Open Access

Optimal power mean bounds for the second Yang mean

Journal of Inequalities and Applications20162016:31

https://doi.org/10.1186/s13660-016-0970-y

Received: 21 July 2015

Accepted: 14 January 2016

Published: 28 January 2016

Abstract

In this paper, we present the best possible parameters p and q such that the double inequality
$$ M_{p}(a,b)< V(a,b)< M_{q}(a,b) $$
holds for all \(a, b>0\) with \(a\neq b\), where \(M_{r}(a,b)=[(a^{r}+b^{r})/2]^{1/r}\) (\(r\neq0\)) and \(M_{0}(a,b)= \sqrt {ab}\) is the rth power mean and \(V(a,b)=(a-b)/[\sqrt{2}\sinh^{-1}((a-b)/\sqrt{2ab})]\) is the second Yang mean.

Keywords

power meansecond Yang meanarithmetic meanquadratic meangeometric meanLehmer meanfirst Seiffert meanlogarithmic mean

MSC

26E60

1 Introduction

For \(r\in\mathbb{R}\), the rth power mean \(M_{r}(a,b)\) of two distinct positive real numbers a and b is defined by
$$ M_{r}(a,b)= \textstyle\begin{cases} (\frac{a^{r}+b^{r}}{2} )^{1/r},& r\neq0, \\ \sqrt{ab}, & r=0. \end{cases} $$
(1.1)

It is well known that \(M_{r}(a,b)\) is continuous and strictly increasing with respect to \(r\in\mathbb{R}\) for fixed \(a, b>0\) with \(a\neq b\). Many classical means are special cases of the power mean, for example, \(M_{-1}(a,b)=2ab/(a+b)=H(a,b)\) is the harmonic mean, \(M_{0}(a,b)=\sqrt{ab}=G(a,b)\) is the geometric mean, \(M_{1}(a,b)=(a+b)/2=A(a,b)\) is the arithmetic mean, and \(M_{2}(a,b)=\sqrt{(a^{2}+b^{2})/2}=Q(a,b)\) is the quadratic mean. The main properties for the power mean are given in [1].

Let
$$\begin{aligned}& L(a,b)=\frac{a-b}{\log a-\log b},\quad\quad I(a,b)=\frac{1}{e} \biggl(\frac{a^{a}}{b^{b}} \biggr)^{1/(a-b)},\quad\quad P(a,b)=\frac{a-b}{2\arcsin(\frac{a-b}{a+b} )}, \\& U(a,b)=\frac{a-b}{\sqrt{2}\arctan(\frac{a-b}{\sqrt{2ab}} )},\quad\quad T^{\ast }(a,b)=\frac{2}{\pi} \int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2} \theta+b^{2}\sin^{2}\theta}d\theta, \\& NS(a,b)=\frac{a-b}{2\sinh^{-1} (\frac{a-b}{a+b} )},\quad\quad X(a,b)=A(a,b)e^{G(a,b)/P(a,b)-1}, \\& T(a,b)=\frac{a-b}{2\arctan(\frac{a-b}{a+b} )},\quad\quad B(a,b)=Q(a,b)e^{A(a,b)/T(a,b)-1}, \end{aligned}$$
and
$$ V(a,b)=\frac{a-b}{\sqrt{2}\sinh^{-1} (\frac{a-b}{\sqrt{2ab}} )} $$
(1.2)
be, respectively, the logarithmic mean, identric mean, first Seiffert mean [2], first Yang mean [3], Toader mean [4], Neuman-Sándor mean [5, 6], Sándor mean [7], second Seiffert mean [8], Sándor-Yang mean [3], and second Yang mean [3] of two distinct positive real numbers a and b, where \(\sinh^{-1}(x)=\log(x+\sqrt {x^{2}+1})\) is the inverse hyperbolic sine function.
Recently, the bounds for certain bivariate means in terms of the power mean have attracted the attention of many mathematicians. Radó [9] (see also [1012]) proved that the double inequalities
$$ \begin{aligned} &M_{p}(a,b)< L(a,b)< M_{q}(a,b), \\ &M_{\lambda}(a,b)< I(a,b)< M_{\mu}(a,b) \end{aligned} $$
(1.3)
hold for all \(a, b>0\) with \(a\neq b\) if and only if \(p\leq0\), \(q\geq 1/3\), \(\lambda\leq2/3\), and \(\mu\geq\log2\).
In [1316], the authors proved that the double inequality
$$ M_{p}(a,b)< T^{\ast}(a,b)< M_{q}(a,b) $$
holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\leq3/2\) and \(q\geq\log2/(\log\pi-\log2)\).
Jagers [17], Hästö [18, 19], Yang [20], and Costin and Toader [21] proved that \(p_{1}=\log2/\log\pi\), \(q_{1}=2/3\), \(p_{2}=\log 2/(\log\pi-\log2)\), and \(q_{2}=5/3\) are the best possible parameters such that the double inequalities
$$ \begin{aligned} &M_{p_{1}}(a,b)< P(a,b)< M_{q_{1}}(a,b), \\ &M_{p_{2}}(a,b)< T(a,b)< M_{q_{2}}(a,b) \end{aligned} $$
(1.4)
hold for all \(a, b>0\) with \(a\neq b\).
In [2126], the authors proved that the double inequalities
$$\begin{aligned}& M_{\lambda_{1}}(a,b)< NS(a,b)< M_{\mu_{1}}(a,b), \\& M_{\lambda_{2}}(a,b)< U(a,b)< M_{\mu_{2}}(a,b), \\& M_{\lambda_{3}}(a,b)< X(a,b)< M_{\mu_{3}}(a,b), \end{aligned}$$
hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda_{1}\leq \log2/\log[2\log(1+\sqrt{2})]\), \(\mu_{1}\geq4/3\), \(\lambda_{2}\leq 2\log2/(2\log\pi-\log2)\), \(\mu_{2}\geq4/3\), \(\lambda_{3}\leq1/3\), and \(\mu_{3}\geq\log2/(1+\log2)\).
Very recently, Yang and Chu [27] showed that \(p=4\log2/(4+2\log2-\pi )\) and \(q=4/3\) are the best possible parameters such that the double inequality
$$ M_{p}(a,b)< B(a,b)< M_{q}(a,b) $$
holds for all \(a, b>0\) with \(a\neq b\).
The main purpose of this paper is to present the best possible parameters p and q such that the double inequality
$$ M_{p}(a,b)< V(a,b)< M_{q}(a,b) $$
holds for all \(a, b>0\) with \(a\neq b\).

2 Lemmas

In order to prove our main results we need three lemmas, which we present in this section.

Lemma 2.1

Let \(t>0\), \(p\in\mathbb{R}\), and
$$\begin{aligned} f(t, p) =& 2\sinh\bigl[2(p-1)t\bigr] +\sinh\bigl[2(p+1)t\bigr]+\sinh\bigl[2(p-2)t \bigr] \\ &{} +p\sinh(4t)-\sinh(2t). \end{aligned}$$
(2.1)
Then the following statements are true:
  1. (i)

    \(f(t,p)>0\) for all \(t>0\) if and only if \(p\geq2/3\);

     
  2. (ii)

    \(f(t,p)<0\) for all \(t>0\) if and only if \(p\leq0\).

     

Proof

It follows from (2.1) that
$$\begin{aligned} \frac{\partial f(t,p)}{\partial t} =&\sinh(4t)+4t\cosh\bigl[2(p-1)t\bigr] +2t\cosh\bigl[2(p+1)t\bigr]+2t\cosh\bigl[2(p-2)t\bigr] \\ >&0 \end{aligned}$$
(2.2)
for all \(t>0\) and \(p\in\mathbb{R}\).
(i) If \(f(t,p)>0\) for all \(t>0\), then (2.1) leads to
$$ \lim_{t\rightarrow0^{+}}\frac{f(t, p)}{t}=12 \biggl(p-\frac{2}{3} \biggr)\geq0, $$
which gives \(p\geq2/3\).
If \(p\geq2/3\), then (2.1) and (2.2) lead to the conclusion that
$$\begin{aligned} f(t,p) \geq& f \biggl(t, \frac{2}{3} \biggr)=\frac{2}{3}\sinh(4t)- \sinh(2t)-2\sinh\biggl(\frac{2}{3}t \biggr) -\sinh\biggl( \frac{8}{3}t \biggr)+\sinh\biggl(\frac{10}{3}t \biggr) \\ =&\frac{8}{3}\sinh^{3} \biggl(\frac{2}{3}t \biggr) \cosh\biggl(\frac{2}{3}t \biggr) \biggl[8\cosh^{2} \biggl( \frac{2}{3}t \biggr) +6\cosh\biggl(\frac{2}{3}t \biggr)-3 \biggr]>0 \end{aligned}$$
for all \(t>0\).
(ii) If \(f(t, p)<0\) for all \(t>0\), then from part (i) we know that \(p<2/3\). We assert that \(p\leq0\), otherwise \(0< p<2/3\) and (2.1) leads to
$$\begin{aligned}& \lim_{t\rightarrow+\infty}\frac{f(t, p)}{e^{4t}} \\& \quad=\lim_{t\rightarrow+\infty}\frac{-2\sinh[2(1-p)t]+\sinh[2(1+p)t]-\sinh [2(2-p)t]+p\sinh(4t)-\sinh(2t)}{e^{4t}} \\& \quad=\frac{p}{2}>0, \end{aligned}$$
which contradicts with \(f(t, p)<0\) for all \(t>0\). 
If \(p\leq0\), then from (2.1) and (2.2) we have
$$ f(t,p)\leq f(t, 0)=-2\sinh(2t)-\sinh(4t)< 0 $$
for all \(t>0\). □

Lemma 2.2

The double inequality
$$ \bigl[\cosh(pt)\bigr]^{1/p}< \frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt {2}\sinh(t)]}< \bigl[\cosh(qt) \bigr]^{1/q} $$
(2.3)
holds for all \(t>0\) if and only if \(p\leq0\) and \(q\geq2/3\). Here
$$\bigl[\cosh(pt)\bigr]^{1/p}\big|_{p=0}:=\lim_{p\rightarrow0}\bigl[\cosh(pt)\bigr]^{1/p}. $$

Proof

Let \(t>0\), \(p\in\mathbb{R}\) and \(F(t, p)\) be defined by
$$ F(t, p)=\log\biggl[\frac{\sqrt{2}\sinh(t)}{\sinh^{-1} (\sqrt{2}\sinh (t) )} \biggr]-\frac{1}{p}\log\bigl[ \cosh(pt)\bigr]. $$
(2.4)
Then making use of the power series formulas
$$\begin{aligned}& \sinh(t)=t+\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\frac{t^{7}}{7!}+\cdots =\sum _{n=0}^{\infty}\frac{t^{2n+1}}{(2n+1)!}, \\& \cosh(t)=1+\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\frac{t^{6}}{6!}+\cdots =\sum _{n=0}^{\infty}\frac{t^{2n}}{(2n)!}, \\& \sinh^{-1}(t)=t-\frac{1}{2}\times\frac{t^{3}}{3}+ \frac{1\times3}{2\times4}\times\frac{t^{5}}{5}-\frac{1\times3\times 5}{2\times4\times6}\times \frac{t^{7}}{7}+\cdots \\& \hphantom{\sinh^{-1}(t)}=\sum_{n=0}^{\infty}\frac{(-1)^{n}(2n)!t^{2n+1}}{2^{2n}(n!)^{2}(2n+1)} \end{aligned}$$
we get
$$ \log\biggl[\frac{\sqrt{2}\sinh(t)}{\sinh^{-1} (\sqrt{2}\sinh(t) )} \biggr]=\frac{t^{2}}{3}+o \bigl(t^{2} \bigr),\quad\quad \frac{1}{p}\log\bigl[\cosh(pt)\bigr]=- \frac{1}{2}pt^{2}+o\bigl(t^{2}\bigr) $$
(2.5)
for \(t\rightarrow0^{+}\).
It follows from (2.4) and (2.5) that
$$\begin{aligned}& F\bigl(0^{+}, p\bigr)=0, \end{aligned}$$
(2.6)
$$\begin{aligned}& \frac{\partial F(t, p)}{\partial t}=\frac{\cosh[(p-1)t]}{\sinh(t)\cosh (pt)\sinh^{-1}[\sqrt{2}\sinh(t)]}f_{1}(t, p), \end{aligned}$$
(2.7)
where
$$\begin{aligned}& f_{1}(t, p)=\sinh^{-1}\bigl[\sqrt{2}\sinh(t)\bigr]- \frac{\sqrt{2}\sinh(t)\cosh(pt)\cosh(t)}{\sqrt{\cosh(2t)}\cosh[(p-1)t]}, \end{aligned}$$
(2.8)
$$\begin{aligned}& f_{1}(0, p)=0, \end{aligned}$$
(2.9)
$$\begin{aligned}& \frac{\partial f_{1}(t, p)}{\partial t}=-\frac{\sqrt{2}\sinh(t)}{4[\cosh (2t)]^{3/2}\cosh^{2}[(p-1)t]}f(t,p), \end{aligned}$$
(2.10)
where \(f(t,p)\) is defined by Lemma 2.1.
$$ \lim_{t\rightarrow0}\frac{F(t,p)}{t^{2}}=-\frac{1}{2} \biggl(p- \frac{2}{3} \biggr) $$
(2.11)
and
$$ \lim_{t\rightarrow+\infty}F(t,p)=-\infty $$
(2.12)
if \(p>0\).
We first prove that the inequality
$$ \frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]}< \bigl[\cosh (pt)\bigr]^{1/p} $$
(2.13)
holds for all \(t>0\) if and only if \(p\geq2/3\).

If \(p\geq2/3\), then inequality (2.13) holds for all \(t>0\) follows easily from Lemma 2.1(i), (2.4), (2.6), (2.7), (2.9), and (2.10).

If inequality (2.13) holds for all \(t>0\), then (2.4) and (2.11) lead to \(p\geq2/3\).

Next, we prove that the inequality
$$ \frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]}>\bigl[\cosh (pt)\bigr]^{1/p} $$
(2.14)
holds for all \(t>0\) if and only if \(p\leq0\).

If \(p\leq0\), then that inequality (2.14) holds for all \(t>0\) follows easily from Lemma 2.1(ii), (2.4), (2.6), (2.7), (2.9), and (2.10).

If inequality (2.14) holds for all \(t>0\), then (2.4) leads to \(F(t,p)>0\). We assert that \(p\leq0\), otherwise \(p>0\) and (2.12) implies that there exists large enough \(T_{0}>0\) such that \(F(t, p)<0\) for \(t\in(T_{0}, \infty)\). □

Lemma 2.3

Let \(t>0\), \(p\in\mathbb{R}\), and \(f_{1}(t,p)\) be defined by (2.8). Then the following statements are true:
  1. (i)

    \(f_{1}(t,p)<0\) for all \(t>0\) if and only if \(p\geq2/3\);

     
  2. (ii)

    \(f(t,p)>0\) for all \(t>0\) if and only if \(p\leq0\).

     

Proof

(i) If \(p\geq2/3\), then \(f_{1}(t,p)<0\) for all \(t>0\) follows easily from (2.9) and (2.10) together with Lemma 2.1(i).

If \(f_{1}(t,p)<0\) for all \(t>0\), then (2.8) leads to
$$ \lim_{t\rightarrow0}\frac{f_{1}(t,p)}{t^{3}}=\frac{-\sqrt{2} (p-\frac {2}{3} )t^{3}+o(t^{3})}{t^{3}}=-\sqrt{2} \biggl(p-\frac{2}{3} \biggr)\leq0, $$
which gives \(p\geq2/3\).

(ii) If \(p\leq0\), then \(f_{1}(t,p)>0\) for all \(t>0\) follows easily from (2.9) and (2.10) together with Lemma 2.1(ii).

Note that
$$\begin{aligned}& \frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh(t)} \\& \quad=\frac{\sinh^{-1}[\sqrt{2}\sinh(t)]}{e^{(|p|-|p-1|)t}\sinh(t)}-\frac {\sqrt{2}\cosh(t)\cosh(pt)}{e^{(|p|-|p-1|)t}\cosh[(p-1)t]\sqrt{\cosh(2t)}} \\& \quad=\frac{\log[\sqrt{2}\sinh(t)+\sqrt{\cosh(2t)} ]}{e^{(|p|-|p-1|)t}\sinh (t)}-\frac{\sqrt{2} (1+e^{-2|p|t} )\cosh(t)}{ (1+e^{-2|p-1|t} )\sqrt{\cosh(2t)}}. \end{aligned}$$
(2.15)
If \(f_{1}(t,p)>0\) for all \(t>0\), then
$$ \lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}\geq0 $$
and we assert that \(p\leq0\). Otherwise, equation (2.15) leads to
$$ \lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}=-\frac{\sqrt{2}}{2}< 0 $$
if \(p=1\) and
$$ \lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}=-\sqrt{2}< 0 $$
if \(p\in(0, 1)\cup(1, \infty)\). □

3 Main results

Theorem 3.1

The double inequality
$$ M_{p}(a,b)< V(a,b)< M_{q}(a,b) $$
holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\leq0\) and \(q\geq2/3\).

Proof

Since both \(M_{r}(a,b)\) and \(V(a,b)\) are symmetric and homogeneous of degree 1, without loss of generality, we assume that \(a>b>0\). Let \(t=\frac{1}{2}\log(a/b)>0\) and \(r\in\mathbb{R}\), then (1.1) and (1.2) lead to
$$ V(a,b)=\sqrt{ab}V \biggl(\sqrt{\frac{a}{b}}, \sqrt{\frac{b}{a}} \biggr)=\sqrt{ab}V \bigl(e^{t}, e^{-t} \bigr) = \frac{\sqrt{2ab}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]} $$
(3.1)
and
$$ M_{r}(a,b)=\sqrt{ab}M_{r} \biggl(\sqrt{\frac{a}{b}}, \sqrt{\frac{b}{a}} \biggr)=\sqrt{ab}M_{r} \bigl(e^{t}, e^{-t} \bigr) =\sqrt{ab}\bigl[\cosh(rt)\bigr]^{1/r}. $$
(3.2)

Therefore, Theorem 3.1 follows easily from (3.1) and (3.2) together with Lemma 2.2. □

Theorem 3.2

The double inequality
$$ \frac{a^{p-1}+b^{p-1}}{a^{p}+b^{p}}\frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b}< V(a,b) < \frac{a^{q-1}+b^{q-1}}{a^{q}+b^{q}} \frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b} $$
holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\geq2/3\) and \(q\leq0\).

Proof

Without loss of generality, we assume that \(a>b>0\). Let \(t=\frac{1}{2}\log(a/b)>0\) and \(r\in\mathbb{R}\), then
$$ \frac{a^{r-1}+b^{r-1}}{a^{r}+b^{r}}\frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b}=\frac{\sqrt{ab}\cosh[(r-1)t]\sqrt{\cosh(2t)}}{\cosh(t)\cosh(rt)}. $$
(3.3)

Therefore, Theorem 3.2 follows easily from (3.1) and (3.3) together with Lemma 2.3. □

Let \(p\in\mathbb{R}\) and \(a, b>0\). Then the pth Lehmer mean [28] \(L_{p}(a,b)=\frac{a^{p+1}+b^{p+1}}{a^{p}+b^{p}}\) is strictly increasing with respect to \(p\in\mathbb{R}\) for fixed \(a, b>0\) with \(a\neq b\). From Theorem 3.2 we get Corollary 3.3 immediately.

Corollary 3.3

The double inequality
$$ \frac{Q(a,b)G^{2}(a,b)}{A(a,b)L_{p-1}(a,b)}< V(a,b)< \frac {Q(a,b)G^{2}(a,b)}{A(a,b)L_{q-1}(a,b)} $$
holds for all \(a, b>0\) with \(a\neq b\) if and only if \(p\geq2/3\) and \(q\leq0\).

Let \(p=2/3, 1, 2, +\infty\) and \(q=0, -1/2, -1, -2, -\infty\). Then Corollary 3.3 leads to

Corollary 3.4

The inequalities
$$\begin{aligned} \min\{a, b\}\frac{Q(a,b)}{A(a,b)} < &\frac{G^{2}(a,b)}{Q(a,b)}< \frac {G^{2}(a,b)Q(a,b)}{A^{2}(a,b)} \\ < &\frac {Q(a,b)G^{4/3}(a,b)M^{1/3}_{1/3}(a,b)}{A(a,b)M^{2/3}_{2/3}(a,b)}< V(a,b) < Q(a,b) \\ < &\frac{Q(a,b)[2A(a,b)-G(a,b)]}{A(a,b)} \\ < &\frac{Q^{3}(a,b)}{A^{2}(a,b)} < \frac {2Q^{2}(a,b)-G^{2}(a,b)}{Q(a,b)}< \max\{a, b\}\frac{Q(a,b)}{A(a,b)} \end{aligned}$$
hold for all \(a, b>0\) with \(a\neq b\).
From (1.3), (1.4), and Theorem 3.1 we clearly see that \(M_{2/3}(a,b)\) is the sharp upper power mean bound for the 2-order generalized logarithmic mean \(L^{1/2}(a^{2}, b^{2})\), the first Seiffert mean \(P(a,b)\), and the second Yang mean \(V(a,b)\). In [29], Theorem 3, Yang and Chu proved that the inequality
$$ P(a,b)>L^{1/r} \bigl(a^{r}, b^{r} \bigr) $$
(3.4)
holds for all \(a, b>0\) with \(a\neq b\) if and only if \(r\leq2\).

As a result of comparing \(V(a,b)\) with \(L^{1/2} (a^{2}, b^{2} )\), we have the following.

Theorem 3.5

The inequality
$$ V(a,b)< L^{1/2} \bigl(a^{2}, b^{2} \bigr) $$
holds for all \(a, b>0\) with \(a\neq b\).

Proof

We assume that \(a>b\). Let \(t=\frac{1}{2}\log(a/b)>0\), then
$$ L^{1/2} \bigl(a^{2}, b^{2} \bigr)= \biggl( \frac{a^{2}-b^{2}}{2(\log a-\log b)} \biggr)^{1/2}=\sqrt{ab}\sqrt{\frac {\sinh(2t)}{2t}}. $$
(3.5)
It follows from (3.1) and (3.5) that
$$\begin{aligned}& L^{1/2} \bigl(a^{2}, b^{2} \bigr)-V(a,b) \\& \quad=\frac{\sqrt{ab}\sqrt{\sinh(2t)}}{\sqrt{2t}\sinh^{-1} (\sqrt{2}\sinh(t) )} \bigl[\sinh^{-1} \bigl(\sqrt{2}\sinh(t) \bigr)- \sqrt{2t}\tanh(t) \bigr]. \end{aligned}$$
(3.6)
Let
$$ g(t)=\sinh^{-1} \bigl(\sqrt{2}\sinh(t) \bigr)-\sqrt{2t}\tanh(t). $$
(3.7)
Then simple computation leads to
$$\begin{aligned}& g(0)=0, \end{aligned}$$
(3.8)
$$\begin{aligned}& g^{\prime}(t)=\sqrt{2} \biggl(\frac{\cosh(t)}{\sqrt{\cosh(2t)}}-\frac {t+\sinh(t)\cosh(t)}{2\cosh^{2}(t)\sqrt{t\tanh(t)}} \biggr), \end{aligned}$$
(3.9)
$$\begin{aligned}& \biggl(\frac{\cosh(t)}{\sqrt{\cosh(2t)}} \biggr)^{2}- \biggl( \frac{t+\sinh(t)\cosh(t)}{2\cosh^{2}(t)\sqrt{t\tanh(t)}} \biggr)^{2} \\& \quad=\frac{\cosh^{2}(t)}{\cosh(2t)}-\frac{(t+\sinh(t)\cosh(t))^{2}}{4t\sinh (t)\cosh^{3}(t)} \\& \quad=\frac{(2t\cosh(2t)-\sinh(2t))(\sinh(2t)\cosh(2t)-2t)}{16t\sinh(t)\cosh (2t)\cosh^{3}(t)} \\& \quad =\frac{\sinh(4t)-4t}{16t\sinh(t)\cosh(2t)\cosh^{3}(t)} \biggl(\cosh(2t)- \frac{\sinh(2t)}{2t} \biggr)>0 \end{aligned}$$
(3.10)
for \(t>0\).

Therefore, Theorem 3.5 follows easily from (3.6)-(3.10). □

Remark 3.6

From (1.4), (3.4), Theorems 3.1, and 3.5 we get the inequalities
$$ M_{0}(a,b)< V(a,b)< L^{1/2} \bigl(a^{2}, b^{2} \bigr)< P(a,b)< M_{2/3}(a,b) $$
for all \(a, b>0\) with \(a\neq b\).

Declarations

Acknowledgements

The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions. The research was supported by the Major Project Foundation of the Department of Education of Hunan Province under Grant 12A026.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics and Computation Sciences, Hunan City University

References

  1. Bullen, PS, Mitrinović, DS, Vasić, PM: Means and Their Inequalities. Reidel, Dordrecht (1988) MATHView ArticleGoogle Scholar
  2. Seiffert, H-J: Problem 887. Nieuw Arch. Wiskd. 11(2), 176 (1993) Google Scholar
  3. Yang, Z-H: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, Article ID 541 (2013) View ArticleGoogle Scholar
  4. Toader, G: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358-368 (1998) MATHMathSciNetView ArticleGoogle Scholar
  5. Neuman, E, Sándor, J: On the Schwab-Borchardt mean. Math. Pannon. 14(2), 253-266 (2003) MATHMathSciNetGoogle Scholar
  6. Neuman, E, Sándor, J: On the Schwab-Borchardt mean II. Math. Pannon. 17(1), 49-59 (2006) MATHMathSciNetGoogle Scholar
  7. Sándor, J: Two sharp inequalities for trigonometric and hyperbolic functions. Math. Inequal. Appl. 15(2), 409-413 (2012) MATHMathSciNetGoogle Scholar
  8. Seiffert, H-J: Aufgabe β16. Die Wurzel 29, 221-222 (1995) Google Scholar
  9. Radó, T: On convex functions. Trans. Am. Math. Soc. 37(2), 266-285 (1935) View ArticleGoogle Scholar
  10. Lin, TP: The power mean and the logarithmic mean. Am. Math. Mon. 81, 879-883 (1974) MATHView ArticleGoogle Scholar
  11. Stolarsky, KB: The power and generalized logarithmic means. Am. Math. Mon. 87(7), 545-548 (1980) MATHMathSciNetView ArticleGoogle Scholar
  12. Pittenger, AO: Inequalities between arithmetic and logarithmic means. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 678-715, 15-18 (1980) MathSciNetGoogle Scholar
  13. Qiu, S-L, Shen, J-M: On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 17(3), 1-7 (1997) (in Chinese) Google Scholar
  14. Qiu, S-L: The Muir mean and the complete elliptic integral of the second kind. J. Hangzhou Inst. Electron. Eng. 20(1), 28-33 (2000) (in Chinese) Google Scholar
  15. Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000) MATHMathSciNetView ArticleGoogle Scholar
  16. Alzer, H, Qiu, S-L: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004) MATHMathSciNetView ArticleGoogle Scholar
  17. Jagers, AA: Solution of problem 887. Nieuw Arch. Wiskd. 12(2), 230-231 (1994) Google Scholar
  18. Hästö, PA: A monotonicity property of ratios of symmetric homogeneous means. JIPAM. J. Inequal. Pure Appl. Math. 3(5), Article ID 71 (2002) MathSciNetGoogle Scholar
  19. Hästö, PA: Optimal inequalities between Seiffert’s mean and power means. Math. Inequal. Appl. 7(1), 47-53 (2004) MATHMathSciNetGoogle Scholar
  20. Yang, Z-H: Sharp bounds for the second Seiffert mean in terms of power means. arXiv:1206.5494 [math.CA]
  21. Costin, I, Toader, G: Optimal evaluations of some Seiffert-type means by power means. Appl. Math. Comput. 219(9), 4745-4754 (2013) MathSciNetView ArticleGoogle Scholar
  22. Yang, Z-H: Sharp power means bounds for Neuman-Sándor mean. arXiv:1208.0895 [math.CA]
  23. Yang, Z-H: Estimates for Neuman-Sándor mean by power means and their relative errors. J. Math. Inequal. 7(4), 711-726 (2013) MATHMathSciNetView ArticleGoogle Scholar
  24. Chu, Y-M, Long, B-Y: Bounds of the Neuman-Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, Article ID 832591 (2013) MathSciNetGoogle Scholar
  25. Yang, Z-H, Wu, L-M, Chu, Y-M: Optimal power mean bounds for Yang mean. J. Inequal. Appl. 2014, Article ID 401 (2014) MathSciNetView ArticleGoogle Scholar
  26. Chu, Y-M, Yang, Z-H, Wu, L-M: Sharp power mean bounds for Sándor mean. Abstr. Appl. Anal. 2015, Article ID 172867 (2015) MathSciNetGoogle Scholar
  27. Yang, Z-H, Chu, Y-M: Optimal evaluations for the Sándor-Yang mean by power mean. arXiv:1506.07777 [math.CA]
  28. Lehmer, DH: On the compounding of certain means. J. Math. Anal. Appl. 36(4), 183-200 (1971) MATHMathSciNetView ArticleGoogle Scholar
  29. Yang, Z-H, Chu, Y-M: An optimal inequalities chain for bivariate means. J. Math. Inequal. 9(2), 331-343 (2015) MathSciNetView ArticleGoogle Scholar

Copyright

© Li et al. 2016