+1)\) terms of the trigonometric Fourier series of f.

Let \(\mathcal{D}_{n}(f):=\mathcal{D}(a_{n}, b_{n}, s_{n}(f; x))\) denote \(DCM\) of \(s_{n}(f; x)\), again a trigonometric polynomial. Then by ordinary calculations [24], p.568, using (2.1) we get

$$\mathcal{D}_{n}(f) = \frac{1}{2 \pi} \int_{0}^{\pi} \frac{\sin[ ({(b_{n} +a_{n} +2)}/{2} )u] \sin[ ({(b_{n} - a_{n})}/{2} ) u]}{(b_{n} - a_{n}) \sin^{2}(u/2)} \bigl[f(x+u)+f(x-u) \bigr]\,du. $$

Let \(b_{n}=(2j+1) a_{n}+ 2j\), where \(j \in\mathbb{N}\) [24], p.567. Then

$$\mathcal{D}_{n}(f)= \frac{1}{j (a_{n}+1) \pi} \int_{0}^{\pi} \frac{\sin [(j+1)(a_{n}+1)u] \sin[j (a_{n}+1)u]}{4 \sin^{2} (u/2)} \bigl[f(x+u)+f(x-u) \bigr]\,du. $$

Using the identity

$$\frac{2}{j (a_{n}+1) \pi} \int_{0}^{\pi} \frac{\sin[(j+1)(a_{n}+1)u] \sin[j (a_{n}+1)u]}{4 \sin^{2} (u/2)}\,du = 1, $$

we get

$$ l_{n}(x):= \mathcal{D}_{n}(f)-f(x) = \frac{1}{\pi} \int_{0}^{\pi} K_{n}^{\mathcal{D}}(u) \phi_{x}(u)\,du, $$
(2.5)

where

$$\begin{aligned}& K_{n}^{\mathcal{D}}(u) = \frac{2}{j (a_{n}+1)} \frac{\sin [(j+1)(a_{n}+1)u] \sin[j (a_{n}+1)u]}{4 \sin^{2} (u/2)}, \\& \phi_{x}(u)= f(x+u)+f(x-u)-2f(x). \end{aligned}$$

We write

$$\begin{aligned}& \Phi(x, t, u)=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} \phi_{x+t}(u)-\phi_{x}(u), & 0< \alpha< 1, \\ \phi_{x+t}(u)+\phi_{x-t}(u)-2 \phi_{x}(u), & 1 \le\alpha< 2, \end{array}\displaystyle \right . \\& \mathcal{L}_{n}(x, t)=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} l_{n}(x+t) - l_{n}(x), & 0< \alpha< 1, \\ l_{n}(x+t) + l_{n}(x-t)- 2 l_{n}(x), & 1 \le\alpha< 2. \end{array}\displaystyle \right . \end{aligned}$$

By elementary computations we get

$$\mathcal{L}_{n}(x, t) = \frac{1}{\pi} \int_{0}^{\pi} K_{n}^{\mathcal {D}}(u) \Phi(x, t, u)\,du \quad \mbox{and}\quad \omega_{k}(l_{n}, t)_{p} = \bigl\| \mathcal{L}_{n} (\cdot, t)\bigr\| _{p}. $$

We need the following lemmas in the proof of our main result.

Lemma 1

([25])

Let \(1 \le p \le\infty\) and \(0 < \alpha< 2\). If \(f \in L_{p}\), then for \(0 < t, u \le\pi\),

  1. (i)

    \(\|\Phi(\cdot, t, u)\|_{p} \le4 \omega_{k}(f, t)_{p}\),

  2. (ii)

    \(\|\Phi(\cdot, t, u)\|_{p} \le4 \omega_{k}(f, u)_{p}\),

  3. (iii)

    \(\|\phi_{\cdot}(u)\|_{p} \le2 \omega_{k}(f, u)_{p}\),

where \(k=[\alpha]+1\).

In view of our observation [26], p.6, we replace the ordinary kernel \(K_{n}(u)\) by the deferred kernel \(K_{n}^{\mathcal {D}}(u)\) in Lemma 4.2 of [26].

Lemma 2

([25])

Let \(0 \le\beta< \alpha<2\). If \(f \in B^{\alpha}_{q} (L_{p})\), \(p \ge 1\), \(1< q < \infty\), then

$$\begin{aligned}& \begin{aligned}[b] (\mathrm{i})\quad& \int_{0}^{\pi}\bigl|K_{n}^{\mathcal{D}}(u)\bigr| \biggl( \int_{0}^{u} \frac {\|\Phi(\cdot, t, u)\|_{p}^{q}}{t^{\beta q}} \frac{dt}{t} \biggr)^{1/q}\,du \\ &\quad = O(1) \biggl\{ \int_{0}^{\pi} \bigl( u^{\alpha-\beta} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-(1/q)}, \end{aligned}\\& \begin{aligned}[b] (\mathrm{ii})\quad& \int_{0}^{\pi} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \biggl( \int_{u}^{\pi} \frac{\|\Phi(\cdot, t, u)\|_{p}^{q}}{t^{\beta q}} \frac{dt}{t} \biggr)^{1/q}\,du \\ &\quad = O(1) \biggl\{ \int_{0}^{\pi} \bigl( u^{\alpha-\beta +(1/q)} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-(1/q)}. \end{aligned} \end{aligned}$$

The proofs run similarly to that of Lemma 2 of [25], p.22.

Lemma 3

([25])

Let \(0 \le\beta< \alpha<2\). If \(f \in B^{\alpha}_{q} (L_{p})\), \(p \ge 1\), \(q = \infty\), then

$$\sup_{0 < t, u \le\pi} \bigl( t^{-\beta} \bigl\| \Phi(\cdot, t, u) \bigr\| _{p} \bigr) = O \bigl(u^{\alpha-\beta} \bigr). $$

Lemma 4

For \(0 < u < \pi\), \(|K_{n}^{\mathcal{D}}(u)|= {\begin{cases} O(a_{n}+1), \\ O((a_{n}+1)^{-1} u^{-2}). \end{cases}}\)

Proof

In view of [24], p.568, and \(j^{-1}= (a_{n}+1)/(b_{n}-a_{n})=O(1)\), we get

$$\begin{aligned} &\frac{\sin[(j+1)(a_{n}+1)u] \sin[j (a_{n}+1)u]}{4 \sin^{2} (u/2)}=O\bigl((a_{n}+1)^{2}\bigr) \quad \mbox{for } 0< u< \pi \\ &\quad\Rightarrow\quad \bigl|K_{n}^{\mathcal{D}}(u)\bigr| = \biggl\vert \frac{2}{j (a_{n}+1)} \frac{\sin[(j+1)(a_{n}+1)u] \sin[j (a_{n}+1)u]}{4 \sin^{2} (u/2)}\biggr\vert = O(a_{n}+1). \end{aligned}$$

This completes the proof of the first part of Lemma 4.

The proof of the second part follows from the facts that \(|\sin ku|\le 1\) and \(|\sin(u)| \ge2u/\pi\) for \(0 \le u \le\pi/2\). □

Main result and discussion

It is well known that the theory of approximations by trigonometric polynomials, which is originated from a theorem of Weierstrass, has become an exciting interdisciplinary field of study for the past 130 years [9]. These approximations have assumed important new dimensions due to their wide applications in signal analysis [27] in general and in digital signal processing [28] in particular, in view of the classical Shannon sampling theorem [29], p.373.

Recently, Nayak et al. [24, 30] studied the rate of convergence of Fourier series in the generalised Hölder metric by \(DCM\) and second-type \(DAM\). Here we study the degree of approximation of a function in the Besov space by trigonometric polynomials using \(DCM\). We prove the following:

Theorem 1

If \(0 \le\beta< \alpha< 2\) and \(f \in B^{\alpha}_{q} (L_{p})\), \(p \ge 1\), \(1< q \le\infty\), then

$$ \bigl\| l_{n} (\cdot)\bigr\| _{B^{\beta}_{q} (L_{p})} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha-\beta-q^{-1} > 1, \\ (a_{n} +1)^{-\alpha+\beta+q^{-1}}, & \alpha-\beta-q^{-1} < 1,\\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha-\beta -q^{-1} = 1. \end{array}\displaystyle \right . $$
(3.1)

Now we deduce a few corollaries of Theorem 1 for \(DAM\) of second type. If \(j=1\) and \(a_{n}=n-1\), then \(\mathcal{D} (a_{n}, b_{n}; s_{n})\) reduces to \(\sigma_{n, 2n}\), and we obtain the following:

Corollary 1

If \(0 \le\beta< \alpha< 2\) and \(f \in B^{\alpha}_{q} (L_{p})\), \(p \ge 1\), \(1< q \le\infty\), then

$$\bigl\| \sigma_{n, 2n}(f; \cdot)-f(\cdot)\bigr\| _{B^{\beta}_{q} (L_{p})} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} n^{-1}, & \alpha-\beta-q^{-1} > 1, \\ n^{-\alpha+\beta+q^{-1}}, & \alpha-\beta-q^{-1} < 1, \\ n^{-1} [\log(n)]^{1-q^{-1}}, & \alpha-\beta-q^{-1} = 1. \end{array}\displaystyle \right . $$

We note that the estimates in Corollary 1 are similar to that of [31], p.26, for the ordinary Cesàro mean. Now in view of Note 1, we get the following:

Corollary 2

If \(0 \le\beta< \alpha< 2\) and \(f \in\operatorname{Lip}^{*} (\alpha, p)\), \(p \ge1\), then

$$\bigl\| \sigma_{n, 2n}(f; \cdot)-f(\cdot)\bigr\| _{B^{\beta}_{\infty} (L_{p})} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} n^{-1}, & \alpha-\beta> 1, \\ n^{-\alpha+\beta}, & \alpha-\beta< 1, \\ n^{-1} \log n, & \alpha-\beta= 1. \end{array}\displaystyle \right . $$

We further deduce the following results from Corollary 2.

Corollary 3

([24], p.573)

If \(0 \le\beta< \alpha< 1\) and \(f \in H_{\alpha, p}\), \(p \ge1\), then

$$\bigl\| \sigma_{n, 2n}(f; \cdot)-f(\cdot)\bigr\| _{\beta, p} = O \bigl(n^{-\alpha+\beta}\bigr). $$

Taking \(p=\infty\) in Corollary 3, we have the following:

Corollary 4

If \(0 \le\beta< \alpha< 1\) and \(f \in H_{\alpha}\), then

$$\bigl\| \sigma_{n, 2n}(f; \cdot)-f(\cdot)\bigr\| _{\beta} = O \bigl(n^{-\alpha+\beta}\bigr). $$

This result can be compared with that of Prössdorf [12]. For \(\beta=0\), we get the following:

Corollary 5

If \(0 < \alpha< 1\) and \(f \in\operatorname{Lip} (\alpha, p)\), \(p \ge1\), then

$$\bigl\| \sigma_{n, 2n}(f; \cdot)-f(\cdot)\bigr\| _{p} = O \bigl(n^{-\alpha}\bigr). $$

Corollary 6

If \(\alpha= p = 1\), that is, \(f \in\operatorname{Lip} (1, 1)\), then

$$\bigl\| \sigma_{n, 2n}(f; \cdot)-f(\cdot)\bigr\| _{1} = O \bigl(n^{-1} \log n\bigr). $$

We note that the estimates in Corollaries 5 and 6 are analogous to the results of Quade [13].

Proof of main result

The proof of Theorem 1 is divided into two sections.

The proof for \(1 < q < \infty\), \(p\ge1\), \(0\le\beta< \alpha< 2\)

Replacing α by β in (1.3), we have

$$ \bigl\| l_{n}(\cdot)\bigr\| _{B^{\beta}_{q} (L_{p})} = \bigl\| l_{n}( \cdot)\bigr\| _{p} + \bigl\| \omega _{k} (l_{n}, \cdot) \bigr\| _{\beta, q}. $$
(4.1)

Using the generalized Minkowski inequality [22], p.19, and Lemma 1(iii), from (2.5) we have

$$ \bigl\| l_{n}(\cdot)\bigr\| _{p} \le\frac{1}{\pi} \int_{0}^{\pi} \bigl\| \phi_{\cdot }(u) \bigr\| _{p} \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du \le\frac{2}{\pi} \int_{0}^{\pi } \omega_{k}(f, u)_{p} \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du. $$
(4.2)

Using Hölder’s inequality and definition (1.2) of the Besov space, we get

$$\begin{aligned} \bigl\| l_{n}(\cdot)\bigr\| _{p} &\le\frac{2}{\pi} \biggl\{ \int_{0}^{\pi} \bigl(\bigl|K_{n}^{\mathcal{D}}(u)\bigr| u^{\alpha+q^{-1}} \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} \biggl\{ \int_{0}^{\pi} \biggl( \frac{\omega_{k}(f, u)_{p}}{u^{\alpha+q^{-1}}} \biggr)^{q}\,du \biggr\} ^{q^{-1}} \\ &=O(1) \biggl\{ \int_{0}^{\pi} \bigl(\bigl|K_{n}^{\mathcal{D}}(u)\bigr| u^{\alpha +q^{-1}} \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}}, \\ \bigl\| l_{n}(\cdot)\bigr\| _{p} &=O(1) \biggl\{ \biggl( \int_{0}^{\pi/(a_{n}+1)} + \int _{\pi/(a_{n}+1)}^{\pi} \biggr) \bigl(\bigl|K_{n}^{\mathcal{D}}(u)\bigr| u^{\alpha+q^{-1}} \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} \\ &:=O(1)[I+J], \quad\mbox{say}. \end{aligned}$$
(4.3)

By the first part of Lemma 4,

$$\begin{aligned} I&= \biggl\{ \int_{0}^{\pi/(a_{n}+1)} \bigl(\bigl|K_{n}^{\mathcal{D}}(u)\bigr| u^{\alpha+q^{-1}} \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} \\ &=O(a_{n}+1) \biggl\{ \int_{0}^{\pi/(a_{n}+1)} u^{\frac{q}{q-1}(\alpha +q^{-1})}\,du \biggr\} ^{1-q^{-1}} \\ &=O(a_{n}+1) \biggl\{ \int_{0}^{\pi/(a_{n}+1)} u^{\frac{q}{q-1}(\alpha +1)-1}\,du \biggr\} ^{1-q^{-1}} =O\bigl((a_{n}+1)^{-\alpha}\bigr). \end{aligned}$$
(4.4)

Now using the second part of Lemma 4, we have

$$\begin{aligned} J&= \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} \bigl(\bigl|K_{n}^{\mathcal{D}}(u)\bigr| u^{\alpha+q^{-1}} \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} \\ &= O\bigl((a_{n}+1)^{-1}\bigr) \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} u^{\frac {q}{q-1}(\alpha+q^{-1}-2)}\,du \biggr\} ^{1-q^{-1}} \\ &= O\bigl((a_{n}+1)^{-1}\bigr) \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} u^{\frac {q}{q-1}(\alpha-1)-1}\,du \biggr\} ^{1-q^{-1}} \\ &= O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha> 1, \\ (a_{n} +1)^{-\alpha}, & \alpha< 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha= 1. \end{array}\displaystyle \right . \end{aligned}$$
(4.5)

Thus, combining (4.3)-(4.5), we have

$$ \bigl\| l_{n}(\cdot)\bigr\| _{p} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha> 1, \\ (a_{n} +1)^{-\alpha}, & \alpha< 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha= 1. \end{array}\displaystyle \right . $$
(4.6)

By repeated application of the generalized Minkowski inequality as in [26], p.9, and Lemma 2 for the second term on the right-hand side of (4.1) we have

$$\begin{aligned} \bigl\| \omega_{k}(l_{n}, \cdot)\bigr\| _{\beta, q} ={}& \biggl\{ \int_{0}^{\pi} \biggl( \frac{\omega_{k}(l_{n}, t)_{p}}{t^{\beta}} \biggr)^{q} \frac{dt}{t} \biggr\} ^{q^{-1}} = \biggl\{ \int_{0}^{\pi} \biggl( \frac{\|\mathcal {L}_{n}(\cdot, t)\|_{p}}{t^{\beta}} \biggr)^{q} \frac{dt}{t} \biggr\} ^{q^{-1}} \\ \le{}&\frac{1}{\pi} \int_{0}^{\pi} \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du \biggl\{ \int_{0}^{u} \frac{\|\Phi(\cdot, t, u)\|_{p}^{q}}{t^{\beta q}} \frac{dt}{t} \biggr\} ^{q^{-1}} \\ &{}+ \frac{1}{\pi} \int_{0}^{\pi} \bigl|K_{n}^{\mathcal {D}}(u)\bigr|\,du \biggl\{ \int_{u}^{\pi} \frac{\|\Phi(\cdot, t, u)\|_{p}^{q}}{t^{\beta q}} \frac{dt}{t} \biggr\} ^{q^{-1}} \\ &= O(1) \biggl\{ \int_{0}^{\pi} \bigl( u^{\alpha-\beta} \bigl|K_{n}^{\mathcal {D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-(1/q)} \\ &{} + O(1) \biggl\{ \int_{0}^{\pi} \bigl( u^{\alpha-\beta +(1/q)} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-(1/q)} \\ :={}&O(1) (I_{1}+ J_{1}), \quad \mbox{say}, \end{aligned}$$
(4.7)

since \((x+y)^{r} \le x^{r} + y^{r}\) for positive x, y and \(0< r \le 1\) (for \(r=1-q^{-1} < 1\)). Now

$$\begin{aligned} I_{1}={}& \biggl\{ \int_{0}^{\pi} \bigl( u^{\alpha-\beta} \bigl|K_{n}^{\mathcal {D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} \\ \le{}& \biggl\{ \int_{0}^{\pi/(a_{n}+1)} \bigl( u^{\alpha-\beta} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} + \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} \bigl( u^{\alpha -\beta} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} \\ &:=I_{11}+I_{12}, \quad \mbox{say}. \end{aligned}$$
(4.8)

Using the first part of Lemma 4, we have

$$\begin{aligned} I_{11}&= O(a_{n}+1) \biggl\{ \int_{0}^{\pi/(a_{n}+1)} u^{\frac {q}{q-1}(\alpha-\beta)}\,du \biggr\} ^{1-q^{-1}} \\ &=O(a_{n}+1) \biggl\{ \int_{0}^{\pi/(a_{n}+1)} u^{\frac{q}{q-1}(\alpha -\beta+1-(1/q))-1}\,du \biggr\} ^{1-q^{-1}} \\ &= O \bigl((a_{n}+1)^{-\alpha+ \beta+(1/q)} \bigr). \end{aligned}$$
(4.9)

By the second part of Lemma 4 we have

$$\begin{aligned} I_{12}&= O \bigl((a_{n}+1)^{-1}\bigr) \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} u^{\frac {q}{q-1}(\alpha-\beta-2)}\,du \biggr\} ^{1-q^{-1}} \\ &= O\bigl((a_{n}+1)^{-1}\bigr) \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} u^{\frac {q}{q-1}(\alpha-\beta-(1/q)-1)-1}\,du \biggr\} ^{1-q^{-1}} \\ &= O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha- \beta- q^{-1} > 1, \\ (a_{n} +1)^{-\alpha+ \beta+ q^{-1}}, & \alpha- \beta- q^{-1} < 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha- \beta - q^{-1} = 1. \end{array}\displaystyle \right . \end{aligned}$$
(4.10)

Now collecting (4.8)-(4.10) and using a similar argument as in (4.6), we have

$$ I_{1} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha- \beta- q^{-1} > 1, \\ (a_{n} +1)^{-\alpha+ \beta+ q^{-1}}, & \alpha- \beta- q^{-1} < 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha- \beta - q^{-1} = 1. \end{array}\displaystyle \right . $$
(4.11)

Using the earlier argument as in (4.8), we have

$$\begin{aligned} J_{1}={}& \biggl\{ \int_{0}^{\pi} \bigl( u^{\alpha-\beta+(1/q)} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-(1/q)}, \\ J_{1}\le{}& \biggl\{ \int_{0}^{\pi/(a_{n}+1)} \bigl( u^{\alpha-\beta +(1/q)} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} \\ &{} + \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} \bigl( u^{\alpha-\beta+(1/q)} \bigl|K_{n}^{\mathcal{D}}(u)\bigr| \bigr)^{q/(q-1)}\,du \biggr\} ^{1-q^{-1}} \\ &:=J_{11}+J_{12}, \quad \mbox{say}. \end{aligned}$$
(4.12)

By the first part of Lemma 4 we get

$$\begin{aligned} J_{11}&= O(a_{n}+1) \biggl\{ \int_{0}^{\pi/(n+1)} u^{\frac{q}{q-1}(\alpha -\beta+(1/q))}\,du \biggr\} ^{1-q^{-1}} \\ &=O(a_{n}+1) \biggl\{ \int_{0}^{\pi/(a_{n}+1)} u^{\frac{q}{q-1}(\alpha -\beta+1)-1}\,du \biggr\} ^{1-q^{-1}} \\ &= O \biggl(\frac{1}{(a_{n}+1)^{\alpha-\beta}} \biggr). \end{aligned}$$
(4.13)

Using Lemma 4 and computing similarly as in \(I_{12}\), we have

$$\begin{aligned} J_{12}&= O \bigl((a_{n}+1)^{-1}\bigr) \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} u^{\frac {q}{q-1}(\alpha-\beta+(1/q)-2)}\,du \biggr\} ^{1-q^{-1}} \\ &= O\bigl((a_{n}+1)^{-1}\bigr) \biggl\{ \int_{\pi/(a_{n}+1)}^{\pi} u^{\frac {q}{q-1}(\alpha-\beta-1)-1}\,du \biggr\} ^{1-q^{-1}} \\ &= O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha- \beta > 1, \\ (a_{n} +1)^{-\alpha+ \beta}, & \alpha- \beta< 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha- \beta = 1. \end{array}\displaystyle \right . \end{aligned}$$
(4.14)

Now collecting (4.12)-(4.14) and using the earlier argument as in \(I_{1}\), we have

$$ J_{1}= O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha- \beta > 1, \\ (a_{n} +1)^{-\alpha+ \beta}, & \alpha- \beta< 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha- \beta = 1. \end{array}\displaystyle \right . $$
(4.15)

Combining (4.7), (4.11), and (4.15), we get

$$ \bigl\| \omega_{k}(l_{n}, \cdot)\bigr\| _{\beta, q} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha- \beta- q^{-1} > 1, \\ (a_{n} +1)^{-\alpha+ \beta+ q^{-1}}, & \alpha- \beta- q^{-1} < 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha- \beta - q^{-1} = 1. \end{array}\displaystyle \right . $$
(4.16)

From (4.1), (4.6), and (4.16) we have

$$ \bigl\| l_{n} (\cdot)\bigr\| _{B^{\beta}_{q} (L_{p})} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha- \beta- q^{-1} > 1, \\ (a_{n} +1)^{-\alpha+ \beta+ q^{-1}}, & \alpha- \beta- q^{-1} < 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha- \beta - q^{-1} = 1. \end{array}\displaystyle \right . $$
(4.17)

This completes the proof of our Theorem 1 for \(p \ge1\), \(1< q< \infty\), and \(0 \le\beta< \alpha< 2\).

The proof for \(q = \infty\) and \(0\le\beta< \alpha< 2\)

$$ \bigl\| l_{n}(\cdot)\bigr\| _{B^{\beta}_{\infty} (L_{p})} = \bigl\| l_{n}( \cdot)\bigr\| _{p} + \bigl\| \omega_{k} (l_{n}, \cdot) \bigr\| _{\beta, \infty}. $$
(4.18)

Using condition (1.1) in (4.2), we have

$$\begin{aligned} \bigl\| l_{n}(\cdot)\bigr\| _{p} & \le\frac{2}{\pi} \int_{0}^{\pi} {\omega_{k}(f, u)_{p}} \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du \\ &=O(1) \biggl\{ \int_{0}^{\pi/(a_{n}+1)} u^{\alpha} \bigl|K_{n}^{\mathcal {D}}(u)\bigr|\,du + \int_{\pi/(a_{n}+1)}^{\pi} u^{\alpha} \bigl|K_{n}^{\mathcal {D}}(u)\bigr|\,du \biggr\} \\ &:=O(1)[I_{2}+J_{2}], \quad\mbox{say}. \end{aligned}$$
(4.19)

Using Lemma 4, we get

$$\begin{aligned}& I_{2} = \int_{0}^{\pi/(a_{n}+1)} u^{\alpha} \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du =O(a_{n}+1) \int_{0}^{\pi/(a_{n}+1)} u^{\alpha}\,du = O \bigl((a_{n}+1)^{-\alpha}\bigr), \end{aligned}$$
(4.20)
$$\begin{aligned}& \begin{aligned}[b] J_{2} &= \int_{\pi/(n+1)}^{\pi} u^{\alpha} \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du = O\bigl((a_{n}+1)^{-1}\bigr) \int_{\pi/(n+1)}^{\pi} u^{\alpha-2}\,du \\ &= O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha> 1, \\ (a_{n} +1)^{-\alpha}, & \alpha< 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha= 1. \end{array}\displaystyle \right . \end{aligned} \end{aligned}$$
(4.21)

Combining (4.19)-(4.21), we get

$$ \bigl\| l_{n}(\cdot)\bigr\| _{p} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha> 1, \\ (a_{n} +1)^{-\alpha}, & \alpha< 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha= 1. \end{array}\displaystyle \right . $$
(4.22)

Using the generalized Minkowski inequality and Lemma 3, we have

$$\begin{aligned} \bigl\| \omega_{k}(l_{n}, \cdot)\bigr\| _{\beta, \infty} &= \sup_{t >0} \bigl(t^{-\beta} \omega_{k}(l_{n}, t)_{p}\bigr)= \sup_{t >0} \bigl(t^{-\beta} \bigl\| \mathcal {L}_{n}(\cdot, t)\bigr\| _{p}\bigr) \\ &= \sup_{t >0} \biggl[t^{-\beta} \biggl( \frac{1}{2 \pi} \int_{0}^{2 \pi} \biggl\vert \frac{1}{\pi} \int_{0}^{\pi} K_{n}^{\mathcal{D}}(u) \Phi(x, t, u)\,du \biggr\vert ^{p}\,dx \biggr)^{1/p} \biggr] \\ & \le\sup_{t >0} \biggl[ \frac{t^{-\beta}}{\pi} \biggl(\frac{1}{2 \pi } \biggr)^{1/p} \int_{0}^{\pi} \biggl\{ \int_{0}^{2 \pi} \bigl|K_{n}^{\mathcal {D}}(u)\bigr|^{p} \bigl|\Phi(x, t, u)\bigr|^{p}\,dx \biggr\} ^{1/p}\,du \biggr] \\ &= \sup_{t >0} \biggl[\frac{t^{-\beta}}{\pi} \int_{0}^{\pi} \bigl\| \Phi(\cdot , t, u)\bigr\| _{p} \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du \biggr] \\ &= \frac{1}{\pi} \int_{0}^{\pi} \Bigl(\sup_{t >0} t^{-\beta} \bigl\| \Phi (\cdot, t, u)\bigr\| _{p} \Bigr) \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du \\ &= O(1) \int_{0}^{\pi} u^{\alpha-\beta} \bigl|K_{n}(u)\bigr|\,du \\ &= O(1) \biggl[ \int_{0}^{\pi/(a_{n}+1)} u^{\alpha-\beta} \bigl|K_{n}^{\mathcal {D}}(u)\bigr|\,du + \int_{\pi/(a_{n}+1)}^{\pi} u^{\alpha-\beta} \bigl|K_{n}^{\mathcal{D}}(u)\bigr|\,du \biggr] \\ &:= O(1)[I_{3}+J_{3}], \quad\mbox{say}. \end{aligned}$$
(4.23)

Using Lemma 4, we get

$$\begin{aligned}& I_{3} = \int_{0}^{\pi/(a_{n}+1)} u^{\alpha-\beta} \bigl|K_{n}^{\mathcal {D}}(u)\bigr|\,du = O\bigl((a_{n}+1)^{\beta-\alpha}\bigr), \end{aligned}$$
(4.24)
$$\begin{aligned}& \begin{aligned}[b] J_{3} &= \int_{\pi/(a_{n}+1)}^{\pi} u^{\alpha-\beta} \bigl|K_{n}^{\mathcal {D}}(u)\bigr|\,du = O\bigl((a_{n}+1)^{-1}\bigr) \int_{\pi/(a_{n}+1)}^{\pi} u^{\alpha -\beta-2}\,du\\ &= O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha- \beta> 1, \\ (a_{n} +1)^{-\alpha+ \beta}, & \alpha- \beta< 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha- \beta = 1. \end{array}\displaystyle \right . \end{aligned} \end{aligned}$$
(4.25)

Combining (4.23)-(4.25), we have

$$ \bigl\| \omega_{k}(l_{n}, \cdot)\bigr\| _{\beta, \infty} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha- \beta> 1, \\ (a_{n} +1)^{-\alpha+ \beta}, & \alpha- \beta< 1, \\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha- \beta = 1. \end{array}\displaystyle \right . $$
(4.26)

From (4.18), (4.22), and (4.26) we have

$$ \bigl\| l_{n}(\cdot)\bigr\| _{B^{\beta}_{\infty} (L_{p})} = O(1) \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (a_{n} +1)^{-1}, & \alpha-\beta-q^{-1} > 1, \\ (a_{n} +1)^{-\alpha+\beta+q^{-1}}, & \alpha-\beta-q^{-1} < 1,\\ (a_{n} +1)^{-1} [\log(a_{n} +1)]^{1-q^{-1}}, & \alpha-\beta -q^{-1} = 1. \end{array}\displaystyle \right . $$
(4.27)

This completes the proof of Theorem 1 for \(q=\infty\).

Combining Sections 4.1 and 4.2 completes the proof of Theorem 1.

Conclusions

It is known that Besov spaces serve as generalizations of more elementary function spaces and are effective at measuring the smoothness properties of functions. As mentioned by DeVore and Popov [32], p.397,

“There are two definitions of Besov spaces that are currently in use. One uses the Fourier transform, and the second uses the modulus of smoothness of a function f. These two definitions are equivalent only under certain restrictions on the parameters. The Besov spaces defined by the modulus of smoothness occur more naturally in many areas of analysis including approximation theory.”

In this paper we compute the error estimates of a function f in a Besov space by \(DCM\) of partial sums of the trigonometric Fourier series of f. We also deduce a few corollaries of our main result for the second-type \(DAM\) in a Besov space and other function spaces such as Lipschiz and Hölder spaces as particular cases and compare these results with earlier known results.

As in [24], p.574, we have used more general trigonometric polynomials (i.e., the second-type \(DAM\) \(\sigma_{n, 2n}\)) in Corollaries 1-6; however, we can obtain similar estimates using other types of \(DAM\) such as \(D(n-1, (2j+1)n-1)\) (or \(\sigma_{n, 2jn}\)).

Remark 1

Recently, Deǧer and Küçükaslan [33] generalized the concept of \(DCM\) and studied approximation of a function using deferred Nörlund mean/deferred Riesz mean in Hölder metric, which may be the future interest of investigators in this direction.

References

  1. 1.

    Alexits, G: Convergence problems of orthogonal series. Translated from the German by I. Földer. International Series of Monographs in Pure and Applied Mathematics, vol. 20. Pergamon, New York (1961)

    Google Scholar 

  2. 2.

    Chandra, P: On the generalized Fejér means in the metric of Hölder space. Math. Nachr. 109, 39-45 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Chandra, P: Trigonometric approximation of functions in \(L_{p}\)-norm. J. Math. Anal. Appl. 275, 13-26 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Das, G, Ghosh, T, Ray, BK: Degree of approximation by their Fourier series in generalized Hölder metric. Proc. Indian Acad. Sci. Math. Sci. 106, 139-153 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Das, G, Nath, A, Ray, BK: An estimate of the rate of convergence of Fourier series in the generalized Hölder metric. In: Analysis and Applications, pp. 43-60. Narosa, New Delhi (2002)

    Google Scholar 

  6. 6.

    Leindler, L: Trigonometric approximation in \(L_{p}\)-norm. J. Math. Anal. Appl. 302, 129-136 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Leindler, L: A relaxed estimate of the degree of approximation by Fourier series in generalized Hölder metric. Anal. Math. 35(1), 51-60 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Mittal, ML, Rhoades, BE, Mishra, VN, Singh, U: Using infinite matrices to approximate functions of class \(\operatorname{Lip}(\alpha, p)\) using trigonometric polynomials. J. Math. Anal. Appl. 326(1), 667-676 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Mittal, ML, Rhoades, BE, Sonker, S, Singh, U: Approximation of signals of class \(\operatorname{Lip}(\alpha,p)\) by linear operators. Appl. Math. Comput. 217(9), 4483-4489 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Mittal, ML, Singh, MV: Approximation of signals (functions) by trigonometric polynomials in \(L_{p}\)-norm. Int. J. Math. Math. Sci. 2014, Article ID 267383 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Mohapatra, RN, Chandra, P: Degree of approximation of functions in the Hölder metric. Acta Math. Hung. 41(1-2), 67-76 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Prössdorf, S: Zur Konvergenz der Fourierreihen Hölder stetiger Funktionen. Math. Nachr. 69, 7-14 (1975)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Quade, ES: Trigonometric approximation in the mean. Duke Math. J. 3(3), 529-543 (1937)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Bustamante, J, Jiménez, MA: Trends in Hölder approximation. In: Approximation, Optimization and Mathematical Economics (Pointe-ã-Pitre, 1999), pp. 81-95. Springer, Berlin (2001)

    Google Scholar 

  15. 15.

    Chandra, P: Degree of approximation of functions in the Hölder metric. In: Fourier Analysis, Approximation Theory and Applications, Aligarh, 1993, pp. 37-51. New Age International Publishers, New Delhi (1997)

    Google Scholar 

  16. 16.

    Holland, ASB: A survey of degree of approximation of continuous functions. SIAM Rev. 23(3), 344-379 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Triebel, H: Theory of Function Spaces. Reprint of 1983 edition. Birkhäuser/Springer, Basel (2010)

    Google Scholar 

  18. 18.

    DeVore, RA, Lorentz, GG: Constructive Approximation. Springer, New York (1993)

    Google Scholar 

  19. 19.

    Maddox, IJ: Elements of Functional Analysis. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  20. 20.

    Wojtaszczyk, P: A Mathematical Introduction to Wavelets. London Mathematical Society Student Texts, vol. 37. Cambridge University Press, New York (1997)

    Google Scholar 

  21. 21.

    Agnew, RP: On deferred Cesàro means. Ann. Math. (2) 33(3), 413-421 (1932)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Zygmund, A: Trigonometric Series. Vols. I, II. Reprint of the 1979 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  23. 23.

    Stein, EM, Shakarchi, R: Fourier Analysis. Princeton Lectures in Analysis, vol. 1. Princeton University Press, Princeton (2003)

    Google Scholar 

  24. 24.

    Nayak, L, Das, G, Ray, BK: An estimate of the rate of convergence of Fourier series in the generalized Hölder metric by deferred Cesàro mean. J. Math. Anal. Appl. 420(1), 563-575 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Mohanty, H, Das, G, Ray, BK: Degree of approximation of Fourier series of functions in Besov space by \((N, p_{n})\) mean. J. Orissa Math. Soc. 30(2), 13-34 (2011)

    MathSciNet  Google Scholar 

  26. 26.

    Mittal, ML, Singh, MV: Degree of approximation of signals (functions) in Besov space using linear operators. Asian-Eur. J. Math. 9(1), Article ID 1650009 (2016). doi:10.1142/S1793557116500091

    MathSciNet  Article  Google Scholar 

  27. 27.

    Proakis, JG: Digital Communications. McGraw-Hill, New York (1995)

    Google Scholar 

  28. 28.

    Psarakis, EZ, Moustakides, GV: An \(L_{2}\)-based method for the design of 1-D zero phase FIR digital filters. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44(7), 591-601 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Bachman, G, Narici, L, Beckenstein, E: Fourier and Wavelet Analysis. Springer, New York (2000)

    Google Scholar 

  30. 30.

    Nayak, L, Das, G, Ray, BK: An estimate of the rate of convergence of the Fourier series in the generalized Hölder metric by delayed arithmetic mean. Int. J. Anal. 2014, Article ID 171675 (2014)

    MathSciNet  Google Scholar 

  31. 31.

    Mohanty, H: Some aspects of measure of approximation. Ph.D. Thesis, Utkal University, Odisha, India (2012)

  32. 32.

    DeVore, RA, Popov, VA: Interpolation of Besov spaces. Trans. Am. Math. Soc. 305(1), 397-414 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Deǧer, U, Küçükaslan, M: A generalization of deferred Cesáro means and some of their applications. J. Inequal. Appl. 2015, Article ID 14 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author is thankful to Ministry of Human Resource Development, India, for financial support to carry out this research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mradul Veer Singh.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors contributed equally and significantly in writing this paper. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, M.V., Mittal, M.L. Approximation of functions in Besov space by deferred Cesàro mean. J Inequal Appl 2016, 118 (2016). https://doi.org/10.1186/s13660-016-1060-x

Download citation

MSC

  • 42A10
  • 42A25
  • 40C05

Keywords

  • Besov space
  • degree of approximation
  • deferred Cesàro mean