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1 Introduction
During the last few decades, various investigators such as Alexits [], Chandra [, ], Das
et al. [, ], Leindler [, ], Mittal et al. [–], Mohapatra and Chandra [], Prössdorf
[], Quade [], etc. have studied the approximation properties of functions in Lipschitz
and Hölder spaces using different summability methods. Here it is difficult to mention
all the relevant published research papers in this area. However, some of the well-known
results regarding the Lipschitz and Hölder norms are presented in survey papers [–]
in an elegant way. Besov spaces are a much more general tool in describing the smoothness
properties of functions and contain a large number of fundamental spaces such as Sobolev
spaces, Hölder spaces, Lipschitz spaces, etc. []. This has motivated us to work on the
degree of approximation of functions in Besov spaces.

We recall a few definitions and some notation from DeVore and Lorentz [] that are
necessary before introducing our results. Let Cπ := C[, π ] denote the Banach space of
all π-periodic continuous functions (signals) f defined on [, π ] under the supremum
norm, and Lp := Lp[, π ] := {f : [, π ] →R;

∫ π

 |f (x)|p dx < ∞}, p ≥ , be the space of all
π-periodic integrable functions. The Lp-norm of a function f is defined by

‖f ‖p :=

{
( 

π

∫ π

 |f (x)|p dx)/p,  ≤ p < ∞,
ess sup<x≤π |f (x)|, p = ∞.

The kth-order modulus of smoothness of a signal f ∈ Lp,  < p ≤ ∞, is defined by

ωk(f , t)p := sup
<h≤t

∥
∥�k

h(f , ·)∥∥p, t > ,

where �k
h(f , x) =

∑k
i=(–)k–i( k

i

)
f (x + ih), k ∈ N. For p = ∞, k = , and a continuous func-

tion f , the modulus of smoothness ωk(f , t)p reduces to the well-known modulus of conti-
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nuity ω(f , t), and for  < p < ∞ and k = , ωk(f , t)p becomes the integral modulus of conti-
nuity ω(f , t)p.

Lipschitz spaces If a signal f ∈ Cπ and ω(f , t) = O(tα),  < α ≤ , then f ∈ Lipα. If a
signal f ∈ Lp,  < p < ∞, and ω(f , t)p = O(tα) ,  < α ≤ , then f ∈ Lip(α, p). For p = ∞, the
class Lip(α, p) reduces to the class Lipα.

Let α >  be given, and let k denote the smallest integer k > α, that is, k = [α] + . For
f ∈ Lp, if

ωk(f , t)p = O
(
tα

)
, t > , (.)

then the signal f belongs to the generalized Lipschitz space Lip∗(α, p). Then the seminorm
is |f |Lip∗(α,p) = supt>(t–αωk(f , t)p). Thus, Lip(α, p) ⊆ Lip∗(α, p).

Hölder spaces For  < α ≤ , let Hα = {f ∈ Cπ : ω(f , t) = O(tα)}. It is well known that Hα

is a Banach space with norm

‖f ‖α = ‖f ‖C + sup
t>

(
t–αω(t)

)
for  < α ≤  and ‖f ‖ = ‖f ‖C ,

and Hα ⊆ Hβ ⊆ Cπ for  < β ≤ α ≤ . The metric induced by the norm ‖ · ‖α on Hα is
called the Hölder metric.

For  < α ≤  and  < p ≤ ∞, let Hα,p := Hα,p[, π ] = {f ∈ Lp : ω(f , t)p = O(tα)} with the
norm ‖ · ‖α,p defined as follows:

‖f ‖α,p = ‖f ‖p + sup
t>

(
t–αω(f , t)p

)
for  < α ≤  and ‖f ‖,p = ‖f ‖p.

Then Hα,p is a Banach space for p ≥  and a complete p-normed space (Maddox [], p.)
for  < p < . Also, Hα,p ⊆ Hβ ,p ⊆ Lp for  < β ≤ α ≤ .

Besov space Let α >  be given, and let k = [α] + . For  < p, q ≤ ∞, the Besov space
Bα

q (Lp) is the collection of all the signals (π-periodic functions) f ∈ Lp such that

|f |Bα
q (Lp) :=

∥
∥ωk(f , ·)∥∥

α,q =

{
(
∫ π

 [t–αωk(f , t)p]q dt
t )/q,  < q < ∞,

supt>(t–αωk(f , t)p), q = ∞,
(.)

is finite (Wojtaszczyk [], p.). It is known that (.) is a seminorm if  ≤ p, q ≤ ∞ and
a quasi-seminorm in other cases (DeVore and Lorentz [], p.). The (quasi-)norm for
Bα

q (Lp) is

‖f ‖Bα
q (Lp) := ‖f ‖p + |f |Bα

q (Lp) = ‖f ‖p +
∥
∥ωk(f , ·)∥∥

α,q. (.)

Note 
(i) In particular, for q = ∞, Bα∞(Lp) = Lip∗(α, p).

(ii) When  < α < , the space Bα∞(Lp) reduces to the space Hα,p (Das et al. []).
(iii) By taking p = ∞ = q and  < α < , the Besov space reduces to the space Hα

(Prössdorf []).
(iv) In this paper, we consider the cases where p ≥  and  < q ≤ ∞.
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2 Preliminaries
Deferred Cesàro mean (DCM) Let

∑
un be a given infinite series with the sequence of

partial sums {sn}. The DCM of sequence {sn} is defined by [], p.,

D(an, bn; sn) =
san+ + san+ + · · · + sbn

bn – an
, (.)

where {an} and {bn} be sequences of nonnegative integers satisfying

an < bn and lim
n→∞ bn = ∞. (.)

In the notation of matrix transformation,

D(an, bn; sn) =
∞∑

k=

an,ksk , where an,k =

{


bn–an
, an < k ≤ bn,

 otherwise.

This method is regular [] under condition (.). If an = n– and bn = n, then D(an, bn; sn)
is the identity transformation, and if an =  and bn = n, then D(an, bn; sn) is the Cesàro
transformation (of order ) of sn, that is, σn.

It is known that []

(C, ) ⊂D(an, bn) if and only if
an

bn – an
= O().

Also, note that

D(n – , n + k – ; sn) = σn,k =
(

 +
n
k

)

σn+k– –
n
k
σn–, (.)

which is called the delayed arithmetic mean (DAM) of sequence {sn} [], p.. Some of its
interesting properties can also be found in [, ]. Putting k = n, n, n, . . . in (.) gives
a variety of DAM. For k = n, σn,k is called the second-type DAM [], p..

For a given signal f ∈ Lp, let

sn(f ; x) ≡ a


+

n∑

k=

(ak cos kx + bk sin kx) =
n∑

k=

uk(f ; x) (.)

denote the partial sums, called trigonometric polynomials of degree (or order) n, of the
first (n + ) terms of the trigonometric Fourier series of f .

Let Dn(f ) := D(an, bn, sn(f ; x)) denote DCM of sn(f ; x), again a trigonometric polynomial.
Then by ordinary calculations [], p., using (.) we get

Dn(f ) =


π

∫ π



sin[((bn + an + )/)u] sin[((bn – an)/)u]
(bn – an) sin(u/)

[
f (x + u) + f (x – u)

]
du.

Let bn = (j + )an + j, where j ∈N [], p.. Then

Dn(f ) =


j(an + )π

∫ π



sin[(j + )(an + )u] sin[j(an + )u]
 sin(u/)

[
f (x + u) + f (x – u)

]
du.
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Using the identity


j(an + )π

∫ π



sin[(j + )(an + )u] sin[j(an + )u]
 sin(u/)

du = ,

we get

ln(x) := Dn(f ) – f (x) =

π

∫ π


KD

n (u)φx(u) du, (.)

where

KD
n (u) =


j(an + )

sin[(j + )(an + )u] sin[j(an + )u]
 sin(u/)

,

φx(u) = f (x + u) + f (x – u) – f (x).

We write

�(x, t, u) =

{
φx+t(u) – φx(u),  < α < ,
φx+t(u) + φx–t(u) – φx(u),  ≤ α < ,

Ln(x, t) =

{
ln(x + t) – ln(x),  < α < ,
ln(x + t) + ln(x – t) – ln(x),  ≤ α < .

By elementary computations we get

Ln(x, t) =

π

∫ π


KD

n (u)�(x, t, u) du and ωk(ln, t)p =
∥
∥Ln(·, t)

∥
∥

p.

We need the following lemmas in the proof of our main result.

Lemma  ([]) Let  ≤ p ≤ ∞ and  < α < . If f ∈ Lp, then for  < t, u ≤ π ,
(i) ‖�(·, t, u)‖p ≤ ωk(f , t)p,

(ii) ‖�(·, t, u)‖p ≤ ωk(f , u)p,
(iii) ‖φ·(u)‖p ≤ ωk(f , u)p,

where k = [α] + .

In view of our observation [], p., we replace the ordinary kernel Kn(u) by the deferred
kernel KD

n (u) in Lemma . of [].

Lemma  ([]) Let  ≤ β < α < . If f ∈ Bα
q (Lp), p ≥ ,  < q < ∞, then

(i)
∫ π



∣
∣KD

n (u)
∣
∣
(∫ u



‖�(·, t, u)‖q
p

tβq
dt
t

)/q

du

= O()
{∫ π



(
uα–β

∣
∣KD

n (u)
∣
∣
)q/(q–) du

}–(/q)

,

(ii)
∫ π



∣
∣KD

n (u)
∣
∣
(∫ π

u

‖�(·, t, u)‖q
p

tβq
dt
t

)/q

du

= O()
{∫ π



(
uα–β+(/q)∣∣KD

n (u)
∣
∣)q/(q–) du

}–(/q)

.
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The proofs run similarly to that of Lemma  of [], p..

Lemma  ([]) Let  ≤ β < α < . If f ∈ Bα
q (Lp), p ≥ , q = ∞, then

sup
<t,u≤π

(
t–β

∥
∥�(·, t, u)

∥
∥

p

)
= O

(
uα–β

)
.

Lemma  For  < u < π , |KD
n (u)| =

{
O(an + ),
O((an + )–u–).

Proof In view of [], p., and j– = (an + )/(bn – an) = O(), we get

sin[(j + )(an + )u] sin[j(an + )u]
 sin(u/)

= O
(
(an + )) for  < u < π

⇒ ∣
∣KD

n (u)
∣
∣ =

∣
∣
∣
∣


j(an + )

sin[(j + )(an + )u] sin[j(an + )u]
 sin(u/)

∣
∣
∣
∣ = O(an + ).

This completes the proof of the first part of Lemma .
The proof of the second part follows from the facts that | sin ku| ≤  and | sin(u)| ≥ u/π

for  ≤ u ≤ π/. �

3 Main result and discussion
It is well known that the theory of approximations by trigonometric polynomials, which is
originated from a theorem of Weierstrass, has become an exciting interdisciplinary field
of study for the past  years []. These approximations have assumed important new
dimensions due to their wide applications in signal analysis [] in general and in digital
signal processing [] in particular, in view of the classical Shannon sampling theorem
[], p..

Recently, Nayak et al. [, ] studied the rate of convergence of Fourier series in the
generalised Hölder metric by DCM and second-type DAM. Here we study the degree of
approximation of a function in the Besov space by trigonometric polynomials using DCM.
We prove the following:

Theorem  If  ≤ β < α <  and f ∈ Bα
q (Lp), p ≥ ,  < q ≤ ∞, then

∥
∥ln(·)∥∥Bβ

q (Lp) = O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β – q– > ,
(an + )–α+β+q– , α – β – q– < ,
(an + )–[log(an + )]–q– , α – β – q– = .

(.)

Now we deduce a few corollaries of Theorem  for DAM of second type. If j =  and
an = n – , then D(an, bn; sn) reduces to σn,n, and we obtain the following:

Corollary  If  ≤ β < α <  and f ∈ Bα
q (Lp), p ≥ ,  < q ≤ ∞, then

∥
∥σn,n(f ; ·) – f (·)∥∥Bβ

q (Lp) = O()

⎧
⎪⎨

⎪⎩

n–, α – β – q– > ,
n–α+β+q– , α – β – q– < ,
n–[log(n)]–q– , α – β – q– = .
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We note that the estimates in Corollary  are similar to that of [], p., for the ordinary
Cesàro mean. Now in view of Note , we get the following:

Corollary  If  ≤ β < α <  and f ∈ Lip∗(α, p), p ≥ , then

∥
∥σn,n(f ; ·) – f (·)∥∥Bβ∞(Lp) = O()

⎧
⎪⎨

⎪⎩

n–, α – β > ,
n–α+β , α – β < ,
n– log n, α – β = .

We further deduce the following results from Corollary .

Corollary  ([], p.) If  ≤ β < α <  and f ∈ Hα,p, p ≥ , then

∥
∥σn,n(f ; ·) – f (·)∥∥

β ,p = O
(
n–α+β

)
.

Taking p = ∞ in Corollary , we have the following:

Corollary  If  ≤ β < α <  and f ∈ Hα , then

∥
∥σn,n(f ; ·) – f (·)∥∥

β
= O

(
n–α+β

)
.

This result can be compared with that of Prössdorf []. For β = , we get the following:

Corollary  If  < α <  and f ∈ Lip(α, p), p ≥ , then

∥
∥σn,n(f ; ·) – f (·)∥∥p = O

(
n–α

)
.

Corollary  If α = p = , that is, f ∈ Lip(, ), then

∥
∥σn,n(f ; ·) – f (·)∥∥ = O

(
n– log n

)
.

We note that the estimates in Corollaries  and  are analogous to the results of Quade
[].

4 Proof of main result
The proof of Theorem  is divided into two sections.

4.1 The proof for 1 < q < ∞, p ≥ 1, 0 ≤ β < α < 2
Replacing α by β in (.), we have

∥
∥ln(·)∥∥Bβ

q (Lp) =
∥
∥ln(·)∥∥p +

∥
∥ωk(ln, ·)∥∥

β ,q. (.)

Using the generalized Minkowski inequality [], p., and Lemma (iii), from (.) we
have

∥
∥ln(·)∥∥p ≤ 

π

∫ π



∥
∥φ·(u)

∥
∥

p

∣
∣KD

n (u)
∣
∣du ≤ 

π

∫ π


ωk(f , u)p

∣
∣KD

n (u)
∣
∣du. (.)
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Using Hölder’s inequality and definition (.) of the Besov space, we get

∥
∥ln(·)∥∥p ≤ 

π

{∫ π



(∣∣KD
n (u)

∣
∣uα+q–)q/(q–) du

}–q–{∫ π



(
ωk(f , u)p

uα+q–

)q

du
}q–

= O()
{∫ π



(∣∣KD
n (u)

∣
∣uα+q–)q/(q–) du

}–q–

,

∥
∥ln(·)∥∥p = O()

{(∫ π/(an+)


+

∫ π

π/(an+)

)
(∣
∣KD

n (u)
∣
∣uα+q–)q/(q–) du

}–q–

:= O()[I + J], say. (.)

By the first part of Lemma ,

I =
{∫ π/(an+)



(∣∣KD
n (u)

∣
∣uα+q–)q/(q–) du

}–q–

= O(an + )
{∫ π/(an+)


u

q
q– (α+q–) du

}–q–

= O(an + )
{∫ π/(an+)


u

q
q– (α+)– du

}–q–

= O
(
(an + )–α

)
. (.)

Now using the second part of Lemma , we have

J =
{∫ π

π/(an+)

(∣
∣KD

n (u)
∣
∣uα+q–)q/(q–) du

}–q–

= O
(
(an + )–)

{∫ π

π/(an+)
u

q
q– (α+q––) du

}–q–

= O
(
(an + )–)

{∫ π

π/(an+)
u

q
q– (α–)– du

}–q–

= O()

⎧
⎪⎨

⎪⎩

(an + )–, α > ,
(an + )–α , α < ,
(an + )–[log(an + )]–q– , α = .

(.)

Thus, combining (.)-(.), we have

∥
∥ln(·)∥∥p = O()

⎧
⎪⎨

⎪⎩

(an + )–, α > ,
(an + )–α , α < ,
(an + )–[log(an + )]–q– , α = .

(.)

By repeated application of the generalized Minkowski inequality as in [], p., and
Lemma  for the second term on the right-hand side of (.) we have

∥
∥ωk(ln, ·)∥∥

β ,q =
{∫ π



(
ωk(ln, t)p

tβ

)q dt
t

}q–

=
{∫ π



(‖Ln(·, t)‖p

tβ

)q dt
t

}q–

≤ 
π

∫ π



∣
∣KD

n (u)
∣
∣du

{∫ u



‖�(·, t, u)‖q
p

tβq
dt
t

}q–
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+

π

∫ π



∣
∣KD

n (u)
∣
∣du

{∫ π

u

‖�(·, t, u)‖q
p

tβq
dt
t

}q–

= O()
{∫ π



(
uα–β

∣
∣KD

n (u)
∣
∣)q/(q–) du

}–(/q)

+ O()
{∫ π



(
uα–β+(/q)∣∣KD

n (u)
∣
∣)q/(q–) du

}–(/q)

:= O()(I + J), say, (.)

since (x + y)r ≤ xr + yr for positive x, y and  < r ≤  (for r =  – q– < ). Now

I =
{∫ π



(
uα–β

∣
∣KD

n (u)
∣
∣
)q/(q–) du

}–q–

≤
{∫ π/(an+)



(
uα–β

∣
∣KD

n (u)
∣
∣
)q/(q–) du

}–q–

+
{∫ π

π/(an+)

(
uα–β

∣
∣KD

n (u)
∣
∣
)q/(q–) du

}–q–

:= I + I, say. (.)

Using the first part of Lemma , we have

I = O(an + )
{∫ π/(an+)


u

q
q– (α–β) du

}–q–

= O(an + )
{∫ π/(an+)


u

q
q– (α–β+–(/q))– du

}–q–

= O
(
(an + )–α+β+(/q)). (.)

By the second part of Lemma  we have

I = O
(
(an + )–)

{∫ π

π/(an+)
u

q
q– (α–β–) du

}–q–

= O
(
(an + )–)

{∫ π

π/(an+)
u

q
q– (α–β–(/q)–)– du

}–q–

= O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β – q– > ,
(an + )–α+β+q– , α – β – q– < ,
(an + )–[log(an + )]–q– , α – β – q– = .

(.)

Now collecting (.)-(.) and using a similar argument as in (.), we have

I = O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β – q– > ,
(an + )–α+β+q– , α – β – q– < ,
(an + )–[log(an + )]–q– , α – β – q– = .

(.)

Using the earlier argument as in (.), we have

J =
{∫ π



(
uα–β+(/q)∣∣KD

n (u)
∣
∣
)q/(q–) du

}–(/q)

,
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J ≤
{∫ π/(an+)



(
uα–β+(/q)∣∣KD

n (u)
∣
∣)q/(q–) du

}–q–

+
{∫ π

π/(an+)

(
uα–β+(/q)∣∣KD

n (u)
∣
∣)q/(q–) du

}–q–

:= J + J, say. (.)

By the first part of Lemma  we get

J = O(an + )
{∫ π/(n+)


u

q
q– (α–β+(/q)) du

}–q–

= O(an + )
{∫ π/(an+)


u

q
q– (α–β+)– du

}–q–

= O
(


(an + )α–β

)

. (.)

Using Lemma  and computing similarly as in I, we have

J = O
(
(an + )–)

{∫ π

π/(an+)
u

q
q– (α–β+(/q)–) du

}–q–

= O
(
(an + )–)

{∫ π

π/(an+)
u

q
q– (α–β–)– du

}–q–

= O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β > ,
(an + )–α+β , α – β < ,
(an + )–[log(an + )]–q– , α – β = .

(.)

Now collecting (.)-(.) and using the earlier argument as in I, we have

J = O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β > ,
(an + )–α+β , α – β < ,
(an + )–[log(an + )]–q– , α – β = .

(.)

Combining (.), (.), and (.), we get

∥
∥ωk(ln, ·)∥∥

β ,q = O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β – q– > ,
(an + )–α+β+q– , α – β – q– < ,
(an + )–[log(an + )]–q– , α – β – q– = .

(.)

From (.), (.), and (.) we have

∥
∥ln(·)∥∥Bβ

q (Lp) = O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β – q– > ,
(an + )–α+β+q– , α – β – q– < ,
(an + )–[log(an + )]–q– , α – β – q– = .

(.)

This completes the proof of our Theorem  for p ≥ ,  < q < ∞, and  ≤ β < α < .
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4.2 The proof for q = ∞ and 0 ≤ β < α < 2
∥
∥ln(·)∥∥Bβ∞(Lp) =

∥
∥ln(·)∥∥p +

∥
∥ωk(ln, ·)∥∥

β ,∞. (.)

Using condition (.) in (.), we have

∥
∥ln(·)∥∥p ≤ 

π

∫ π


ωk(f , u)p

∣
∣KD

n (u)
∣
∣du

= O()
{∫ π/(an+)


uα

∣
∣KD

n (u)
∣
∣du +

∫ π

π/(an+)
uα

∣
∣KD

n (u)
∣
∣du

}

:= O()[I + J], say. (.)

Using Lemma , we get

I =
∫ π/(an+)


uα

∣
∣KD

n (u)
∣
∣du = O(an + )

∫ π/(an+)


uα du = O

(
(an + )–α

)
, (.)

J =
∫ π

π/(n+)
uα

∣
∣KD

n (u)
∣
∣du = O

(
(an + )–)

∫ π

π/(n+)
uα– du

= O()

⎧
⎪⎨

⎪⎩

(an + )–, α > ,
(an + )–α , α < ,
(an + )–[log(an + )]–q– , α = .

(.)

Combining (.)-(.), we get

∥
∥ln(·)∥∥p = O()

⎧
⎪⎨

⎪⎩

(an + )–, α > ,
(an + )–α , α < ,
(an + )–[log(an + )]–q– , α = .

(.)

Using the generalized Minkowski inequality and Lemma , we have

∥
∥ωk(ln, ·)∥∥

β ,∞ = sup
t>

(
t–βωk(ln, t)p

)
= sup

t>

(
t–β

∥
∥Ln(·, t)

∥
∥

p

)

= sup
t>

[

t–β

(


π

∫ π



∣
∣
∣
∣


π

∫ π


KD

n (u)�(x, t, u) du
∣
∣
∣
∣

p

dx
)/p]

≤ sup
t>

[
t–β

π

(


π

)/p ∫ π



{∫ π



∣
∣KD

n (u)
∣
∣p∣∣�(x, t, u)

∣
∣p dx

}/p

du
]

= sup
t>

[
t–β

π

∫ π



∥
∥�(·, t, u)

∥
∥

p

∣
∣KD

n (u)
∣
∣du

]

=

π

∫ π



(
sup
t>

t–β
∥
∥�(·, t, u)

∥
∥

p

)∣
∣KD

n (u)
∣
∣du

= O()
∫ π


uα–β

∣
∣Kn(u)

∣
∣du

= O()
[∫ π/(an+)


uα–β

∣
∣KD

n (u)
∣
∣du +

∫ π

π/(an+)
uα–β

∣
∣KD

n (u)
∣
∣du

]

:= O()[I + J], say. (.)
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Using Lemma , we get

I =
∫ π/(an+)


uα–β

∣
∣KD

n (u)
∣
∣du = O

(
(an + )β–α

)
, (.)

J =
∫ π

π/(an+)
uα–β

∣
∣KD

n (u)
∣
∣du = O

(
(an + )–)

∫ π

π/(an+)
uα–β– du

= O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β > ,
(an + )–α+β , α – β < ,
(an + )–[log(an + )]–q– , α – β = .

(.)

Combining (.)-(.), we have

∥
∥ωk(ln, ·)∥∥

β ,∞ = O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β > ,
(an + )–α+β , α – β < ,
(an + )–[log(an + )]–q– , α – β = .

(.)

From (.), (.), and (.) we have

∥
∥ln(·)∥∥Bβ∞(Lp) = O()

⎧
⎪⎨

⎪⎩

(an + )–, α – β – q– > ,
(an + )–α+β+q– , α – β – q– < ,
(an + )–[log(an + )]–q– , α – β – q– = .

(.)

This completes the proof of Theorem  for q = ∞.
Combining Sections . and . completes the proof of Theorem .

5 Conclusions
It is known that Besov spaces serve as generalizations of more elementary function spaces
and are effective at measuring the smoothness properties of functions. As mentioned by
DeVore and Popov [], p.,

“There are two definitions of Besov spaces that are currently in use. One uses the
Fourier transform, and the second uses the modulus of smoothness of a function f .
These two definitions are equivalent only under certain restrictions on the parame-
ters. The Besov spaces defined by the modulus of smoothness occur more naturally
in many areas of analysis including approximation theory.”

In this paper we compute the error estimates of a function f in a Besov space by DCM of
partial sums of the trigonometric Fourier series of f . We also deduce a few corollaries of
our main result for the second-type DAM in a Besov space and other function spaces such
as Lipschiz and Hölder spaces as particular cases and compare these results with earlier
known results.

As in [], p., we have used more general trigonometric polynomials (i.e., the second-
type DAM σn,n) in Corollaries -; however, we can obtain similar estimates using other
types of DAM such as D(n – , (j + )n – ) (or σn,jn).

Remark  Recently, Deǧer and Küçükaslan [] generalized the concept of DCM and
studied approximation of a function using deferred Nörlund mean/deferred Riesz mean
in Hölder metric, which may be the future interest of investigators in this direction.
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33. Deǧer, U, Küçükaslan, M: A generalization of deferred Cesáro means and some of their applications. J. Inequal. Appl.

2015, Article ID 14 (2015)

http://dx.doi.org/10.1142/S1793557116500091

	Approximation of functions in Besov space by deferred Cesaro mean
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main result and discussion
	Proof of main result
	The proof for 1 < q < infty, p>=1, 0<=beta< alpha< 2
	The proof for q = infty and 0<=beta< alpha< 2

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References


