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Abstract
In this paper, we consider the global existence and boundedness of solutions for a
certain nonlinear integro-differential equation of second order with multiple constant
delays. We obtain some new sufficient conditions which guarantee the global
existence and boundedness of solutions to the considered equation. The obtained
result complements some recent ones in the literature. An example is given of the
applicability of the obtained result. The main tool employed is an appropriate
Lyapunov-Krasovskii type functional.
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1 Introduction
In recent years, there have been several papers written on the global existence and bound-
edness of solutions for certain nonlinear differential and integro-diffrential equations of
second order with and without delays; see, for example, Ahmad and Rama Mohana Rao [],
Baxley [], Burton [], Constantin [], Driver [], Fujimoto and Yamaoka [], Grace and
Lalli [], Graef and Tunç [], Kalmanovskii and Myshkis [], Krasovskii [], Miller [,
], Mustafa and Rogovchenko [, ], Napoles Valdes [], Ogundare et al. [], Reissig
et al. [], Tidke [], Tiryaki and Zafer [], Tunç [–], Tunç and Tunç [], Yoshizawa
[], Wu et al. [], Yin [] and the references therein.

It should be noted that Napoles Valdes [] dealt with the ordinary integro-differential
equation of second order:

x′′ + a(t)f
(
t, x, x′)x′ + g

(
t, x′) + h(x) =

∫ t


C(t, τ )x′(τ ) dτ .

The author investigated extendibility, boundedness, stability, and square integrability of
solutions to the considered equation. The method of proof consists of the use of a suitable
Lyapunov function.
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In a recent paper, Graef and Tunç [] discussed the continuability, boundedness, and
square integrability of solutions to the second order functional integro-differential equa-
tion with multiple delays:

x′′ + a(t)f
(
t, x, x′)x′ + g

(
t, x, x′) +

n∑

i=

hi
(
x(t – τi)

)

=
∫ t


C(t, s)x′(s) ds.

The proof of the results in [] involves the definition of a Lyapunov-Krasovskii type func-
tional.

In this paper, instead of the mentioned integro-differential equations discussed in [, ],
we consider the following nonlinear and non-autonomous integro-differential equation of
second order with multiple constant delays:

(
p(x)x′)′ + a(t)f

(
t, x, x′)x′ + b(t)g

(
t, x′) +

n∑

i=

ci(t)hi
(
x(t – τi)

)

=
∫ t


C(t, s)x′(s) ds, ()

which can be written in the system form as

x′ =
y

p(x)
,

y′ =
∫ t


C(t, s)

y(s)
p(x(s))

ds – a(t)f
(

t, x,
y

p(x)

)
y

p(x)
– b(t)g

(
t,

y
p(x)

)
()

–
n∑

i=

ci(t)hi
(
x(t)

)
+

n∑

i=

ci(t)
∫ t

t–τi

h′
i
(
x(s)

) y(s)
p(x(s))

ds,

where τi (i = , , . . . , n) are positive constants, a, b, ci : �+ → �+, �+ = (,∞), f : �+ ×
� → �+, and g : �+ ×� → �+ are continuous functions, hi ∈ C(�,�), p ∈ C(�, (,∞)),
and C(t, s) is a continuous function for  ≤ t ≤ s ≤ ∞.

It is worth mentioning that the global existence and boundedness of solutions of equa-
tion () have not yet been discussed in the literature. The aim of this paper is to give some
sufficient conditions to guarantee the global existence and boundedness of solutions of
equation (). This case shows the novelty and originality of the present paper. The result
to be obtained complements and improves the results in the literature (Graef and Tunç
[], Napoles Valdes []). This paper may also be useful for researchers working on the
qualitative behavior of solutions of functional integro-differential equations.

We assume that there are positive constants δi, βi, γi, λ, p, m, M, g, g, ci, Ci, R, and τ ∗

such that the following conditions hold:
(A)  ≤ p(x) ≤ p,

∫ +∞
–∞ |p′(u)|du < ∞,

(A)  < m ≤ b(t) ≤ a(t) ≤ M,  < ci ≤ ci(t) ≤ Ci, c′
i(t) ≤ ,

(A) g(t, ) =  and  < g ≤ g(t,y)
y ≤ g (y 	= ),

(A) hi() = ,  < δi ≤ hi(x)
x ≤ βi (x 	= ), |h′

i(x)| ≤ γi,
(A) max(

∫ t
 |C(t, s)|ds +

∫ ∞
t |C(u, t)|du) ≤ R,

(A) R + λτ ∗ ≤ m
p

(f (t, x, y) + g) for all t, x and y.
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2 Main result
What follows is our main theorem.

Theorem Suppose that conditions (A)-(A) hold. Then all solutions of system () are con-
tinuable and bounded.

Proof We define a Lyapunov-Krasovskii functional by

W (t) = W
(
t, x(t), y(t)

)
= e– γ (t)

μ V
(
t, x(t), y(t)

)
, ()

where μ a positive constant,

γ (t) =
∫ t



∣∣θ (s)
∣∣ds =

∫ t



∣∣x′(s)p′(x(s)
)∣∣ds

=
∫ α(t)

α(t)

∣
∣p′(x(u)

)∣∣du ≤
∫ +∞

–∞

∣
∣p′(x(u)

)∣∣du < ∞,

for θ (t) = x′(t)p′(x(t)), α(t) = min{x(), x(t)}, α(t) = max{x(), x(t)}, and

V(t) = V
(
t, x(t), y(t)

)
=




y + p(x)
n∑

i=

ci(t)
∫ x


hi(s) ds

+
n∑

i=

λi

∫ 

–τi

∫ t

t+s
y(u) du ds +

∫ t



∫ ∞

t

∣
∣C(u, s)

∣
∣y(s) du ds. ()

From the assumptions (A), (A), and (A) it follows that

V(t) ≥ 


y + p(x)
n∑

i=

ci(t)
∫ x


hi(s) ds

≥ 


y +



n∑

i=

ciδix

≥ k
(
x + y), ()

where k = 
 min{,

∑n
i= ciδi}.

Let (x(t), y(t)) be a solution of (). Calculating the time derivative of the functional V(t),
we obtain

V ′
(t) = y

∫ t


C(t, s)

y(s)
p(x(s))

ds – a(t)f
(

t, x,
y

p(x)

)
y

p(x)
– b(t)g

(
t,

y
p(x)

)
y

+ y
n∑

i=

ci(t)
∫ t

t–τi

h′
i
(
x(s)

) y(s)
p(x(s))

ds + θ (t)
n∑

i=

ci(t)
∫ x


hi(s) ds

+ p(x)
n∑

i=

c′
i(t)

∫ x


hi(s) ds +

n∑

i=

(λiτi)y –
n∑

i=

λi

∫ t

t–τi

y(s) ds

+ y
∫ ∞

t

∣∣C(u, t)
∣∣du –

∫ t



∣∣C(t, s)
∣∣y(s) ds.
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By the assumptions (A)-(A) and the inequality |ab| ≤ (a + b), the following esti-
mates can be verified:

y
∫ t


C(t, s)

y(s)
p(x(s))

ds ≤
∫ t



∣
∣C(t, s)

∣
∣
∣
∣y(t)

∣
∣
∣
∣y(s)

∣
∣ds

≤ y
∫ t



∣∣C(t, s)
∣∣ds +

∫ t



∣∣C(t, s)
∣∣y(s) ds,

–a(t)f
(

t, x,
y

p(x)

)
y

p(x)
– b(t)g

(
t,

y
p(x)

)
y ≤ –

m
p

(
f
(

t, x,
y

p(x)

)
+ g

)
y,

y
n∑

i=

ci(t)
∫ t

t–τi

h′
i
(
x(s)

) y(s)
p(x(s))

ds ≤
n∑

i=

Ciγi

∫ t

t–τi

∣
∣y(t)y(s)

∣
∣ds

≤
n∑

i=

(Ciγiτi)y +
n∑

i=

Ciγi

∫ t

t–τi

y(s) ds,

θ (t)
n∑

i=

ci(t)
∫ x


hi(s) ds ≤ |θ (t)|



n∑

i=

(Ciβi)x,

p(x)
n∑

i=

c′
i(t)

∫ x


hi(s) ds ≤ .

From these estimates we obtain, quite readily,

V ′
(t) ≤

(
R –

m
p

(
f
(

t, x,
y

p(x)

)
+ g

))
y

+
n∑

i=

(Ciγiτi)y +
n∑

i=

Ciγi

∫ t

t–τi

y(s) ds

+
n∑

i=

(λiτi)y –
n∑

i=

λi

∫ t

t–τi

y(s) ds

+
|θ (t)|



n∑

i=

(Ciβi)x.

Let

τ ∗ = max{τ, τ, . . . , τn}

and

λ =
n∑

i=

λi =
n∑

i=

Ciγi.

Hence, in view of the discussion and (A), we can conclude that

V ′
(t) ≤

(
R + λτ ∗ –

m
p

(
f
(

t, x,
y

p(x)

)
+ g

))
y +

|θ (t)|


n∑

i=

(Ciβi)x

≤ |θ (t)|


n∑

i=

(Ciβi)x. ()
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It is now clear that the time derivative of the functional W (t) defined by () along any
solution of system () leads that

W ′(t) = e– γ (t)
μ

(
–

|θ (t)|
μ

V
(
t, x(t), y(t)

)
+

d
dt

V
(
t, x(t), y(t)

))
.

Therefore, using (), (), and taking μ = k∑n
i= Ciβi

, we obtain

W ′(t) ≤ e– γ (t)
μ

(

–
|θ (t)|



n∑

i=

(Ciβi)x +
|θ (t)|



n∑

i=

(Ciβi)x

)

= .

This implies that W ′(t) ≤ . Since all the functions appearing in equation () are contin-
uous, it is obvious that there exists at least a solution of equation () defined on [t, t + δ)
for some δ > . We need to show that the solution can be extended to the entire interval
[t,∞). We assume on the contrary that there is a first time T < ∞ such that the solution
exists on [t, T) and

lim
t→T–

(∣∣x(t)
∣∣ +

∣∣y(t)
∣∣) = ∞.

Let (x(t), y(t)) be such a solution of system () with initial condition (x, y). Since the
Lyapunov-Krasovskii type functional W (t) is positive definite and decreasing, W ′(t) ≤ ,
along the trajectories of system (), we can say that W (t) is bounded [t, T]. We have

W
(
T , x(T), y(T)

) ≤ W (t, x, y) = W.

Hence, it follows from () and () that

x(T) + y(T) ≤ W

D
,

where D = k exp(–γ (T)μ–). This inequality implies that |x(t)| and |y(t)| are bounded as
t → T–. Thus, we can conclude that T < ∞ is not possible, we must have T = ∞. This
completes the proof of the theorem. �

Example We consider the following nonlinear integro-differential equation of second or-
der with two constants delays, τ >  and τ > :

((
 +

sin x
 + x

)
x′

)′
+

(
 +


 + t

)(
e–t + sin x + cos x′ + 

)
x′

+
(

 +


 + t

)(
x′ +

x′

 + x′

)
+ 

(
e + e–t)x(t – τ)

+ 
(
e + e–t)x(t – τ) =

∫ t



s
( + t) x′(s) ds. ()

When we compare equation () with equation (), the existence can be seen of the fol-
lowing estimates:

p(x) =  +
sin x

 + x ,  ≤ p(x) ≤ ,
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∫ ∞

–∞

∣
∣p′(u)

∣
∣du ≤

∫ ∞

–∞

(∣∣
∣∣

cos u
 + u

∣∣
∣∣ +

∣∣
∣∣

u sin u
( + u)

∣∣
∣∣

)
du ≤ π ,

a(t) =  +


 + t , b(t) =  +


 + t ,

m =  ≤ b(t) ≤ a(t) ≤  = M,

c(t) = e + e–t , c(t) = e + e–t ,

c = e ≤ c(t) ≤ e +  = C,

c = e ≤ c(t) ≤ e +  = C,

c′
(t) ≤ , c′

(t) ≤ , t ≥ ,

f
(
t, x, x′) = e–t + sin x + cos x′ + ,  ≤ f

(
t, x, x′) ≤ ,

g
(
t, x′) = x′ +

x′

 + x′ ,

g(t, ) = , g =  ≤ g(t, x′)
x′ ≤  = g (y 	= ),

h(x) = h(x) = x,

h() = h() = ,
h(x)

x
=

h(x)
x

=  (x 	= ),
∣
∣h′

(x)
∣
∣ =

∣
∣h′

(x)
∣
∣ = ,

∫ t



∣∣C(t, s)
∣∣ds +

∫ ∞

t

∣∣C(u, t)
∣∣du

=
∫ t



∣
∣∣∣

s
( + t)

∣
∣∣∣ds +

∫ ∞

t

∣
∣∣∣

t
( + u)

∣
∣∣∣du ≤ 


= R.

Thus, all the assumptions of the theorem hold. So we can conclude that all solutions of
() are continuable and bounded.
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