- Research
- Open access
- Published:
Berwald-type inequalities for Sugeno integral with respect to \({ ( {\alpha,m,r} )_{g}}\)-concave functions
Journal of Inequalities and Applications volume 2016, Article number: 25 (2016)
Abstract
In this paper, we introduce the concept of an \({ ( {\alpha,m,r} )_{g}}\)-concave function as a generalization of a concave function. Then we establish Berwald-type inequalities for the Sugeno integral based on this kind of functions. Our work generalizes the previous results in the literature. Finally, we give some conclusions and problems for further investigations.
1 Introduction
As a tool for modeling nondeterministic problems, fuzzy measures and a fuzzy integral introduced by Sugeno in [1] have been successfully applied to various fields. The fuzzy integral provides a practical tool for many problems in engineering and social choice, where the aggregation of data is required. However, the practicality of fuzzy integral is restricted for the special operators used in the construction. Thus, many scholars have generalized the Sugeno integral by using some other operators to replace the special operator(s) ∨ and/or ∧. They proposed the Choquet-like integral [2], the Shilkret integral [3], ⊥-integral [4], the generalized fuzzy integral [5], the Sugeno-like integral [6], the λ-generalized Sugeno integral [7], the pseudo-integral [8], the interval-valued generalized fuzzy integral [9], and the set-valued pseudo-integral [10]. Suárez García and Gil Álvarez [11] presented two families of fuzzy integrals, the so-called seminormed fuzzy integral and semiconormed fuzzy integral. Klement et al. [12] investigated a concept of universal integrals generalizing both the Choquet integral and the Sugeno integral. Wang and Klir [13] provided a general overview on fuzzy measurement and fuzzy integration.
The integral inequalities are significant mathematical tools both in theory and applications. Different integral inequalities including Chebyshev, Jensen, Hölder, and Minkowski inequalities are widely used in various fields of mathematics, such as probability theory, differential equations, decision-making under risk, forecasting of time-series, and information sciences.
The convexity for a given function is one of the most powerful tools in establishing analytic inequalities. Especially, there are many important applications in the theory of higher transcendental functions. However, for many problems encountered in economics and engineering, the notion of convexity is unsuitable. Hence, it is necessary to extend the notion of convexity, and various generalizations of convexity have appeared in the literature. Hanson [14] gave the notion of invexity as a significant generalization of classical convexity. Ben-Israel and Mond [15] studied the preinvex functions, a special case of invex functions. Breckner [16] introduced the s-convex functions, and Varošanec [17] presented the h-convex functions as a generalization of convex functions. Mihesan [18] proposed the definition of \(( {\alpha ,m} )\)-convex functions. For recent results and generalizations concerning m-convex and \(( {\alpha,m} )\)-convex functions, see [19, 20]. Latif and Shoaib [21] discussed the concept of m-preinvex functions and \(( {\alpha,m} )\)-preinvex functions. Gill et al. [22] provided the concept of r-mean convex functions.
On the other hand, recently, some researchers have showed that several integral inequalities hold not only in the classical context but also for the fuzzy context. Román-Flores et al. investigated several kinds of classical integral inequalities for fuzzy integral including a Chebyshev-type inequality [23], a Young-type inequality [24], a Jensen-type inequality [25], a Hardy-type inequality [26], a convolution-type inequality [27], a Stolarsky-type inequality [28], and a Markov-type inequality [29]. Agahi et al. proved a general Chebyshev-type inequality [30], a Hölder-type inequality [31], a Berwald-type inequality [32], a general Minkowski-type inequality [33], and a general Barnes-Godun-Levin-type inequality [34] for the Sugeno integral. Caballero and Sadarangani presented Cauchy-Schwarz [35], Chebyshev [36], Fritz Carlson [37], and Sandor [38] inequalities for the Sugeno integral. Mesiar and Ouyang proposed Chebyshev [39], Yong [40], general Chebyshev [41], and Minkowski [42] inequalities for Sugeno integral.
Agahi et al. [32] illustrated a Berwald-type inequality for the Sugeno integral of a convex function. Agahi et al. [43] also obtained a Berwald-type inequality for a universal integral based on a convex function. Song et al. [44] proved Berwald-type inequalities for an extreme universal integral from the situation of convex functions to \(( {\alpha,m} )\)-convex functions. Particularly, for pseudo-multiplication ⊗ = ∧, a Berwald-type inequality for the Sugeno integral based on \(( {\alpha,m} )\)-concave functions is obtained. The purpose of this paper is to prove Berwald-type inequalities for the Sugeno integral related to \({ ( {\alpha,m,r} )_{g}}\)-concavity. Some examples are given to illustrate the results.
After some preliminaries of some known results on the Sugeno integral and the notion of an \({ ( {\alpha,m,r} )_{g}}\)-concave function in Section 2, Section 3 deals with Berwald inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave functions and reverse Berwald-type inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-convex functions. Finally, some examples are given to illustrate the results and some remarks are obtained as special cases.
2 Preliminaries
In this section, we recall some basic definitions and properties of the fuzzy integral and introduce the \({ ( {\alpha,m,r} )_{g}}\)-convex functions. For details, we refer the reader to Refs. [1, 13].
Suppose that ℘ is a σ-algebra of subsets of X and let \(\mu:\wp \to[0,\infty)\) be a nonnegative, extended real-valued set function. We say that μ is a fuzzy measure if it satisfies:
-
(1)
\(\mu ( \emptyset ) = 0\);
-
(2)
\(E,F \in\wp\) and \(E \subset F\) imply \(\mu ( E ) \le\mu ( F )\);
-
(3)
\(\{ {{E_{n}}} \} \subset\wp\), \({E_{1}} \subset{E_{2}} \subset \cdots\), imply \({\lim_{n \to\infty}}\mu ( {{E_{n}}} ) = \mu ( {\bigcup_{n = 1}^{\infty}{{E_{n}}} } )\);
-
(4)
\(\{ {{E_{n}}} \} \subset\wp\), \({E_{1}} \supset{E_{2}} \supset \cdots\), \(\mu ( {{E_{1}}} ) < \infty\), imply \({\lim_{n \to\infty}}\mu ( {{E_{n}}} ) = \mu ( {\bigcap_{n = 1}^{\infty}{{E_{n}}} } )\).
If f is a nonnegative real-valued function defined on X, we denote the set \(\{ x \in X:f ( x ) \ge\alpha \} = \{ {x \in X:f \ge\alpha} \}\) by \({F_{\alpha }}\) for \(\alpha \ge0\). Note that if \(\alpha \le\beta\), then \({F_{\beta }} \subset {F_{\alpha }}\).
Let \(( {X,\wp,\mu} )\) be a fuzzy measure space. We denote by \({M^{+} }\) the set of all nonnegative measurable functions with respect to ℘.
Definition 2.1
(Sugeno [1])
Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, \(f \in{M^{+} }\), and \(A \in\wp\). The Sugeno integral (or the fuzzy integral) of f on A with respect to the fuzzy measure μ is defined as
when \(A = X\),
where ∨ and ∧ denote the operations sup and inf on \([ {0,\infty} )\), respectively.
The properties of the fuzzy integral are well known and can be found in [13].
Proposition 2.2
Let \(( {X,\wp,\mu} )\) be a fuzzy measure space, \(A,B \in \wp\), and \(f,g \in{M^{+} }\). Then:
-
(1)
\(( \mathrm{S} )\int_{A} {f\,d\mu \le\mu ( A )} \);
-
(2)
\(( \mathrm{S} )\int_{A} {k\, d\mu} = k \wedge\mu ( A )\) for a nonnegative constant k;
-
(3)
\(( \mathrm{S} )\int_{A} {f\,d\mu} \le ( \mathrm{S} )\int_{A} {g\,d\mu} \) if \(f \le g\);
-
(4)
\(\mu ( {A \cap \{ {f \ge\alpha} \}} ) \ge\alpha\) ⇒ \(( \mathrm{S} )\int_{A} {f\,d\mu} \ge \alpha\);
-
(5)
\(\mu ( {A \cap \{ {f \ge\alpha} \}} ) \le\alpha\) ⇒ \(( \mathrm{S} )\int_{A} {f\,d\mu} \le \alpha\);
-
(6)
\(( \mathrm{S} )\int_{A} {f\,d\mu} > \alpha\) ⇔ there exists \(\gamma > \alpha\) such that \(\mu ( {A \cap \{ {f \ge\gamma} \}} ) > \alpha\);
-
(7)
\(( \mathrm{S} )\int_{A} {f\,d\mu} < \alpha\) ⇔ there exists \(\gamma < \alpha\) such that \(\mu ( {A \cap \{ {f \ge\gamma} \}} ) < \alpha\).
Remark 2.3
Consider the distribution function F associated to f on A, that is, \(F ( \alpha ) = \mu ( {A \cap \{ {f \ge \alpha} \}} )\). Then, due to (4) and (5) of Proposition 2.2, we have \(F ( \alpha ) = \alpha \Rightarrow ( \mathrm{S} )\int_{A} {f\,d\mu} = \alpha\). Thus, from a numerical point of view, the fuzzy integral can be calculated by solving the equation \(F ( \alpha ) = \alpha\).
Definition 2.4
Let \(I \subseteq\mathbb{R}\) be an interval, \(\lambda, \alpha, m \in [ {0,1} ]\), \(r \in\mathbb{R}\), and g be a continuous and monotonous function on \(\mathbb{R}\). A function \(f:I \to\mathbb{R}\) is said to be \({ ( {\alpha,m,r} )_{g}}\)-concave on I if, for all \(x,y \in I\),
or
By reversing the inequalities we obtain the definition of an \({ ( {\alpha,m,r} )_{g}}\)-convex function f on I.
Remark 2.5
If in Definition 2.4, \(g=\mathrm{id}\) (i.e., \(g ( x ) = x\) for any \(x \in I\)), then we obtain the definition of \(( {\alpha,m,r} )\)-concavity.
If in Definition 2.4, \(\alpha,m =1\), then we obtain the definition of \({r_{g}}\)-mean concavity.
If in Definition 2.4, \(\alpha,m =1\) and \(g=\mathrm{id}\), then we obtain the definition of r-mean concavity [45].
If in Definition 2.4, \(r=1\), then we obtain the definition of \({ ( {\alpha,m} )_{g}}\)-concavity.
If in Definition 2.4, \(r=1\) and \(g=\mathrm{id}\), then we obtain the definition of \(( {\alpha,m} )\)-concavity [18].
If \(( {\alpha, m, r} ) \in \{ { ( {0,0,1} ), ( {1,m,1} ), ( {1,1,1} ), ( {\alpha,1,1} )} \}\) and \(g=\mathrm{id}\) in Definition 2.4, we obtain the following classes of functions: decreasing, m-concave, concave, and α-concave.
3 Berwald-type inequalities for Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave function
The following Berwald inequality is well known [46].
Let f be a nonnegative concave function on \([ {a,b} ]\). Then, for all u, v such that \(0 < u< v < \infty\),
Unfortunately, the following example shows that the Berwald inequality for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave functions is not valid.
Example
Consider \(X = [ {0,1} ]\) and μ be the Lebesgue measure on X. Take the function \(f ( x ) = g ( x ) = \sqrt {x} \); then \(f ( x )\) is a \({ ( {\frac{2}{3},\frac {1}{3},2} )_{\frac{1}{2}}}\)-concave function. In fact,
for \(x \in [ {0,1} ]\).
Let \(u = { {1 \over 3}}\) and \(v = { {1 \over 2}}\). A straightforward calculus shows that
Therefore,
This proves that the Berwald inequality is not satisfied for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave functions.
Now we present Berwald inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}} \)-concave functions.
Theorem 3.1
Let \(( {\alpha,m} ) \in{ ( {0,1} ]^{2}}\), \(r \in \mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {0,1} ] \to[ {0,\infty} )\) be an \({ ( {\alpha,m,r} )_{g}}\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) > 0\), then
where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) = 0\), then
Case (iii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) < 0\), then
where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).
Proof
Let \(0 < u < v < \infty\) and \(( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu= t\). Since f is an \({ ( {\alpha,m,r} )_{g}}\)-concave function for \(x \in [ {0,1} ]\), we have
By Proposition 2.2(3) we have
By Proposition 2.2(1) and Remark 2.3 we get:
Case (i). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) > 0\), then
where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) = 0\), then
Case (iii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) < 0\), then
where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).
This completes the proof. □
Remark 3.2
If \(\alpha = 0\) in Theorem 3.1, then
Example
Consider \(X = [ {0,1} ]\) with the Lebesgue measure μ on it. Take the function \(f ( x ) = g ( x ) = \sqrt {x} \); then \(f ( x )\) is a \({ ( {\frac{2}{3},\frac {1}{3},2} )_{\frac{1}{2}}}\)-concave function. In fact,
for \(x \in [ {0,1} ]\).
Let \(u = { {1 \over 3}}\) and \(v = { {1 \over 2}}\). A straightforward calculus shows that
By Theorem 3.1 we have
Now, we will prove the general cases of Theorem 3.1.
Theorem 3.3
Let \(( {\alpha,m} ) \in{ ( {0,1} ]^{2}}\), \(r \in \mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m,r} )_{g}}\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) = 0\), then
Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Proof
Let \(0 < u < v < \infty\) and \(( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu = t\). Since f is an \({ ( {\alpha,m,r} )_{g}}\)-concave function for \(x \in [ {a,b} ]\), we have
By Proposition 2.2(3) we have
By Proposition 2.2(1) and Remark 2.3 we get:
Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) = 0\), then
Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
This completes the proof. □
Remark 3.4
If \(\alpha = 0\) in Theorem 3.3, then
Example
Consider \(X = [ {1,2} ]\) with the Lebesgue measure μ on it. Take the functions \(f ( x ) = \ln(x + 2)\) and \(g ( x ) = \mathrm{id}\); \(f ( x )\) is a \(( {1,0,3} )\)-concave function. In fact,
for \(x \in [ {1,2} ]\).
Let \(u = { {1 \over 2}}\) and \(v = 2\). A straightforward calculus shows that
By Theorem 3.3 we have
Now we consider some special cases of \({ ( {\alpha,m,r} )_{g}}\)-concave functions in Theorem 3.3.
Remark 3.5
Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r \in\mathbb{R}\), \(r \neq0\), \(g=\mathrm{id}\), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(( {\alpha,m,r} )\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({f^{r}} ( b ) - m{f^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({f^{r}} ( b ) - m{f^{r}} ( a ) = 0\), then
Case (iii). If \({f^{r}} ( b ) - m{f^{r}} ( a )< 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.6
Let \(\alpha = m = 1\), \(r \in\mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({r_{g}}\)-mean concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) = 0\), then
Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.7
Let \(\alpha = m = 1\), \(r \in\mathbb{R}\), \(r \ne0\), \(g=\mathrm{id} \), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an r-mean concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({f^{r}} ( b ) - {f^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({f^{r}} ( b ) - {f^{r}} ( a ) = 0\), then
Case (iii). If \({f^{r}} ( b ) - {f^{r}} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.8
Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r=1\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m} )_{g}}\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) = 0\), then
Case (iii). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.9
Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r=1\), \(g=\mathrm{id} \), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(( {\alpha,m} )\)-concave function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({f} ( b ) - m{f} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({f} ( b ) - m{f} ( a ) = 0\), then
Case (iii). If \({f} ( b ) - m{f} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.10
Let \(g=\mathrm{id} \) and \(\alpha=m=r=1\) in Theorem 3.3. Then we obtain the Berwald inequalities for the fuzzy integral of concave functions [32].
As in the proofs of Theorems 3.1 and 3.3, we can similarly obtain some reverse inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-convex functions.
Remark 3.11
Let \(( {\alpha,m} ) \in{ ( {0,1} ]^{2}}\), \(r \in \mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {0,1} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m,r} )_{g}}\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) > 0\), then
where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) = 0\), then
Case (iii). If \({ ( {g \circ f} )^{r}} ( 1 ) - m{ ( {g \circ f} )^{r}} ( 0 ) < 0\), then
where \(\beta = \frac{{{{ ( {1 + v} )}^{\frac {1}{v}}}}}{{{{ ( {1 + u} )}^{\frac{1}{u}}}}}{ ( { ( \mathrm{S} )\int_{0}^{1} {{f^{v}} ( x )} \,d\mu} )^{\frac{1}{v}}}\).
Example
Consider \(X = [ {0,1} ]\) with the Lebesgue measure μ on it. Take the function \(f ( x ) = {x^{2}}\) and \(g ( x ) = {x^{3}}\); then \(f ( x )\) is a \(( {\frac {1}{3},\frac{2}{3},3} )_{3}\)-convex function. In fact,
for \(x \in [ {0,1} ]\).
Let \(u = { {1 \over 2}}\) and \(v = 2\). A straightforward calculus shows that
By Remark 3.11 we have
Remark 3.12
Let \(( {\alpha,m} ) \in{ ( {0,1} ]^{2}}\), \(r \in \mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m,r} )_{g}}\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) = 0\), then
Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - m{ ( {g \circ f} )^{r}} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.13
If \(\alpha = 0\) in Remark 3.12, then
Example
Consider \(X = [ {1,4} ]\) with the Lebesgue measure μ on it. Take the function \(f ( x ) = \sqrt{{x^{3}}} \) and \(g ( x ) = \sqrt[3]{x}\); then \(f ( x )\) is a \(( {\frac{1}{3},0,3} )_{\frac{1}{3}}\)-convex function. In fact,
for \(x \in [ {1,4} ]\).
Let \(u = { {1 \over 2}}\) and \(v = 2\). A straightforward calculus shows that
By Remark 3.12 we have
Now we consider some special cases of \({ ( {\alpha,m,r} )_{g}}\)-convex functions in Remark 3.12.
Remark 3.14
Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r \in\mathbb{R}\), \(r \neq0\), \(g=\mathrm{id}\), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(( {\alpha,m,r} )\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({f^{r}} ( b ) - m{f^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({f^{r}} ( b ) - m{f^{r}} ( a ) = 0\), then
Case (iii). If \({f^{r}} ( b ) - m{f^{r}} ( a )< 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.15
Let \(\alpha = m = 1\), \(r \in\mathbb{R}\), \(r \ne0\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(r_{g}\)-mean convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) = 0\), then
Case (iii). If \({ ( {g \circ f} )^{r}} ( b ) - { ( {g \circ f} )^{r}} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.16
Let \(\alpha = m = 1\), \(r \in\mathbb{R}\), \(r \ne0\), \(g=\mathrm{id} \), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an r-mean convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({f^{r}} ( b ) - {f^{r}} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({f^{r}} ( b ) - {f^{r}} ( a ) = 0\), then
Case (iii). If \({f^{r}} ( b ) - {f^{r}} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.17
Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r=1\), g be a continuous and monotonous function, \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \({ ( {\alpha,m} )_{g}}\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) = 0\), then
Case (iii). If \({ ( {g \circ f} )} ( b ) - m{ ( {g \circ f} )} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.18
Let \(( {\alpha,m} ) \in{ [ {0,1} ]^{2}}\), \(r=1\), \(g=\mathrm{id} \), \(f: [ {a,b} ] \to [ {0,\infty} )\) be an \(( {\alpha,m} )\)-convex function, and μ be the Lebesgue measure on \(\mathbb{R}\). Then:
Case (i). If \({f} ( b ) - m{f} ( a ) > 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Case (ii). If \({f} ( b ) - m{f} ( a ) = 0\), then
Case (iii). If \({f} ( b ) - m{f} ( a ) < 0\), then
where \(\beta = \frac{{{{ ( {b - a} )}^{\frac{1}{u}}}{{ ( {1 + v} )}^{\frac{1}{v}}}}}{{{{ ( {1 + u} )}^{\frac {1}{u}}}}}{ ( {\frac{{ ( \mathrm{S} )\int_{a}^{b} {{f^{v}} ( x )} \,d\mu}}{{b - a}}} )^{\frac{1}{v}}}\).
Remark 3.19
Let \(g=\mathrm{id} \) and \(\alpha=m=r=1\) in Remark 3.12. Then we obtain the Berwald inequalities for the fuzzy integral of convex functions [32].
4 Conclusion
In this paper, we have discussed the Berwald inequalities for the Sugeno integral based on \({ ( {\alpha,m,r} )_{g}}\)-concave functions. We have provided the reverse inequalities as well. As open problems for future research, it would be interesting to explore Berwald inequalities for other generalizations of the fuzzy integral. We will investigate these problems in the future.
References
Sugeno, M: Theory of fuzzy integrals and its applications. PhD thesis, Tokyo Institute of Technology (1974)
Mesiar, R: Choquet-like integrals. J. Math. Anal. Appl. 194, 477-488 (1995)
Shilkret, N: Maxitive measure and integration. Indag. Math. 74, 109-116 (1971)
Weber, S: ⊥-Decomposable measures and integrals for Archimedean t-conorms ⊥. Fuzzy Sets Syst. 101, 114-138 (1984)
Wu, C, Wang, S, Ma, M: Generalized fuzzy integrals. Part I: Fundamental concepts. Fuzzy Sets Syst. 57, 219-226 (1993)
Hu, Y: Chebyshev type inequalities for general fuzzy integrals. Inf. Sci. 278, 822-825 (2014)
Agahi, H: λ-Generalized Sugeno integral and its application. Inf. Sci. 305, 384-394 (2015)
Ichihashi, H, Tanaka, H, Asai, K: Fuzzy integrals based on pseudo-additions and multiplications. J. Math. Anal. Appl. 130, 354-364 (1988)
Jang, LC: A note on the interval-valued generalized fuzzy integral by means of an interval-representable pseudo-multiplication and their convergence properties. Fuzzy Sets Syst. 222, 45-57 (2013)
Grbić, T, Štajner-Papuga, I, Štrboja, M: An approach to pseudo-integration of set-valued functions. Inf. Sci. 181, 2278-2292 (2011)
Suárez García, F, Gil Álvarez, P: Two families of fuzzy integrals. Fuzzy Sets Syst. 18, 67-81 (1986)
Klement, EP, Mesiar, R, Pap, E: A universal integral as common frame for Choquet and Sugeno integral. IEEE Trans. Fuzzy Syst. 18, 178-187 (2010)
Wang, ZY, Klir, GJ: Generalized Measure Theory. Springer, New York (2008)
Hanson, MA: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80, 545-550 (1981)
Ben-Israel, A, Mond, B: What is invexity? J. Aust. Math. Soc. Ser. B, Appl. Math 28, 1-9 (1986)
Breckner, WW: Stetigkeitsaussagen für eine klasse verallgemeinerter konvexer funktionen in topologischen linearen raumen. Publ. Inst. Math. 23, 13-20 (1978)
Varošanec, S: On h-convexity. J. Math. Anal. Appl. 326, 303-311 (2007)
Mihesan, VG: A generalization of the convexity. In: Seminar on Functional Equations, Approximation and Convexity, Romania (1993)
Özdemir, ME, Avci, M, Kavurmaci, H: Hermite-Hadamard-type inequalities via \(({\alpha,m} )\)-convexity. Comput. Math. Appl. 61, 2614-2620 (2011)
Özdemir, ME, Kavurmaci, H, Set, E: Ostrowski’s type inequalities for \(( {\alpha,m} )\)-convex functions. Kyungpook Math. J. 50, 371-378 (2010)
Latif, MA, Shoaib, M: Hermite-Hadamard type integral inequalities for differentiable m-preinvex and \(({\alpha,m} )\)-preinvex functions. J. Egypt. Math. Soc. 23, 236-241 (2015)
Gill, PM, Pearce, CEM, Pečarić, J: Hadamard’s inequality for r-convex functions. J. Math. Anal. Appl. 215, 461-470 (1997)
Flores-Franulič, A, Román-Flores, H: A Chebyshev type inequality for fuzzy integrals. Appl. Math. Comput. 190, 1178-1184 (2007)
Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: The fuzzy integral for monotone functions. Appl. Math. Comput. 185, 492-498 (2007)
Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Jensen type inequality for fuzzy integrals. Inf. Sci. 177, 3129-3201 (2007)
Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A Hardy-type inequality for fuzzy integrals. Appl. Math. Comput. 204, 178-183 (2008)
Román-Flores, H, Flores-Franulič, A, Chalco-Cano, Y: A convolution type inequality for fuzzy integrals. Appl. Math. Comput. 195, 94-99 (2008)
Flores-Franulič, A, Román-Flores, H, Chalco-Cano, Y: A note on fuzzy integral inequality of Stolarsky type. Appl. Math. Comput. 196, 55-59 (2008)
Flores-Franulič, A, Román-Flores, H, Chalco-Cano, Y: Markov type inequalities for fuzzy integrals. Appl. Math. Comput. 207, 242-247 (2009)
Agahi, H, Mesiar, R, Ouyang, Y: New general extensions of Chebyshev type inequalities for Sugeno integral. Int. J. Approx. Reason. 51, 135-140 (2009)
Agahi, H, Mesiar, R, Ouyang, Y: Hölder type inequality for Sugeno integral. Fuzzy Sets Syst. 161, 2337-2347 (2010)
Agahi, H, Mesiar, R, Ouyang, Y, Pap, E, Štrboja, M: Berwald type inequality for Sugeno integral. Appl. Math. Comput. 217, 4100-4108 (2010)
Agahi, H, Mesiar, R, Ouyang, Y: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 161, 708-715 (2010)
Agahi, H, Román-Flores, H, Flores-Franulič, A: General Barnes-Godunova-Levin type inequalities for Sugeno integral. Inf. Sci. 181, 1072-1079 (2011)
Caballero, J, Sadarangani, K: A Cauchy-Schwarz type inequality for fuzzy integrals. Nonlinear Anal. 73, 3329-3335 (2010)
Caballero, J, Sadarangani, K: Chebyshev inequality for Sugeno integrals. Fuzzy Sets Syst. 161, 1480-1487 (2010)
Caballero, J, Sadarangani, K: Fritz Carlson’s inequality for fuzzy integrals. Comput. Math. Appl. 59, 2763-2767 (2010)
Caballero, J, Sadarangani, K: Sandor’s inequality for Sugeno integrals. Appl. Math. Comput. 218, 1617-1622 (2011)
Ouyang, Y, Fang, J, Wang, L: Fuzzy Chebyshev type inequality. Int. J. Approx. Reason. 48, 829-835 (2008)
Ouyang, Y, Fang, J: Sugeno integral of monotone functions based on Lebesgue measure. Comput. Math. Appl. 56, 367-374 (2008)
Mesiar, R, Ouyang, Y: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets Syst. 160, 58-64 (2009)
Ouyang, Y, Mesiar, R, Agahi, H: An inequality related to Minkowski type for Sugeno integrals. Inf. Sci. 180, 2793-2801 (2010)
Agahi, H, Mohammadpour, A, Mesiar, R, Vaezpour, SM: Useful tools for non-linear systems: several non-linear integral inequalities. Knowl.-Based Syst. 49, 73-80 (2013)
Song, YZ, Song, XQ, Li, DQ, Yue, T: Berwald type inequality for extremal universal integrals based on \(({\alpha, m} )\)-concave function. J. Math. Inequal. 9, 1-15 (2015)
Xi, BY, Qi, F: Some inequalities of Qi type for double integrals. J. Egypt. Math. Soc. 22, 337-340 (2014)
Pečarić, JE, Proschan, F, Tong, YL: Convex Functions, Partial Ordering and Statistical Applications. Academic Press, New York (1991)
Acknowledgements
This work is supported by National Natural Science Foundation of China (61273143, 61472424) and Fundamental Research Funds for the Central Universities (2013RC10, 2013RC12, and 2014YC07).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to this paper, and they read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Li, DQ., Cheng, YH., Wang, XS. et al. Berwald-type inequalities for Sugeno integral with respect to \({ ( {\alpha,m,r} )_{g}}\)-concave functions. J Inequal Appl 2016, 25 (2016). https://doi.org/10.1186/s13660-016-0974-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-016-0974-7