Skip to main content

Berwald-type inequalities for Sugeno integral with respect to \({ ( {\alpha,m,r} )_{g}}\)-concave functions

Abstract

In this paper, we introduce the concept of an \({ ( {\alpha,m,r} )_{g}}\)-concave function as a generalization of a concave function. Then we establish Berwald-type inequalities for the Sugeno integral based on this kind of functions. Our work generalizes the previous results in the literature. Finally, we give some conclusions and problems for further investigations.

1 Introduction

As a tool for modeling nondeterministic problems, fuzzy measures and a fuzzy integral introduced by Sugeno in [1] have been successfully applied to various fields. The fuzzy integral provides a practical tool for many problems in engineering and social choice, where the aggregation of data is required. However, the practicality of fuzzy integral is restricted for the special operators used in the construction. Thus, many scholars have generalized the Sugeno integral by using some other operators to replace the special operator(s) and/or . They proposed the Choquet-like integral [2], the Shilkret integral [3], -integral [4], the generalized fuzzy integral [5], the Sugeno-like integral [6], the λ-generalized Sugeno integral [7], the pseudo-integral [8], the interval-valued generalized fuzzy integral [9], and the set-valued pseudo-integral [10]. Suárez García and Gil Álvarez [11] presented two families of fuzzy integrals, the so-called seminormed fuzzy integral and semiconormed fuzzy integral. Klement et al. [12] investigated a concept of universal integrals generalizing both the Choquet integral and the Sugeno integral. Wang and Klir [13] provided a general overview on fuzzy measurement and fuzzy integration.

The integral inequalities are significant mathematical tools both in theory and applications. Different integral inequalities including Chebyshev, Jensen, Hölder, and Minkowski inequalities are widely used in various fields of mathematics, such as probability theory, differential equations, decision-making under risk, forecasting of time-series, and information sciences.

The convexity for a given function is one of the most powerful tools in establishing analytic inequalities. Especially, there are many important applications in the theory of higher transcendental functions. However, for many problems encountered in economics and engineering, the notion of convexity is unsuitable. Hence, it is necessary to extend the notion of convexity, and various generalizations of convexity have appeared in the literature. Hanson [14] gave the notion of invexity as a significant generalization of classical convexity. Ben-Israel and Mond [15] studied the preinvex functions, a special case of invex functions. Breckner [16] introduced the s-convex functions, and Varošanec [17] presented the h-convex functions as a generalization of convex functions. Mihesan [18] proposed the definition of \(( {\alpha ,m} )\)-convex functions. For recent results and generalizations concerning m-convex and \(( {\alpha,m} )\)-convex functions, see [19, 20]. Latif and Shoaib [21] discussed the concept of m-preinvex functions and \(( {\alpha,m} )\)-preinvex functions. Gill et al. [22] provided the concept of r-mean convex functions.

On the other hand, recently, some researchers have showed that several integral inequalities hold not only in the classical context but also for the fuzzy context. Román-Flores et al. investigated several kinds of classical integral inequalities for fuzzy integral including a Chebyshev-type inequality [23], a Young-type inequality [24], a Jensen-type inequality [25], a Hardy-type inequality [26], a convolution-type inequality [27], a Stolarsky-type inequality [28], and a Markov-type inequality [29]. Agahi et al. proved a general Chebyshev-type inequality [30], a Hölder-type inequality [31], a Berwald-type inequality [32], a general Minkowski-type inequality [33], and a general Barnes-Godun-Levin-type inequality [34] for the Sugeno integral. Caballero and Sadarangani presented Cauchy-Schwarz [35], Chebyshev [36], Fritz Carlson [37], and Sandor [38] inequalities for the Sugeno integral. Mesiar and Ouyang proposed Chebyshev [39], Yong [40], general Chebyshev [41], and Minkowski [42] inequalities for Sugeno integral.

Agahi et al. [32] illustrated a Berwald-type inequality for the Sugeno integral of a convex function. Agahi et al. [43] also obtained a Berwald-type inequality for a universal integral based on a convex function. Song et al. [44] proved Berwald-type inequalities for an extreme universal integral from the situation of convex functions to \(( {\alpha,m} )\)-convex functions. Particularly, for pseudo-multiplication  = , a Berwald-type inequality for the Sugeno integral based on \(( {\alpha,m} )\)-concave functions is obtained. The purpose of this paper is to prove Berwald-type inequalities for the Sugeno integral related to \({ ( {\alpha,m,r} )_{g}}\)-concavity. Some examples are given to illustrate the results.

After some preliminaries of some known results on the Sugeno integral and the notion of an \({ ( {\alpha,m,r} )_{g}}\)-concave function in Section 2, Section 3 deals with Berwald inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave functions and reverse Berwald-type inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-convex functions. Finally, some examples are given to illustrate the results and some remarks are obtained as special cases.

2 Preliminaries

In this section, we recall some basic definitions and properties of the fuzzy integral and introduce the \({ ( {\alpha,m,r} )_{g}}\)-convex functions. For details, we refer the reader to Refs. [1, 13].

Suppose that is a σ-algebra of subsets of X and let \(\mu:\wp \to[0,\infty)\) be a nonnegative, extended real-valued set function. We say that μ is a fuzzy measure if it satisfies:

  1. (1)

    \(\mu ( \emptyset ) = 0\);

  2. (2)

    \(E,F \in\wp\) and \(E \subset F\) imply \(\mu ( E ) \le\mu ( F )\);

  3. (3)

    \(\{ {{E_{n}}} \} \subset\wp\), \({E_{1}} \subset{E_{2}} \subset \cdots\), imply \({\lim_{n \to\infty}}\mu ( {{E_{n}}} ) = \mu ( {\bigcup_{n = 1}^{\infty}{{E_{n}}} } )\);

  4. (4)

    \(\{ {{E_{n}}} \} \subset\wp\), \({E_{1}} \supset{E_{2}} \supset \cdots\), \(\mu ( {{E_{1}}} ) < \infty\), imply \({\lim_{n \to\infty}}\mu ( {{E_{n}}} ) = \mu ( {\bigcap_{n = 1}^{\infty}{{E_{n}}} } )\).

If f is a nonnegative real-valued function defined on X, we denote the set \(\{ x \in X:f ( x ) \ge\alpha \} = \{ {x \in X:f \ge\alpha} \}\) by \({F_{\alpha }}\) for \(\alpha \ge0\). Note that if \(\alpha \le\beta\), then \({F_{\beta }} \subset {F_{\alpha }}\).

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space. We denote by \({M^{+} }\) the set of all nonnegative measurable functions with respect to .

Definition 2.1

(Sugeno [1])

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, \(f \in{M^{+} }\), and \(A \in\wp\). The Sugeno integral (or the fuzzy integral) of f on A with respect to the fuzzy measure μ is defined as

$$(\mathrm{S}) \int_{A} {f\, d\mu} = \bigvee_{\alpha \ge0} \bigl[ {\alpha \wedge\mu ( {A \cap{F_{\alpha }}} )} \bigr]; $$

when \(A = X\),

$$(\mathrm{S}) \int_{X} {f\, d\mu} = \bigvee_{\alpha \ge0} \bigl[ {\alpha \wedge\mu ( {{F_{\alpha }}} )} \bigr], $$

where and denote the operations sup and inf on \([ {0,\infty} )\), respectively.

The properties of the fuzzy integral are well known and can be found in [13].

Proposition 2.2

Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, \(A,B \in \wp\), and \(f,g \in{M^{+} }\). Then:

  1. (1)

    \(( \mathrm{S} )\int_{A} {f\,d\mu \le\mu ( A )} \);

  2. (2)

    \(( \mathrm{S} )\int_{A} {k\, d\mu} = k \wedge\mu ( A )\) for a nonnegative constant k;

  3. (3)

    \(( \mathrm{S} )\int_{A} {f\,d\mu} \le ( \mathrm{S} )\int_{A} {g\,d\mu} \) if \(f \le g\);

  4. (4)

    \(\mu ( {A \cap \{ {f \ge\alpha} \}} ) \ge\alpha\) \(( \mathrm{S} )\int_{A} {f\,d\mu} \ge \alpha\);

  5. (5)

    \(\mu ( {A \cap \{ {f \ge\alpha} \}} ) \le\alpha\) \(( \mathrm{S} )\int_{A} {f\,d\mu} \le \alpha\);

  6. (6)

    \(( \mathrm{S} )\int_{A} {f\,d\mu} > \alpha\) there exists \(\gamma > \alpha\) such that \(\mu ( {A \cap \{ {f \ge\gamma} \}} ) > \alpha\);

  7. (7)

    \(( \mathrm{S} )\int_{A} {f\,d\mu} < \alpha\) there exists \(\gamma < \alpha\) such that \(\mu ( {A \cap \{ {f \ge\gamma} \}} ) < \alpha\).

Remark 2.3

Consider the distribution function F associated to f on A, that is, \(F ( \alpha ) = \mu ( {A \cap \{ {f \ge \alpha} \}} )\). Then, due to (4) and (5) of Proposition 2.2, we have \(F ( \alpha ) = \alpha \Rightarrow ( \mathrm{S} )\int_{A} {f\,d\mu} = \alpha\). Thus, from a numerical point of view, the fuzzy integral can be calculated by solving the equation \(F ( \alpha ) = \alpha\).

Definition 2.4

Let \(I \subseteq\mathbb{R}\) be an interval, \(\lambda, \alpha, m \in [ {0,1} ]\), \(r \in\mathbb{R}\), and g be a continuous and monotonous function on \(\mathbb{R}\). A function \(f:I \to\mathbb{R}\) is said to be \({ ( {\alpha,m,r} )_{g}}\)-concave on I if, for all \(x,y \in I\),

$$f \bigl( {{{ \bigl[ {\lambda{x^{r}} + m ( {1 - \lambda } ){y^{r}}} \bigr]}^{1/r}}} \bigr) \ge {g^{ - 1}} \bigl( {{{ \bigl[ {{\lambda^{\alpha}} {{ ( {g\circ f} )}^{r}} ( x ) + m \bigl( {1 - {\lambda^{\alpha}}} \bigr){{ ( {g\circ f} )}^{r}} ( y )} \bigr]}^{1/r}}} \bigr),\quad r \ne0 $$

or

$$f \bigl( {{x^{\lambda}} {y^{m ( {1 - \lambda} )}}} \bigr) \ge {g^{ - 1}} \bigl( {{{ ( {g \circ f} )}^{{\lambda^{\alpha}}}} ( x ){{ ( {g \circ f} )}^{m ( {1 - {\lambda ^{\alpha}}} )}} ( y )} \bigr),\quad r = 0. $$

By reversing the inequalities we obtain the definition of an \({ ( {\alpha,m,r} )_{g}}\)-convex function f on I.

Remark 2.5

If in Definition 2.4, \(g=\mathrm{id}\) (i.e., \(g ( x ) = x\) for any \(x \in I\)), then we obtain the definition of \(( {\alpha,m,r} )\)-concavity.

If in Definition 2.4, \(\alpha,m =1\), then we obtain the definition of \({r_{g}}\)-mean concavity.

If in Definition 2.4, \(\alpha,m =1\) and \(g=\mathrm{id}\), then we obtain the definition of r-mean concavity [45].

If in Definition 2.4, \(r=1\), then we obtain the definition of \({ ( {\alpha,m} )_{g}}\)-concavity.

If in Definition 2.4, \(r=1\) and \(g=\mathrm{id}\), then we obtain the definition of \(( {\alpha,m} )\)-concavity [18].

If \(( {\alpha, m, r} ) \in \{ { ( {0,0,1} ), ( {1,m,1} ), ( {1,1,1} ), ( {\alpha,1,1} )} \}\) and \(g=\mathrm{id}\) in Definition 2.4, we obtain the following classes of functions: decreasing, m-concave, concave, and α-concave.

3 Berwald-type inequalities for Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave function

The following Berwald inequality is well known [46].

Let f be a nonnegative concave function on \([ {a,b} ]\). Then, for all u, v such that \(0 < u< v < \infty\),

$$ {{{{ ( {1 + v} )}^{{1 \over v}}}} \over {{{ ( {1 + u} )}^{{1 \over u}}}}}{ \biggl( {{{\int_{a}^{b} {{f^{v}} ( x )\,dx} } \over {b - a}}} \biggr)^{{1 \over v}}} \le{ \biggl( {{{\int_{a}^{b} {{f^{u}} ( x )\,dx} } \over {b - a}}} \biggr)^{{1 \over u}}}. $$
(3.1)

Unfortunately, the following example shows that the Berwald inequality for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave functions is not valid.

Example

Consider \(X = [ {0,1} ]\) and μ be the Lebesgue measure on X. Take the function \(f ( x ) = g ( x ) = \sqrt {x} \); then \(f ( x )\) is a \({ ( {\frac{2}{3},\frac {1}{3},2} )_{\frac{1}{2}}}\)-concave function. In fact,

$$\begin{aligned} \sqrt {x} =& f \biggl( {{{ \biggl( {{x^{2}} \cdot{1^{2}} + { {1 \over 3}} \bigl( {1 - {x^{2}}} \bigr){0^{2}}} \biggr)}^{{ {1 \over 2}}}}} \biggr) \\ \ge&{ \biggl( {{{ \biggl( {{\sqrt[3]{{{x^{4}}}}} \cdot1 + { {1 \over 3}} \bigl( {1 - {\sqrt[3]{{{x^{4}}}}}} \bigr) \cdot 0} \biggr)}^{{ {1 \over 2}}}}} \biggr)^{2}} = \sqrt[3]{{{x^{4}}}} \end{aligned}$$

for \(x \in [ {0,1} ]\).

Let \(u = { {1 \over 3}}\) and \(v = { {1 \over 2}}\). A straightforward calculus shows that

$$\begin{aligned}& ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 2}}}} ( x )} \,d\mu = \bigvee_{\beta \in [ {0,1} ]} \beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {x \ge {\beta^{4}}} \bigr\} } \bigr) = 0.7245, \\& ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 3}}}} ( x )} \,d\mu = \bigvee_{\beta \in [ {0,1} ]} \beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {x \ge {\beta^{6}}} \bigr\} } \bigr) = 0.7781. \end{aligned}$$

Therefore,

$$0.4982 = \biggl( {\frac{{{{ ( {1 + { {1 \over 2}}} )}^{2}}}}{{{{ ( {1 + { {1 \over 3}}} )}^{3}}}}} \biggr){ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 2}}}} ( x )\,d\mu} } \biggr)^{2}} \ge{ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 3}}}} ( x )\,d\mu} } \biggr)^{3}} = 0.4711. $$

This proves that the Berwald inequality is not satisfied for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave functions.

Now we present Berwald inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}} \)-concave functions.

Theorem 3.1

Let \(( {\alpha,m} ) \in{ ( {0,1} ]^{2}}\), \(r \in \mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {0,1} ] \to[ {0,\infty} )\) be an \({ ( {\alpha,m,r} )_{g}}\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta \wedge{ \biggl( {1 - {{ \biggl( { \frac {{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}{{{{ ( {g \circ f} )}^{r}} ( 1 ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}} \biggr)}^{\frac {1}{{\alpha r}}}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge f ( 0 )\sqrt[r]{m} \wedge1. $$

Case (iii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta \wedge{ \biggl( {\frac{{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}{{{{ ( {g \circ f} )}^{r}} ( 1 ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}} \biggr)^{\frac{1}{{u\alpha r}}}}, $$

where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).

Proof

Let \(0 < u < v < \infty\) and \(( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu= t\). Since f is an \({ ( {\alpha,m,r} )_{g}}\)-concave function for \(x \in [ {0,1} ]\), we have

$$\begin{aligned} f ( x ) =& f \bigl( {{{ \bigl[ {{x^{r}} \cdot{1^{r}} + m \bigl( {1 - {x^{r}}} \bigr) \cdot{0^{r}}} \bigr]}^{1/r}}} \bigr) \\ \geq& {g^{ - 1}} \bigl( {{{ \bigl[ {{x^{\alpha r}} {{ ( {g \circ f} )}^{r}} ( 1 ) + m \bigl( {1 - {x^{\alpha r}}} \bigr){{ ( {g \circ f} )}^{r}} ( 0 )} \bigr]}^{1/r}}} \bigr) = h ( x ). \end{aligned}$$

By Proposition 2.2(3) we have

$$\begin{aligned}& { \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \\& \quad \ge { \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{h^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} = { \biggl( { \bigvee_{\gamma \in [ {0,1} ]} \bigl( {\gamma \wedge \mu \bigl( { [ {0,1} ] \cap \bigl\{ {{h^{u}} \ge\gamma} \bigr\} } \bigr)} \bigr)} \biggr)^{\frac {1}{u}}} \\& \quad = { \biggl( { \bigvee_{\gamma \in [ {0,1} ]} \bigl( {\gamma \wedge \mu \bigl( { [ {0,1} ] \cap \bigl\{ {h \ge{\gamma^{\frac{1}{u}}}} \bigr\} } \bigr)} \bigr)} \biggr)^{\frac{1}{u}}} \\& \quad = {\left ( { \bigvee_{\gamma \in [ {0,1} ]} \left( {\gamma \wedge\mu \left( { [ {0,1} ] \cap \left \{ {x\Big| { \textstyle\begin{array}{l} { ( {{{ ( {g \circ f} )}^{r}} ( 1 ) - m{{ ( {g \circ f} )}^{r}} ( 0 )} ){x^{\alpha r}}} \\ \quad \ge{g^{r}} ( {{\gamma^{\frac{1}{u}}}} ) - m{{ ( {g \circ f} )}^{r}} ( 0 ) \end{array}\displaystyle } } \right \}} \right)} \right)} \right )^{\frac{1}{u}}} \\& \quad \ge {\left ( {{{ \biggl( {\frac{{{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{t^{\frac{1}{v}}}} \biggr)}^{u}} \wedge\mu \left( { [ {0,1} ] \cap \left \{ {x\bigg| { \textstyle\begin{array}{l} { ( {{{ ( {g \circ f} )}^{r}} ( 1 ) - m{{ ( {g \circ f} )}^{r}} ( 0 )} ){x^{\alpha r}}} \\ \quad \ge{g^{r}} ( {\frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{t^{\frac {1}{v}}}} ) - m{{ ( {g \circ f} )}^{r}} ( 0 ) \end{array}\displaystyle } } \right \}} \right)} \right )^{\frac{1}{u}}}. \end{aligned}$$

By Proposition 2.2(1) and Remark 2.3 we get:

Case (i). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta \wedge{ \biggl( {1 - {{ \biggl( { \frac {{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}{{{{ ( {g \circ f} )}^{r}} ( 1 ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}} \biggr)}^{\frac {1}{{\alpha r}}}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge f ( 0 )\sqrt[r]{m} \wedge1. $$

Case (iii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta \wedge{ \biggl( {\frac{{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}{{{{ ( {g \circ f} )}^{r}} ( 1 ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}} \biggr)^{\frac{1}{{u\alpha r}}}}, $$

where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).

This completes the proof. □

Remark 3.2

If \(\alpha = 0\) in Theorem 3.1, then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\min \bigl\{ {f ( 1 ),1} \bigr\} . $$

Example

Consider \(X = [ {0,1} ]\) with the Lebesgue measure μ on it. Take the function \(f ( x ) = g ( x ) = \sqrt {x} \); then \(f ( x )\) is a \({ ( {\frac{2}{3},\frac {1}{3},2} )_{\frac{1}{2}}}\)-concave function. In fact,

$$\sqrt {x} = f \biggl( {{{ \biggl( {{x^{2}} \cdot{1^{2}} + { {1 \over 3}} \bigl( {1 - {x^{2}}} \bigr){0^{2}}} \biggr)}^{{ {1 \over 2}}}}} \biggr) \ge{ \biggl( {{{ \biggl( {{\sqrt[3]{{{x^{4}}}}} \cdot1 + { {1 \over 3}} \bigl( {1 - {\sqrt[3]{{{x^{4}}}}}} \bigr) \cdot 0} \biggr)}^{{ {1 \over 2}}}}} \biggr)^{2}} = \sqrt[3]{{{x^{4}}}} $$

for \(x \in [ {0,1} ]\).

Let \(u = { {1 \over 3}}\) and \(v = { {1 \over 2}}\). A straightforward calculus shows that

$$\begin{aligned}& ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 2}}}} ( x )} \,d\mu = \bigvee _{\beta \in [ {0,1} ]} \beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {x \ge { \beta^{4}}} \bigr\} } \bigr) = 0.7245, \\& ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 3}}}} ( x )} \,d\mu = \bigvee _{\beta \in [ {0,1} ]} \beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {x \ge { \beta^{6}}} \bigr\} } \bigr) = 0.7781, \\& \biggl( {\frac{{{{ ( {1 + { {1 \over 2}}} )}^{2}}}}{{{{ ( {1 + { {1 \over 3}}} )}^{3}}}}} \biggr){ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 2}}}} ( x )\,d\mu} } \biggr)^{2}} = 0.4982. \end{aligned}$$

By Theorem 3.1 we have

$$\begin{aligned} 0.4711 =& { \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 3}}}} ( x )\,d\mu} } \biggr)^{3}} \\ \ge& \biggl( {\frac{{{{ ( {1 + { {1 \over 2}}} )}^{2}}}}{{{{ ( {1 + { {1 \over 3}}} )}^{3}}}}} \biggr){ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{{ {1 \over 2}}}} ( x )\,d\mu} } \biggr)^{2}} \\ &{}\wedge{ \biggl( {{{ \biggl( {1 - \biggl( {\frac{{ ( {\frac{{{{ ( {1 + { {1 \over 2}}} )}^{2}}}}{{{{ ( {1 + { {1 \over 3}}} )}^{3}}}}} ){{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{{ {1 \over 2}}}} ( x )\,d\mu} } )}^{2}} - { {1 \over 3}}\sqrt{0} }}{{\sqrt{1} - { {1 \over 3}}\sqrt{0} }}} \biggr)} \biggr)}^{\frac{3}{4}}}} \biggr)^{3}} \\ =& 0.4982 \wedge0.0674 = 0.0674. \end{aligned}$$

Now, we will prove the general cases of Theorem 3.1.

Theorem 3.3

Let \(( {\alpha,m} ) \in{ ( {0,1} ]^{2}}\), \(r \in \mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m,r} )_{g}}\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) > 0\), then

$$\begin{aligned}& { \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \\& \quad \ge\beta\wedge{ \biggl( {b - {{ \biggl( {{{ \biggl( { \frac{{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - m{{ ( {g \circ f} )}^{r}} ( a )}}} \biggr)}^{1/\alpha}} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, \end{aligned}$$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) < 0\), then

$$\begin{aligned}& { \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \\& \quad \ge\beta \wedge{ \biggl( {{{ \biggl( {{{ \biggl( { \frac {{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - m{{ ( {g \circ f} )}^{r}} ( a )}}} \biggr)}^{1/\alpha }} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, \end{aligned}$$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Proof

Let \(0 < u < v < \infty\) and \(( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu = t\). Since f is an \({ ( {\alpha,m,r} )_{g}}\)-concave function for \(x \in [ {a,b} ]\), we have

$$\begin{aligned} f ( x ) =& f \biggl( {{{ \biggl[ {m \biggl( {1 - \frac {{{x^{r}} - m{a^{r}}}}{{{b^{r}} - m{a^{r}}}}} \biggr) {a^{r}} + \frac{{{x^{r}} - m{a^{r}}}}{{{b^{r}} - m{a^{r}}}} {b^{r}}} \biggr]}^{1/r}}} \biggr) \\ \ge& {g^{ - 1}} \biggl( \biggl[ {m \biggl( {1 - {{ \biggl( { \frac{{x^{r} - m{a^{r}}}}{{{b^{r}} - m{a^{r}}}}} \biggr)}^{\alpha}}} \biggr){{ ( {g \circ f} )}^{r}} ( a ) + {{ \biggl( {\frac{{x^{r} - m{a^{r}}}}{{{b^{r}} - m{a^{r}}}}} \biggr)}^{\alpha}} {{ ( {g \circ f} )}^{r}} ( b )} \biggr]^{1/r} \biggr) = h( x ). \end{aligned}$$

By Proposition 2.2(3) we have

$$\begin{aligned}& { \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \\& \quad \ge { \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{h^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} = { \biggl( { \bigvee_{\gamma \in [ {0,b-a} ]} \bigl( {\gamma \wedge \mu \bigl( { [ {a,b} ] \cap \bigl\{ { x |h \ge{\gamma^{\frac{1}{u}}}} \bigr\} } \bigr)} \bigr)} \biggr)^{\frac{1}{u}}} \\& \quad = {\left ( { \bigvee_{\gamma \in [ {0,b-a} ]} \left( {\gamma \wedge\mu \left( { [ {a,b} ] \cap \left \{ {x\Big| { \textstyle\begin{array}{l} { ( {{{ ( {g \circ f} )}^{r}} ( b ) - m{{ ( {g \circ f} )}^{r}} ( a )} ){{ ( {\frac{{{x^{r}} - m{a^{r}}}}{{{b^{r}} - m{a^{r}}}}} )}^{\alpha}}} \\ \quad \ge{g^{r}} ( {\gamma^{{ {1 \over u}}}} ) - m{{ ( {g \circ f} )}^{r}} ( a ) \end{array}\displaystyle } } \right \}} \right)} \right)} \right )^{\frac{1}{u}}} \\& \quad \ge \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ \biggl( {\frac{t}{{b - a}}} \biggr)^{\frac{1}{v}}} \\& \qquad {}\wedge{ \left ( {\mu \left( { [ {a,b} ] \cap \left \{ {x \bigg| { \textstyle\begin{array}{l} { ( {{{ ( {g \circ f} )}^{r}} ( b ) - m{{ ( {g \circ f} )}^{r}} ( a )} ){{ ( {\frac{{{x^{r}} - m{a^{r}}}}{{{b^{r}} - m{a^{r}}}}} )}^{\alpha}}} \\ \quad \ge{g^{r}} ( {\frac{{{{ ( {b - a} )}^{\frac {1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{{ ( {\frac{t}{{b - a}}} )}^{\frac {1}{v}}}} ) - m{{ ( {g \circ f} )}^{r}} ( a ) \end{array}\displaystyle } } \right \}} \right)} \right )^{{ {1 \over u}}}}. \end{aligned}$$

By Proposition 2.2(1) and Remark 2.3 we get:

Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) > 0\), then

$$\begin{aligned}& { \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \\& \quad \ge\beta \wedge{ \biggl( {b - {{ \biggl( {{{ \biggl( { \frac{{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - m{{ ( {g \circ f} )}^{r}} ( a )}}} \biggr)}^{1/\alpha}} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, \end{aligned}$$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{t^{\frac{1}{v}}} \wedge{f ( a ) \sqrt[{ur}]{m}}. $$

Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) < 0\), then

$$\begin{aligned}& { \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \\& \quad \ge\beta \wedge{ \biggl( {{{ \biggl( {{{ \biggl( { \frac{{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - m{{ ( {g \circ f} )}^{r}} ( a )}}} \biggr)}^{1/\alpha }} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, \end{aligned}$$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

This completes the proof. □

Remark 3.4

If \(\alpha = 0\) in Theorem 3.3, then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\min \bigl\{ {f ( b ),{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Example

Consider \(X = [ {1,2} ]\) with the Lebesgue measure μ on it. Take the functions \(f ( x ) = \ln(x + 2)\) and \(g ( x ) = \mathrm{id}\); \(f ( x )\) is a \(( {1,0,3} )\)-concave function. In fact,

$$\begin{aligned} \ln(x + 2) =& f \biggl( {{{ \biggl[ { \biggl( {\frac{{{x^{3}} - 0 \cdot{1^{3}}}}{{{2^{3}} - 0 \cdot{1^{3}}}}} \biggr) \cdot{2^{3}} + 0 \biggl( {1 - \biggl( {\frac{{{x^{3}} - 0 \cdot{1^{3}}}}{{{2^{3}} - 0 \cdot{1^{3}}}}} \biggr)} \biggr) \cdot{1^{3}}} \biggr]}^{1/3}}} \biggr) \\ \ge& { \biggl[ { \biggl( {\frac{{{x^{3}} - 0 \cdot {1^{3}}}}{{{2^{3}} - 0 \cdot{1^{3}}}}} \biggr) \cdot{{ \ln}^{3}}(4) + 0 \biggl( {1 - {{ \biggl( {\frac{{{x^{3}} - 0 \cdot{1^{3}}}}{{{2^{3}} - 0 \cdot{1^{3}}}}} \biggr)}^{1/2}}} \biggr) \cdot{{\ln}^{3}}(3)} \biggr]^{1/3}} = \frac{{\ln(4)}}{2}x \end{aligned}$$

for \(x \in [ {1,2} ]\).

Let \(u = { {1 \over 2}}\) and \(v = 2\). A straightforward calculus shows that

$$\begin{aligned}& ( \mathrm{S} ) \int_{1}^{2} {{f^{2}} ( x )} \,d\mu = \bigvee_{\beta \in [ {1,2} ]} \beta \wedge\mu \bigl( { [ {1,2} ] \cap \bigl\{ {{{\ln}^{2}}(x + 2) \ge\beta} \bigr\} } \bigr) = 1.1194, \\& ( \mathrm{S} ) \int_{1}^{2} {{f^{\frac{1}{2}}} ( x )} \,d\mu = \bigvee_{\beta \in [ {1,2} ]} \beta \wedge \mu \bigl( { [ {1,2} ] \cap \bigl\{ {\ln(x + 2) \ge{\beta ^{2}}} \bigr\} } \bigr) = 1.0415, \\& \biggl( {\frac{{{{ ( {2 - 1} )}^{2}} \cdot{{ ( {1 + 2} )}^{\frac{1}{2}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} \biggr){ \biggl( {\frac{{ ( \mathrm{S} )\int_{1}^{2} {{f^{2}} ( x )\,d\mu} }}{{2 - 1}}} \biggr)^{\frac{1}{2}}} = 0.8144. \end{aligned}$$

By Theorem 3.3 we have

$$\begin{aligned} 0.4260 =& 0.8144 \wedge0.4260 \\ =& \biggl( {\frac{{{{ ( {2 - 1} )}^{2}} \cdot{{ ( {1 + 2} )}^{\frac{1}{2}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} \biggr){ \biggl( {\frac{{ ( \mathrm{S} )\int_{1}^{2} {{f^{2}} ( x )\,d\mu} }}{{2 - 1}}} \biggr)^{\frac {1}{2}}} \\ &{}\wedge{ \biggl( {2 - {{ \biggl( { \biggl( {\frac{{ ( {\frac{{{{ ( {2 - 1} )}^{2}} \cdot{{ ( {1 + 2} )}^{\frac {1}{2}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} ){{ ( {\frac{{ ( \mathrm{S} )\int_{1}^{2} {{f^{2}} ( x )\,d\mu} }}{{2 - 1}}} )}^{\frac{1}{2}}} - 0 \cdot{{\ln}^{3}}(3)}}{{{{\ln}^{3}}(4) - 0 \cdot{{\ln}^{3}}(3)}}} \biggr) \cdot{2^{3}}} \biggr)}^{\frac{1}{3}}}} \biggr)^{2}} \\ \le& { \biggl( { ( \mathrm{S} ) \int_{1}^{2} {{f^{\frac{1}{2}}} ( x )\,d\mu} } \biggr)^{2}} = 1.0847. \end{aligned}$$

Now we consider some special cases of \({ ( {\alpha,m,r} )_{g}}\)-concave functions in Theorem 3.3.

Remark 3.5

Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r \in\mathbb{R}\), \(r \neq0\), \(g=\mathrm{id}\), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(( {\alpha,m,r} )\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({f^{r}} ( b ) - m{f^{r}} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( {b - {{ \biggl( {{{ \biggl( { \frac {{{\beta^{r}} - m{f^{r}} ( a )}}{{{f^{r}} ( b ) - m{f^{r}} ( a )}}} \biggr)}^{1/\alpha}} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({f^{r}} ( b ) - m{f^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({f^{r}} ( b ) - m{f^{r}} ( a )< 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( {{{ \biggl( {{{ \biggl( { \frac {{{\beta^{r}} - m{f^{r}} ( a )}}{{{f^{r}} ( b ) - m{f^{r}} ( a )}}} \biggr)}^{1/\alpha}} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.6

Let \(\alpha = m = 1\), \(r \in\mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({r_{g}}\)-mean concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( {b - {{ \biggl( { \biggl( { \frac {{{g^{r}} ( \beta ) - {{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - {{ ( {g \circ f} )}^{r}} ( a )}}} \biggr) \bigl( {{b^{r}} - {a^{r}}} \bigr) + {a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( {{{ \biggl( { \biggl( { \frac {{{g^{r}} ( \beta ) - {{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - {{ ( {g \circ f} )}^{r}} ( a )}}} \biggr) \bigl( {{b^{r}} - {a^{r}}} \bigr) + {a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.7

Let \(\alpha = m = 1\), \(r \in\mathbb{R}\), \(r \ne0\), \(g=\mathrm{id} \), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an r-mean concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({f^{r}} ( b ) - {f^{r}} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( {b - {{ \biggl( { \biggl( { \frac {{{\beta^{r}} - {f^{r}} ( a )}}{{{f^{r}} ( b ) - {f^{r}} ( a )}}} \biggr) \bigl( {{b^{r}} - {a^{r}}} \bigr) + {a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({f^{r}} ( b ) - {f^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({f^{r}} ( b ) - {f^{r}} ( a ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( {{{ \biggl( { \biggl( { \frac {{{\beta^{r}} - {f^{r}} ( a )}}{{{f^{r}} ( b ) - {f^{r}} ( a )}}} \biggr) \bigl( {{b^{r}} - {a^{r}}} \bigr) + {a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.8

Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r=1\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m} )_{g}}\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( { \biggl( {1 - {{ \biggl( { \frac {{g ( \beta ) - m ( {g \circ f} ) ( a )}}{{ ( {g \circ f} ) ( b ) - m ( {g \circ f} ) ( a )}}} \biggr)}^{1/\alpha}}} \biggr) ( {b - ma} )} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( { \biggl( {{{ \biggl( { \frac {{g ( \beta ) - m ( {g \circ f} ) ( a )}}{{ ( {g \circ f} ) ( b ) - m ( {g \circ f} ) ( a )}}} \biggr)}^{1/\alpha}} ( {b - ma} ) + ma} \biggr) - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.9

Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r=1\), \(g=\mathrm{id} \), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(( {\alpha,m} )\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({f} ( b ) - m{f} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( { \biggl( {1 - {{ \biggl( { \frac {{\beta - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{1/\alpha}}} \biggr) ( {b - ma} )} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({f} ( b ) - m{f} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({f} ( b ) - m{f} ( a ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \ge\beta\wedge{ \biggl( { \biggl( {{{ \biggl( { \frac {{\beta - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{1/\alpha}} ( {b - ma} ) + ma} \biggr) - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.10

Let \(g=\mathrm{id} \) and \(\alpha=m=r=1\) in Theorem 3.3. Then we obtain the Berwald inequalities for the fuzzy integral of concave functions [32].

As in the proofs of Theorems 3.1 and 3.3, we can similarly obtain some reverse inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-convex functions.

Remark 3.11

Let \(( {\alpha,m} ) \in{ ( {0,1} ]^{2}}\), \(r \in \mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {0,1} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m,r} )_{g}}\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \leq\beta \vee{ \biggl( {1 - {{ \biggl( { \frac {{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}{{{{ ( {g \circ f} )}^{r}} ( 1 ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}} \biggr)}^{\frac {1}{{\alpha r}}}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\min \bigl\{ {f ( 1 ),1} \bigr\} . $$

Case (iii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \leq\beta \vee{ \biggl( {\frac{{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}{{{{ ( {g \circ f} )}^{r}} ( 1 ) - m{{ ( {g \circ f} )}^{r}} ( 0 )}}} \biggr)^{\frac{1}{{u\alpha r}}}}, $$

where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).

Example

Consider \(X = [ {0,1} ]\) with the Lebesgue measure μ on it. Take the function \(f ( x ) = {x^{2}}\) and \(g ( x ) = {x^{3}}\); then \(f ( x )\) is a \(( {\frac {1}{3},\frac{2}{3},3} )_{3}\)-convex function. In fact,

$$\begin{aligned} {x^{2}} &= f \biggl( {{{ \biggl( {{x^{3}} \cdot{1^{3}} + \frac{2}{3} \bigl( {1 - {x^{3}}} \bigr){0^{3}}} \biggr)}^{\frac{1}{3}}}} \biggr) \\ &\le{ \biggl( {{{ \biggl( {x \cdot1 + \frac{2}{3} ( {1 - x} ) \cdot0} \biggr)}^{\frac{1}{3}}}} \biggr)^{\frac{1}{3}}} = \sqrt[9]{x} \end{aligned}$$

for \(x \in [ {0,1} ]\).

Let \(u = { {1 \over 2}}\) and \(v = 2\). A straightforward calculus shows that

$$\begin{aligned}& ( \mathrm{S} ) \int_{0}^{1} {{f^{\frac{1}{2}}} ( x )} \,d\mu = \bigvee _{\beta \in [ {0,1} ]} \beta \wedge \mu \bigl( { [ {0,1} ] \cap \{ {x \ge\beta} \}} \bigr) = 0.5, \\& ( \mathrm{S} ) \int_{0}^{1} {{f^{2}} ( x )} \,d\mu = \bigvee _{\beta \in [ {0,1} ]} \beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{x^{4}} \ge\beta} \bigr\} } \bigr) = 0.2755, \\& \biggl( {\frac{{{{ ( {1 + 2} )}^{{ {1 \over 2}}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} \biggr){ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{2}} ( x )\,d\mu} } \biggr)^{{ {1 \over 2}}}} = 0.4041. \end{aligned}$$

By Remark 3.11 we have

$$\begin{aligned} 0.9994 =& 0.4041 \vee0.9994 \\ =& \biggl( {\frac{{{{ ( {1 + 2} )}^{{ {1 \over 2}}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} \biggr){ \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{2}} ( x )\,d\mu} } \biggr)^{{ {1 \over 2}}}} \\ &{}\vee{ \biggl( {1 - \biggl( {\frac{{{{ ( { ( {\frac{{{{ ( {1 + 2} )}^{\frac{1}{2}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} ){{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{2}} ( x )\,d\mu} } )}^{\frac{1}{2}}}} )}^{9}} - 0}}{{1 - 0}}} \biggr)} \biggr)^{2}} \\ \ge& { \biggl( { ( \mathrm{S} ) \int_{0}^{1} {{f^{\frac{1}{2}}} ( x )\,d\mu} } \biggr)^{2}} = 0.25. \end{aligned}$$

Remark 3.12

Let \(( {\alpha,m} ) \in{ ( {0,1} ]^{2}}\), \(r \in \mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m,r} )_{g}}\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) > 0\), then

$$\begin{aligned} \begin{aligned} &{ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \\ &\quad \leq\beta\vee{ \biggl( {b - {{ \biggl( {{{ \biggl( { \frac{{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - m{{ ( {g \circ f} )}^{r}} ( a )}}} \biggr)}^{1/\alpha}} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, \end{aligned} \end{aligned}$$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) < 0\), then

$$\begin{aligned}& { \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \\& \quad \leq\beta \vee{ \biggl( {{{ \biggl( {{{ \biggl( { \frac {{{g^{r}} ( \beta ) - m{{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - m{{ ( {g \circ f} )}^{r}} ( a )}}} \biggr)}^{1/\alpha }} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, \end{aligned}$$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.13

If \(\alpha = 0\) in Remark 3.12, then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\min \bigl\{ {f ( b ),{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Example

Consider \(X = [ {1,4} ]\) with the Lebesgue measure μ on it. Take the function \(f ( x ) = \sqrt{{x^{3}}} \) and \(g ( x ) = \sqrt[3]{x}\); then \(f ( x )\) is a \(( {\frac{1}{3},0,3} )_{\frac{1}{3}}\)-convex function. In fact,

$$\begin{aligned} \sqrt{{x^{3}}} =& f \biggl( {{{ \biggl[ { \biggl( { \frac {{{x^{3}} - 0 \cdot{1^{3}}}}{{{4^{3}} - 0 \cdot{1^{3}}}}} \biggr) \cdot{4^{3}} + 0 \biggl( {1 - \biggl( { \frac{{{x^{3}} - 0 \cdot{1^{3}}}}{{{4^{3}} - 0 \cdot {1^{3}}}}} \biggr)} \biggr) \cdot{1^{3}}} \biggr]}^{1/3}}} \biggr) \\ \le& { \biggl( {{{ \biggl[ {{{ \biggl( {\frac{{{x^{3}} - 0 \cdot{1^{3}}}}{{{4^{3}} - 0 \cdot{1^{3}}}}} \biggr)}^{1/3}} \cdot8 + 0 \biggl( {1 - {{ \biggl( {\frac{{{x^{3}} - 0 \cdot{1^{3}}}}{{{4^{3}} - 0 \cdot {1^{3}}}}} \biggr)}^{1/3}}} \biggr) \cdot1} \biggr]}^{1/3}}} \biggr)^{3}} =2x \end{aligned}$$

for \(x \in [ {1,4} ]\).

Let \(u = { {1 \over 2}}\) and \(v = 2\). A straightforward calculus shows that

$$\begin{aligned}& ( \mathrm{S} ) \int_{1}^{4} {{f^{2}} ( x )} \,d\mu = \bigvee_{\beta \in [ {1,4} ]} \beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{x^{3}} \ge\beta} \bigr\} } \bigr) = 2.6212, \\& ( \mathrm{S} ) \int_{1}^{4} {{f^{{ {1 \over 2}}}} ( x )} \,d\mu = \bigvee_{\beta \in [ {1,4} ]} \beta \wedge\mu \bigl( { [ {0,1} ] \cap \bigl\{ {{x^{{ {3 \over 4}}}} \ge\beta} \bigr\} } \bigr) = 1.8040, \\& \biggl( {\frac{{{3^{2}} \cdot{{ ( {1 + 2} )}^{\frac {1}{2}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} \biggr){ \biggl( {\frac{{ ( \mathrm{S} )\int_{1}^{4} {{f^{2}} ( x )\,d\mu} }}{{4 - 1}}} \biggr)^{\frac{1}{2}}} = 6.4760. \end{aligned}$$

By Remark 3.12 we have

$$\begin{aligned} 6.4760 =& 6.4760 \vee0.0740 \\ =& \biggl( {\frac{{{3^{2}} \cdot{{ ( {1 + 2} )}^{\frac{1}{2}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} \biggr){ \biggl( {\frac{{ ( \mathrm{S} )\int_{1}^{4} {{f^{2}} ( x )\,d\mu} }}{{4 - 1}}} \biggr)^{\frac{1}{2}}} \\ &{}\vee{ \biggl( {4 - {{ \biggl( { \biggl( {\frac{{ ( {\frac{{{3^{2}} \cdot {{ ( {1 + 2} )}^{\frac{1}{2}}}}}{{{{ ( {1 + \frac{1}{2}} )}^{2}}}}} ){{ ( {\frac{{ ( \mathrm{S} )\int_{1}^{4} {{f^{2}} ( x )\,d\mu} }}{{4 - 1}}} )}^{\frac{1}{2}}} - 0}}{{8 - 0}}} \biggr) \cdot{4^{3}}} \biggr)}^{\frac{1}{3}}}} \biggr)^{2}} \\ \ge& { \biggl( { ( \mathrm{S} ) \int_{1}^{4} {{f^{{ {1 \over 2}}}} ( x )\,d\mu} } \biggr)^{2}} = 3.2544. \end{aligned}$$

Now we consider some special cases of \({ ( {\alpha,m,r} )_{g}}\)-convex functions in Remark 3.12.

Remark 3.14

Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r \in\mathbb{R}\), \(r \neq0\), \(g=\mathrm{id}\), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(( {\alpha,m,r} )\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({f^{r}} ( b ) - m{f^{r}} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( {b - {{ \biggl( {{{ \biggl( { \frac {{{\beta^{r}} - m{f^{r}} ( a )}}{{{f^{r}} ( b ) - m{f^{r}} ( a )}}} \biggr)}^{1/\alpha}} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({f^{r}} ( b ) - m{f^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({f^{r}} ( b ) - m{f^{r}} ( a )< 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( {{{ \biggl( {{{ \biggl( { \frac {{{\beta^{r}} - m{f^{r}} ( a )}}{{{f^{r}} ( b ) - m{f^{r}} ( a )}}} \biggr)}^{1/\alpha}} \bigl( {{b^{r}} - m{a^{r}}} \bigr) + m{a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.15

Let \(\alpha = m = 1\), \(r \in\mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(r_{g}\)-mean convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( {b - {{ \biggl( { \biggl( { \frac {{{g^{r}} ( \beta ) - {{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - {{ ( {g \circ f} )}^{r}} ( a )}}} \biggr) \bigl( {{b^{r}} - {a^{r}}} \bigr) + {a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( {{{ \biggl( { \biggl( { \frac {{{g^{r}} ( \beta ) - {{ ( {g \circ f} )}^{r}} ( a )}}{{{{ ( {g \circ f} )}^{r}} ( b ) - {{ ( {g \circ f} )}^{r}} ( a )}}} \biggr) \bigl( {{b^{r}} - {a^{r}}} \bigr) + {a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.16

Let \(\alpha = m = 1\), \(r \in\mathbb{R}\), \(r \ne0\), \(g=\mathrm{id} \), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an r-mean convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({f^{r}} ( b ) - {f^{r}} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( {b - {{ \biggl( { \biggl( { \frac {{{\beta^{r}} - {f^{r}} ( a )}}{{{f^{r}} ( b ) - {f^{r}} ( a )}}} \biggr) \bigl( {{b^{r}} - {a^{r}}} \bigr) + {a^{r}}} \biggr)}^{1/r}}} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({f^{r}} ( b ) - {f^{r}} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({f^{r}} ( b ) - {f^{r}} ( a ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( {{{ \biggl( { \biggl( { \frac {{{\beta^{r}} - {f^{r}} ( a )}}{{{f^{r}} ( b ) - {f^{r}} ( a )}}} \biggr) \bigl( {{b^{r}} - {a^{r}}} \bigr) + {a^{r}}} \biggr)}^{1/r}} - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.17

Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r=1\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m} )_{g}}\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( { \biggl( {1 - {{ \biggl( { \frac {{g ( \beta ) - m ( {g \circ f} ) ( a )}}{{ ( {g \circ f} ) ( b ) - m ( {g \circ f} ) ( a )}}} \biggr)}^{1/\alpha}}} \biggr) ( {b - ma} )} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( { \biggl( {{{ \biggl( { \frac {{g ( \beta ) - m ( {g \circ f} ) ( a )}}{{ ( {g \circ f} ) ( b ) - m ( {g \circ f} ) ( a )}}} \biggr)}^{1/\alpha}} ( {b - ma} ) + ma} \biggr) - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.18

Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r=1\), \(g=\mathrm{id} \), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(( {\alpha,m} )\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:

Case (i). If \({f} ( b ) - m{f} ( a ) > 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( { \biggl( {1 - {{ \biggl( { \frac {{\beta - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{1/\alpha}}} \biggr) ( {b - ma} )} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Case (ii). If \({f} ( b ) - m{f} ( a ) = 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\min \bigl\{ {f ( a )\sqrt[r]{m},{{ ( {b - a} )}^{\frac{1}{u}}}} \bigr\} . $$

Case (iii). If \({f} ( b ) - m{f} ( a ) < 0\), then

$${ \biggl( { ( \mathrm{S} ) \int_{a}^{b} {{f^{u}} ( x )\,d\mu} } \biggr)^{\frac{1}{u}}} \le\beta\wedge{ \biggl( { \biggl( {{{ \biggl( { \frac {{\beta - mf ( a )}}{{f ( b ) - mf ( a )}}} \biggr)}^{1/\alpha}} ( {b - ma} ) + ma} \biggr) - a} \biggr)^{\frac{1}{u}}}, $$

where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).

Remark 3.19

Let \(g=\mathrm{id} \) and \(\alpha=m=r=1\) in Remark 3.12. Then we obtain the Berwald inequalities for the fuzzy integral of convex functions [32].

4 Conclusion

In this paper, we have discussed the Berwald inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave functions. We have provided the reverse inequalities as well. As open problems for future research, it would be interesting to explore Berwald inequalities for other generalizations of the fuzzy integral. We will investigate these problems in the future.

References

  1. Sugeno, M: Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology (1974)

  2. Mesiar, R: Choquet-like integrals. J. Math. Anal. Appl. 194, 477-488 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shilkret, N: Maxitive measure and integration. Indag. Math. 74, 109-116 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Weber, S: -Decomposable measures and integrals for Archimedean t-conorms . Fuzzy Sets Syst. 101, 114-138 (1984)

    MATH  Google Scholar 

  5. Wu, C, Wang, S, Ma, M: Generalized fuzzy integrals. Part I: Fundamental concepts. Fuzzy Sets Syst. 57, 219-226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, Y: Chebyshev type inequalities for general fuzzy integrals. Inf. Sci. 278, 822-825 (2014)

    Article  Google Scholar 

  7. Agahi, H: λ-Generalized Sugeno integral and its application. Inf. Sci. 305, 384-394 (2015)

    Article  MathSciNet  Google Scholar 

  8. Ichihashi, H, Tanaka, H, Asai, K: Fuzzy integrals based on pseudo-additions and multiplications. J. Math. Anal. Appl. 130, 354-364 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jang, LC: A note on the interval-valued generalized fuzzy integral by means of an interval-representable pseudo-multiplication and their convergence properties. Fuzzy Sets Syst. 222, 45-57 (2013)

    Article  MATH  Google Scholar 

  10. Grbić, T, Štajner-Papuga, I, Štrboja, M: An approach to pseudo-integration of set-valued functions. Inf. Sci. 181, 2278-2292 (2011)

    Article  MATH  Google Scholar 

  11. Suárez García, F, Gil Álvarez, P: Two families of fuzzy integrals. Fuzzy Sets Syst. 18, 67-81 (1986)

    Article  MATH  Google Scholar 

  12. Klement, EP, Mesiar, R, Pap, E: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 18, 178-187 (2010)

    Article  Google Scholar 

  13. Wang, ZY, Klir, GJ: Generalized Measure Theory. Springer, New York (2008)

    Google Scholar 

  14. Hanson, MA: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ben-Israel, A, Mond, B: What is invexity? J. Aust. Math. Soc. Ser. B, Appl. Math 28, 1-9 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Breckner, WW: Stetigkeitsaussagen für eine klasse verallgemeinerter konvexer funktionen in topologischen linearen raumen. Publ. Inst. Math. 23, 13-20 (1978)

    MathSciNet  Google Scholar 

  17. Varošanec, S: On h-convexity. J. Math. Anal. Appl. 326, 303-311 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mihesan, VG: A generalization of the convexity. In: Seminar on Functional Equations, Approximation and Convexity, Romania (1993)

    Google Scholar 

  19. Özdemir, ME, Avci, M, Kavurmaci, H: Hermite-Hadamard-type inequalities via \(({\alpha,m} )\)-convexity. Comput. Math. Appl. 61, 2614-2620 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Özdemir, ME, Kavurmaci, H, Set, E: Ostrowski’s type inequalities for \(( {\alpha,m} )\)-convex functions. Kyungpook Math. J. 50, 371-378 (2010)

    Article  MathSciNet  Google Scholar 

  21. Latif, MA, Shoaib, M: Hermite-Hadamard type integral inequalities for differentiable m-preinvex and \(({\alpha,m} )\)-preinvex functions. J. Egypt. Math. Soc. 23, 236-241 (2015)

    Article  MathSciNet  Google Scholar 

  22. Gill, PM, Pearce, CEM, Pečarić, J: Hadamard’s inequality for r-convex functions. J. Math. Anal. Appl. 215, 461-470 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Flores-Franulič, A, Román-Flores, H: A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190, 1178-1184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: The fuzzy integral for monotone functions. Appl. Math. Comput. 185, 492-498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Jensen type inequality for fuzzy integrals. Inf. Sci. 177, 3129-3201 (2007)

    Article  Google Scholar 

  26. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Hardy-type inequality for fuzzy integrals. Appl. Math. Comput. 204, 178-183 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A convolution type inequality for fuzzy integrals. Appl. Math. Comput. 195, 94-99 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Flores-Franulič, A, Román-Flores, H, Chalco-Cano, Y: A note on fuzzy integral inequality of Stolarsky type. Appl. Math. Comput. 196, 55-59 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Flores-Franulič, A, Román-Flores, H, Chalco-Cano, Y: Markov type inequalities for fuzzy integrals. Appl. Math. Comput. 207, 242-247 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Agahi, H, Mesiar, R, Ouyang, Y: New general extensions of Chebyshev type inequalities for Sugeno integral. Int. J. Approx. Reason. 51, 135-140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Agahi, H, Mesiar, R, Ouyang, Y: Hölder type inequality for Sugeno integral. Fuzzy Sets Syst. 161, 2337-2347 (2010)

    Article  MathSciNet  Google Scholar 

  32. Agahi, H, Mesiar, R, Ouyang, Y, Pap, E, Štrboja, M: Berwald type inequality for Sugeno integral. Appl. Math. Comput. 217, 4100-4108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Agahi, H, Mesiar, R, Ouyang, Y: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 161, 708-715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Agahi, H, Román-Flores, H, Flores-Franulič, A: General Barnes-Godunova-Levin type inequalities for Sugeno integral. Inf. Sci. 181, 1072-1079 (2011)

    Article  MATH  Google Scholar 

  35. Caballero, J, Sadarangani, K: A Cauchy-Schwarz type inequality for fuzzy integrals. Nonlinear Anal. 73, 3329-3335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Caballero, J, Sadarangani, K: Chebyshev inequality for Sugeno integrals. Fuzzy Sets Syst. 161, 1480-1487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Caballero, J, Sadarangani, K: Fritz Carlson’s inequality for fuzzy integrals. Comput. Math. Appl. 59, 2763-2767 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Caballero, J, Sadarangani, K: Sandor’s inequality for Sugeno integrals. Appl. Math. Comput. 218, 1617-1622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ouyang, Y, Fang, J, Wang, L: Fuzzy Chebyshev type inequality. Int. J. Approx. Reason. 48, 829-835 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ouyang, Y, Fang, J: Sugeno integral of monotone functions based on Lebesgue measure. Comput. Math. Appl. 56, 367-374 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mesiar, R, Ouyang, Y: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets Syst. 160, 58-64 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ouyang, Y, Mesiar, R, Agahi, H: An inequality related to Minkowski type for Sugeno integrals. Inf. Sci. 180, 2793-2801 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Agahi, H, Mohammadpour, A, Mesiar, R, Vaezpour, SM: Useful tools for non-linear systems: several non-linear integral inequalities. Knowl.-Based Syst. 49, 73-80 (2013)

    Article  Google Scholar 

  44. Song, YZ, Song, XQ, Li, DQ, Yue, T: Berwald type inequality for extremal universal integrals based on \(({\alpha, m} )\)-concave function. J. Math. Inequal. 9, 1-15 (2015)

    Article  MathSciNet  Google Scholar 

  45. Xi, BY, Qi, F: Some inequalities of Qi type for double integrals. J. Egypt. Math. Soc. 22, 337-340 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Pečarić, JE, Proschan, F, Tong, YL: Convex Functions, Partial Ordering and Statistical Applications. Academic Press, New York (1991)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61273143, 61472424) and Fundamental Research Funds for the Central Universities (2013RC10, 2013RC12, and 2014YC07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hu Cheng.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to this paper, and they read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, DQ., Cheng, YH., Wang, XS. et al. Berwald-type inequalities for Sugeno integral with respect to \({ ( {\alpha,m,r} )_{g}}\)-concave functions. J Inequal Appl 2016, 25 (2016). https://doi.org/10.1186/s13660-016-0974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-016-0974-7

MSC

Keywords