- Research
- Open access
- Published:
Global existence and boundedness of solutions of a certain nonlinear integro-differential equation of second order with multiple deviating arguments
Journal of Inequalities and Applications volume 2016, Article number: 46 (2016)
Abstract
In this paper, we consider the global existence and boundedness of solutions for a certain nonlinear integro-differential equation of second order with multiple constant delays. We obtain some new sufficient conditions which guarantee the global existence and boundedness of solutions to the considered equation. The obtained result complements some recent ones in the literature. An example is given of the applicability of the obtained result. The main tool employed is an appropriate Lyapunov-Krasovskii type functional.
1 Introduction
In recent years, there have been several papers written on the global existence and boundedness of solutions for certain nonlinear differential and integro-diffrential equations of second order with and without delays; see, for example, Ahmad and Rama Mohana Rao [1], Baxley [2], Burton [3], Constantin [4], Driver [5], Fujimoto and Yamaoka [6], Grace and Lalli [7], Graef and Tunç [8], Kalmanovskii and Myshkis [9], Krasovskii [10], Miller [11, 12], Mustafa and Rogovchenko [13, 14], Napoles Valdes [15], Ogundare et al. [16], Reissig et al. [17], Tidke [18], Tiryaki and Zafer [19], Tunç [20–25], Tunç and Tunç [26], Yoshizawa [27], Wu et al. [28], Yin [29] and the references therein.
It should be noted that Napoles Valdes [15] dealt with the ordinary integro-differential equation of second order:
The author investigated extendibility, boundedness, stability, and square integrability of solutions to the considered equation. The method of proof consists of the use of a suitable Lyapunov function.
In a recent paper, Graef and Tunç [8] discussed the continuability, boundedness, and square integrability of solutions to the second order functional integro-differential equation with multiple delays:
The proof of the results in [8] involves the definition of a Lyapunov-Krasovskii type functional.
In this paper, instead of the mentioned integro-differential equations discussed in [8, 15], we consider the following nonlinear and non-autonomous integro-differential equation of second order with multiple constant delays:
which can be written in the system form as
where \(\tau_{i} \) (\(i=1,2,\ldots,n\)) are positive constants, \(a,b,c_{i}:\Re ^{+}\rightarrow\Re^{+}\), \(\Re^{+}=(0,\infty)\), \(f:\Re^{+}\times \Re^{2}\rightarrow\Re^{+}\), and \(g:\Re^{+}\times\Re\rightarrow \Re^{+} \) are continuous functions, \(h_{i}\in C^{1}(\Re,\Re)\), \(p\in C^{1} ( \Re , ( 0,\infty ) ) \), and \(C ( t,s ) \) is a continuous function for \(0\leq t\leq s\leq\infty\).
It is worth mentioning that the global existence and boundedness of solutions of equation (1) have not yet been discussed in the literature. The aim of this paper is to give some sufficient conditions to guarantee the global existence and boundedness of solutions of equation (1). This case shows the novelty and originality of the present paper. The result to be obtained complements and improves the results in the literature (Graef and Tunç [8], Napoles Valdes [15]). This paper may also be useful for researchers working on the qualitative behavior of solutions of functional integro-differential equations.
We assume that there are positive constants \(\delta_{i}\), \(\beta _{i}\), \(\gamma_{i}\), λ, \(p_{1}\), m, M, \(g_{0}\), \(g_{1}\), \(c_{i}\), \(C_{i}\), R, and \(\tau^{\ast}\) such that the following conditions hold:
-
(A1)
\(1\leq p(x)\leq p_{1}\), \(\int_{-\infty}^{+\infty} \vert p^{\prime}(u)\vert \,du<\infty\),
-
(A2)
\(0< m\leq b(t)\leq a(t)\leq M\), \(0< c_{i}\leq c_{i}(t)\leq C_{i}\), \(c_{i}^{\prime}(t)\leq0\),
-
(A3)
\(g(t,0)=0\) and \(0< g_{0}\leq\frac{g(t,y)}{y}\leq g_{1}\) (\(y\neq 0\)),
-
(A4)
\(h_{i}(0)=0\), \(0<\delta_{i}\leq\frac{h_{i}(x)}{x}\leq \beta _{i}\) (\(x\neq0\)), \(\vert h_{i}^{\prime}(x)\vert \leq\gamma_{i}\),
-
(A5)
\(\max ( \int_{0}^{t}\vert C ( t,s ) \vert \,ds+\int_{t}^{\infty} \vert C ( u,t ) \vert \,du ) \leq R\),
-
(A6)
\(R+2\lambda\tau^{\ast}\leq\frac{m}{p_{1}}(f(t,x,y)+g_{0})\) for all t, x and y.
2 Main result
What follows is our main theorem.
Theorem
Suppose that conditions (A1)-(A6) hold. Then all solutions of system (2) are continuable and bounded.
Proof
We define a Lyapunov-Krasovskii functional by
where μ a positive constant,
for \(\theta(t)=x^{\prime}(t)p^{\prime}(x(t))\), \(\alpha_{1}(t)=\min \{ x(0),x(t) \} \), \(\alpha_{2}(t)=\max \{ x(0),x(t) \}\), and
From the assumptions (A1), (A2), and (A4) it follows that
where \(k=\frac{1}{2}\min \{1,\sum_{i=1}^{n}c_{i}\delta_{i} \} \).
Let \(( x(t),y(t) ) \) be a solution of (2). Calculating the time derivative of the functional \(V_{0}(t)\), we obtain
By the assumptions (A1)-(A6) and the inequality \(2\vert ab\vert \leq ( a^{2}+b^{2} ) \), the following estimates can be verified:
From these estimates we obtain, quite readily,
Let
and
Hence, in view of the discussion and (A6), we can conclude that
It is now clear that the time derivative of the functional \(W ( t ) \) defined by (3) along any solution of system (2) leads that
Therefore, using (5), (6), and taking \(\mu=\frac{2k}{\sum_{i=1}^{n}C_{i}\beta_{i}}\), we obtain
This implies that \(W^{\prime}(t)\leq0\). Since all the functions appearing in equation (1) are continuous, it is obvious that there exists at least a solution of equation (1) defined on \([ t_{0},t_{0}+\delta ) \) for some \(\delta>0\). We need to show that the solution can be extended to the entire interval \([ t_{0},\infty ) \). We assume on the contrary that there is a first time \(T<\infty\) such that the solution exists on \([ t_{0},T ) \) and
Let \(( x(t),y(t) ) \) be such a solution of system (2) with initial condition \(( x_{0},y_{0} ) \). Since the Lyapunov-Krasovskii type functional \(W(t)\) is positive definite and decreasing, \(W^{\prime }(t)\leq0\), along the trajectories of system (2), we can say that \(W(t)\) is bounded \([ t_{0},T ] \). We have
Hence, it follows from (3) and (5) that
where \(D=k\exp ( -\gamma ( T ) \mu^{-1} ) \). This inequality implies that \(\vert x(t)\vert \) and \(\vert y(t)\vert \) are bounded as \(t\rightarrow T^{-}\). Thus, we can conclude that \(T<\infty\) is not possible, we must have \(T=\infty\). This completes the proof of the theorem. □
Example
We consider the following nonlinear integro-differential equation of second order with two constants delays, \(\tau_{1}>0\) and \(\tau_{2}>0\):
When we compare equation (7) with equation (1), the existence can be seen of the following estimates:
Thus, all the assumptions of the theorem hold. So we can conclude that all solutions of (7) are continuable and bounded.
References
Ahmad, S, Rama Mohana Rao, M: Theory of Ordinary Differential Equations. With Applications in Biology and Engineering. Affiliated East-West Press Pvt. Ltd., New Delhi (1999)
Baxley, JV: Global existence and uniqueness for second-order ordinary differential equations. J. Differ. Equ. 23(3), 315-334 (1977); Stanford University Press, Stanford, Calif. (1963)
Burton, TA: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Corrected version of the 1985 original. Dover, Mineola (2005)
Constantin, A: Global existence of solutions for perturbed differential equations. Ann. Mat. Pura Appl. (4) 168, 237-299 (1995)
Driver, RD: Existence and stability of solutions of a delay-differential system. Arch. Ration. Mech. Anal. 10, 401-426 (1962)
Fujimoto, K, Yamaoka, N: Global existence and nonexistence of solutions for second-order nonlinear differential equations. J. Math. Anal. Appl. 411(2), 707-718 (2014)
Grace, SR, Lalli, BS: Asymptotic behavior of certain second order integro-differential equations. J. Math. Anal. Appl. 76(1), 84-90 (1980)
Graef, J, Tunç, C: Continuability and boundedness of multi-delay functional integro-differential equations of the second order. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 109(1), 169-173 (2015)
Kalmanovskii, V, Myshkis, A: Introduction to the Theory and Applications of Functional-Differential Equations. Mathematics and Its Applications, vol. 463. Kluwer Academic, Dordrecht (1999)
Krasovskii, NN: Stability of Motion. Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford (1963)
Miller, RK: Asymptotic stability properties of linear Volterra integro-differential equations. J. Differ. Equ. 10, 485-506 (1971)
Miller, RK, Michel, AN: Ordinary Differential Equations. Academic Press, New York (1982)
Mustafa, GO, Rogovchenko, YV: Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations. Nonlinear Anal., Theory Methods Appl. 51(2), 339-368 (2002)
Mustafa, GO, Rogovchenko, YV: Global existence of solutions for a class of nonlinear differential equations. Appl. Math. Lett. 16(5), 753-758 (2003)
Napoles Valdes, JE: A note on the boundedness of an integro-differential equation. Quaest. Math. 24(2), 213-216 (2001)
Ogundare, BS, Ngcibi, S, Murali, V: Boundedness and stability properties of solutions to certain second-order differential equation. Adv. Differ. Equ. Control Process. 5(2), 79-92 (2010)
Reissig, R, Sansone, G, Conti, R: Non-linear Differential Equations of Higher Order. Translated from the German. Noordhoff International Publishing, Leyden (1974)
Tidke, HL: Global existence of solutions for nonlinear integral equations of second order. J. Appl. Funct. Anal. 5(1), 113-120 (2010)
Tiryaki, A, Zafer, A: Global existence and boundedness for a class of second-order nonlinear differential equations. Appl. Math. Lett. 26(9), 939-944 (2013)
Tunç, C: Boundedness results for solutions of certain nonlinear differential equations of second order. J. Indones. Math. Soc. 16(2), 115-126 (2010)
Tunç, C: Some new stability and boundedness results of solutions of Liénard type equations with a deviating argument. Nonlinear Anal. Hybrid Syst. 4(1), 85-91 (2010)
Tunç, C: Stability and boundedness of solutions of non-autonomous differential equations of second order. J. Comput. Anal. Appl. 13(6), 1067-1074 (2011)
Tunç, C: Uniformly stability and boundedness of solutions of second order nonlinear delay differential equations. Appl. Comput. Math. 10(3), 449-462 (2011)
Tunç, C: On the stability and boundedness of solutions of a class of nonautonomous differential equations of second order with multiple deviating arguments. Afr. Math. 23(2), 249-259 (2012)
Tunç, C: A note on the stability and boundedness of non-autonomous differential equations of second order with a variable deviating argument. Afr. Math. 25(2), 417-425 (2014)
Tunç, C, Tunç, O: A note on certain qualitative properties of a second order linear differential system. Appl. Math. Inf. Sci. 9(2), 953-956 (2015)
Yoshizawa, T: Stability Theory by Liapunov’s Second Method. Publications of the Mathematical Society of Japan, vol. 9. The Mathematical Society of Japan, Tokyo (1966)
Wu, C, Hao, S, Xu, C: Global existence and boundedness of solutions to a second-order nonlinear differential system. J. Appl. Math. 2012, Article ID 603783 (2012)
Yin, Z: Global existence and boundedness of solutions to a second order nonlinear differential system. Studia Sci. Math. Hung. 41(4), 365-378 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally in drafting this manuscript and giving the main proofs. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Tunç, C., Ayhan, T. Global existence and boundedness of solutions of a certain nonlinear integro-differential equation of second order with multiple deviating arguments. J Inequal Appl 2016, 46 (2016). https://doi.org/10.1186/s13660-016-0987-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-016-0987-2