# Optimal power mean bounds for the second Yang mean

## Abstract

In this paper, we present the best possible parameters p and q such that the double inequality

$$M_{p}(a,b)< V(a,b)< M_{q}(a,b)$$

holds for all $$a, b>0$$ with $$a\neq b$$, where $$M_{r}(a,b)=[(a^{r}+b^{r})/2]^{1/r}$$ ($$r\neq0$$) and $$M_{0}(a,b)= \sqrt {ab}$$ is the rth power mean and $$V(a,b)=(a-b)/[\sqrt{2}\sinh^{-1}((a-b)/\sqrt{2ab})]$$ is the second Yang mean.

## 1 Introduction

For $$r\in\mathbb{R}$$, the rth power mean $$M_{r}(a,b)$$ of two distinct positive real numbers a and b is defined by

$$M_{r}(a,b)= \textstyle\begin{cases} (\frac{a^{r}+b^{r}}{2} )^{1/r},& r\neq0, \\ \sqrt{ab}, & r=0. \end{cases}$$
(1.1)

It is well known that $$M_{r}(a,b)$$ is continuous and strictly increasing with respect to $$r\in\mathbb{R}$$ for fixed $$a, b>0$$ with $$a\neq b$$. Many classical means are special cases of the power mean, for example, $$M_{-1}(a,b)=2ab/(a+b)=H(a,b)$$ is the harmonic mean, $$M_{0}(a,b)=\sqrt{ab}=G(a,b)$$ is the geometric mean, $$M_{1}(a,b)=(a+b)/2=A(a,b)$$ is the arithmetic mean, and $$M_{2}(a,b)=\sqrt{(a^{2}+b^{2})/2}=Q(a,b)$$ is the quadratic mean. The main properties for the power mean are given in [1].

Let

\begin{aligned}& L(a,b)=\frac{a-b}{\log a-\log b},\quad\quad I(a,b)=\frac{1}{e} \biggl(\frac{a^{a}}{b^{b}} \biggr)^{1/(a-b)},\quad\quad P(a,b)=\frac{a-b}{2\arcsin(\frac{a-b}{a+b} )}, \\& U(a,b)=\frac{a-b}{\sqrt{2}\arctan(\frac{a-b}{\sqrt{2ab}} )},\quad\quad T^{\ast }(a,b)=\frac{2}{\pi} \int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2} \theta+b^{2}\sin^{2}\theta}d\theta, \\& NS(a,b)=\frac{a-b}{2\sinh^{-1} (\frac{a-b}{a+b} )},\quad\quad X(a,b)=A(a,b)e^{G(a,b)/P(a,b)-1}, \\& T(a,b)=\frac{a-b}{2\arctan(\frac{a-b}{a+b} )},\quad\quad B(a,b)=Q(a,b)e^{A(a,b)/T(a,b)-1}, \end{aligned}

and

$$V(a,b)=\frac{a-b}{\sqrt{2}\sinh^{-1} (\frac{a-b}{\sqrt{2ab}} )}$$
(1.2)

be, respectively, the logarithmic mean, identric mean, first Seiffert mean [2], first Yang mean [3], Toader mean [4], Neuman-SÃ¡ndor mean [5, 6], SÃ¡ndor mean [7], second Seiffert mean [8], SÃ¡ndor-Yang mean [3], and second Yang mean [3] of two distinct positive real numbers a and b, where $$\sinh^{-1}(x)=\log(x+\sqrt {x^{2}+1})$$ is the inverse hyperbolic sine function.

Recently, the bounds for certain bivariate means in terms of the power mean have attracted the attention of many mathematicians. RadÃ³ [9] (see also [10â€“12]) proved that the double inequalities

\begin{aligned} &M_{p}(a,b)< L(a,b)< M_{q}(a,b), \\ &M_{\lambda}(a,b)< I(a,b)< M_{\mu}(a,b) \end{aligned}
(1.3)

hold for all $$a, b>0$$ with $$a\neq b$$ if and only if $$p\leq0$$, $$q\geq 1/3$$, $$\lambda\leq2/3$$, and $$\mu\geq\log2$$.

In [13â€“16], the authors proved that the double inequality

$$M_{p}(a,b)< T^{\ast}(a,b)< M_{q}(a,b)$$

holds for all $$a, b>0$$ with $$a\neq b$$ if and only if $$p\leq3/2$$ and $$q\geq\log2/(\log\pi-\log2)$$.

Jagers [17], HÃ¤stÃ¶ [18, 19], Yang [20], and Costin and Toader [21] proved that $$p_{1}=\log2/\log\pi$$, $$q_{1}=2/3$$, $$p_{2}=\log 2/(\log\pi-\log2)$$, and $$q_{2}=5/3$$ are the best possible parameters such that the double inequalities

\begin{aligned} &M_{p_{1}}(a,b)< P(a,b)< M_{q_{1}}(a,b), \\ &M_{p_{2}}(a,b)< T(a,b)< M_{q_{2}}(a,b) \end{aligned}
(1.4)

hold for all $$a, b>0$$ with $$a\neq b$$.

In [21â€“26], the authors proved that the double inequalities

\begin{aligned}& M_{\lambda_{1}}(a,b)< NS(a,b)< M_{\mu_{1}}(a,b), \\& M_{\lambda_{2}}(a,b)< U(a,b)< M_{\mu_{2}}(a,b), \\& M_{\lambda_{3}}(a,b)< X(a,b)< M_{\mu_{3}}(a,b), \end{aligned}

hold for all $$a, b>0$$ with $$a\neq b$$ if and only if $$\lambda_{1}\leq \log2/\log[2\log(1+\sqrt{2})]$$, $$\mu_{1}\geq4/3$$, $$\lambda_{2}\leq 2\log2/(2\log\pi-\log2)$$, $$\mu_{2}\geq4/3$$, $$\lambda_{3}\leq1/3$$, and $$\mu_{3}\geq\log2/(1+\log2)$$.

Very recently, Yang and Chu [27] showed that $$p=4\log2/(4+2\log2-\pi )$$ and $$q=4/3$$ are the best possible parameters such that the double inequality

$$M_{p}(a,b)< B(a,b)< M_{q}(a,b)$$

holds for all $$a, b>0$$ with $$a\neq b$$.

The main purpose of this paper is to present the best possible parameters p and q such that the double inequality

$$M_{p}(a,b)< V(a,b)< M_{q}(a,b)$$

holds for all $$a, b>0$$ with $$a\neq b$$.

## 2 Lemmas

In order to prove our main results we need three lemmas, which we present in this section.

### Lemma 2.1

Let $$t>0$$, $$p\in\mathbb{R}$$, and

\begin{aligned} f(t, p) =& 2\sinh\bigl[2(p-1)t\bigr] +\sinh\bigl[2(p+1)t\bigr]+\sinh\bigl[2(p-2)t \bigr] \\ &{} +p\sinh(4t)-\sinh(2t). \end{aligned}
(2.1)

Then the following statements are true:

1. (i)

$$f(t,p)>0$$ for all $$t>0$$ if and only if $$p\geq2/3$$;

2. (ii)

$$f(t,p)<0$$ for all $$t>0$$ if and only if $$p\leq0$$.

### Proof

It follows from (2.1) that

\begin{aligned} \frac{\partial f(t,p)}{\partial t} =&\sinh(4t)+4t\cosh\bigl[2(p-1)t\bigr] +2t\cosh\bigl[2(p+1)t\bigr]+2t\cosh\bigl[2(p-2)t\bigr] \\ >&0 \end{aligned}
(2.2)

for all $$t>0$$ and $$p\in\mathbb{R}$$.

(i) If $$f(t,p)>0$$ for all $$t>0$$, then (2.1) leads to

$$\lim_{t\rightarrow0^{+}}\frac{f(t, p)}{t}=12 \biggl(p-\frac{2}{3} \biggr)\geq0,$$

which gives $$p\geq2/3$$.

If $$p\geq2/3$$, then (2.1) and (2.2) lead to the conclusion that

\begin{aligned} f(t,p) \geq& f \biggl(t, \frac{2}{3} \biggr)=\frac{2}{3}\sinh(4t)- \sinh(2t)-2\sinh\biggl(\frac{2}{3}t \biggr) -\sinh\biggl( \frac{8}{3}t \biggr)+\sinh\biggl(\frac{10}{3}t \biggr) \\ =&\frac{8}{3}\sinh^{3} \biggl(\frac{2}{3}t \biggr) \cosh\biggl(\frac{2}{3}t \biggr) \biggl[8\cosh^{2} \biggl( \frac{2}{3}t \biggr) +6\cosh\biggl(\frac{2}{3}t \biggr)-3 \biggr]>0 \end{aligned}

for all $$t>0$$.

(ii) If $$f(t, p)<0$$ for all $$t>0$$, then from part (i) we know that $$p<2/3$$. We assert that $$p\leq0$$, otherwise $$0< p<2/3$$ and (2.1) leads to

\begin{aligned}& \lim_{t\rightarrow+\infty}\frac{f(t, p)}{e^{4t}} \\& \quad=\lim_{t\rightarrow+\infty}\frac{-2\sinh[2(1-p)t]+\sinh[2(1+p)t]-\sinh [2(2-p)t]+p\sinh(4t)-\sinh(2t)}{e^{4t}} \\& \quad=\frac{p}{2}>0, \end{aligned}

which contradicts with $$f(t, p)<0$$ for all $$t>0$$.â€ƒ

If $$p\leq0$$, then from (2.1) and (2.2) we have

$$f(t,p)\leq f(t, 0)=-2\sinh(2t)-\sinh(4t)< 0$$

for all $$t>0$$.â€ƒâ–¡

### Lemma 2.2

The double inequality

$$\bigl[\cosh(pt)\bigr]^{1/p}< \frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt {2}\sinh(t)]}< \bigl[\cosh(qt) \bigr]^{1/q}$$
(2.3)

holds for all $$t>0$$ if and only if $$p\leq0$$ and $$q\geq2/3$$. Here

$$\bigl[\cosh(pt)\bigr]^{1/p}\big|_{p=0}:=\lim_{p\rightarrow0}\bigl[\cosh(pt)\bigr]^{1/p}.$$

### Proof

Let $$t>0$$, $$p\in\mathbb{R}$$ and $$F(t, p)$$ be defined by

$$F(t, p)=\log\biggl[\frac{\sqrt{2}\sinh(t)}{\sinh^{-1} (\sqrt{2}\sinh (t) )} \biggr]-\frac{1}{p}\log\bigl[ \cosh(pt)\bigr].$$
(2.4)

Then making use of the power series formulas

\begin{aligned}& \sinh(t)=t+\frac{t^{3}}{3!}+\frac{t^{5}}{5!}+\frac{t^{7}}{7!}+\cdots =\sum _{n=0}^{\infty}\frac{t^{2n+1}}{(2n+1)!}, \\& \cosh(t)=1+\frac{t^{2}}{2!}+\frac{t^{4}}{4!}+\frac{t^{6}}{6!}+\cdots =\sum _{n=0}^{\infty}\frac{t^{2n}}{(2n)!}, \\& \sinh^{-1}(t)=t-\frac{1}{2}\times\frac{t^{3}}{3}+ \frac{1\times3}{2\times4}\times\frac{t^{5}}{5}-\frac{1\times3\times 5}{2\times4\times6}\times \frac{t^{7}}{7}+\cdots \\& \hphantom{\sinh^{-1}(t)}=\sum_{n=0}^{\infty}\frac{(-1)^{n}(2n)!t^{2n+1}}{2^{2n}(n!)^{2}(2n+1)} \end{aligned}

we get

$$\log\biggl[\frac{\sqrt{2}\sinh(t)}{\sinh^{-1} (\sqrt{2}\sinh(t) )} \biggr]=\frac{t^{2}}{3}+o \bigl(t^{2} \bigr),\quad\quad \frac{1}{p}\log\bigl[\cosh(pt)\bigr]=- \frac{1}{2}pt^{2}+o\bigl(t^{2}\bigr)$$
(2.5)

for $$t\rightarrow0^{+}$$.

It follows from (2.4) and (2.5) that

\begin{aligned}& F\bigl(0^{+}, p\bigr)=0, \end{aligned}
(2.6)
\begin{aligned}& \frac{\partial F(t, p)}{\partial t}=\frac{\cosh[(p-1)t]}{\sinh(t)\cosh (pt)\sinh^{-1}[\sqrt{2}\sinh(t)]}f_{1}(t, p), \end{aligned}
(2.7)

where

\begin{aligned}& f_{1}(t, p)=\sinh^{-1}\bigl[\sqrt{2}\sinh(t)\bigr]- \frac{\sqrt{2}\sinh(t)\cosh(pt)\cosh(t)}{\sqrt{\cosh(2t)}\cosh[(p-1)t]}, \end{aligned}
(2.8)
\begin{aligned}& f_{1}(0, p)=0, \end{aligned}
(2.9)
\begin{aligned}& \frac{\partial f_{1}(t, p)}{\partial t}=-\frac{\sqrt{2}\sinh(t)}{4[\cosh (2t)]^{3/2}\cosh^{2}[(p-1)t]}f(t,p), \end{aligned}
(2.10)

where $$f(t,p)$$ is defined by LemmaÂ 2.1.

$$\lim_{t\rightarrow0}\frac{F(t,p)}{t^{2}}=-\frac{1}{2} \biggl(p- \frac{2}{3} \biggr)$$
(2.11)

and

$$\lim_{t\rightarrow+\infty}F(t,p)=-\infty$$
(2.12)

if $$p>0$$.

We first prove that the inequality

$$\frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]}< \bigl[\cosh (pt)\bigr]^{1/p}$$
(2.13)

holds for all $$t>0$$ if and only if $$p\geq2/3$$.

If $$p\geq2/3$$, then inequality (2.13) holds for all $$t>0$$ follows easily from LemmaÂ 2.1(i), (2.4), (2.6), (2.7), (2.9), and (2.10).

If inequality (2.13) holds for all $$t>0$$, then (2.4) and (2.11) lead to $$p\geq2/3$$.

Next, we prove that the inequality

$$\frac{\sqrt{2}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]}>\bigl[\cosh (pt)\bigr]^{1/p}$$
(2.14)

holds for all $$t>0$$ if and only if $$p\leq0$$.

If $$p\leq0$$, then that inequality (2.14) holds for all $$t>0$$ follows easily from LemmaÂ 2.1(ii), (2.4), (2.6), (2.7), (2.9), and (2.10).

If inequality (2.14) holds for all $$t>0$$, then (2.4) leads to $$F(t,p)>0$$. We assert that $$p\leq0$$, otherwise $$p>0$$ and (2.12) implies that there exists large enough $$T_{0}>0$$ such that $$F(t, p)<0$$ for $$t\in(T_{0}, \infty)$$.â€ƒâ–¡

### Lemma 2.3

Let $$t>0$$, $$p\in\mathbb{R}$$, and $$f_{1}(t,p)$$ be defined by (2.8). Then the following statements are true:

1. (i)

$$f_{1}(t,p)<0$$ for all $$t>0$$ if and only if $$p\geq2/3$$;

2. (ii)

$$f(t,p)>0$$ for all $$t>0$$ if and only if $$p\leq0$$.

### Proof

(i) If $$p\geq2/3$$, then $$f_{1}(t,p)<0$$ for all $$t>0$$ follows easily from (2.9) and (2.10) together with LemmaÂ 2.1(i).

If $$f_{1}(t,p)<0$$ for all $$t>0$$, then (2.8) leads to

$$\lim_{t\rightarrow0}\frac{f_{1}(t,p)}{t^{3}}=\frac{-\sqrt{2} (p-\frac {2}{3} )t^{3}+o(t^{3})}{t^{3}}=-\sqrt{2} \biggl(p-\frac{2}{3} \biggr)\leq0,$$

which gives $$p\geq2/3$$.

(ii) If $$p\leq0$$, then $$f_{1}(t,p)>0$$ for all $$t>0$$ follows easily from (2.9) and (2.10) together with LemmaÂ 2.1(ii).

Note that

\begin{aligned}& \frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh(t)} \\& \quad=\frac{\sinh^{-1}[\sqrt{2}\sinh(t)]}{e^{(|p|-|p-1|)t}\sinh(t)}-\frac {\sqrt{2}\cosh(t)\cosh(pt)}{e^{(|p|-|p-1|)t}\cosh[(p-1)t]\sqrt{\cosh(2t)}} \\& \quad=\frac{\log[\sqrt{2}\sinh(t)+\sqrt{\cosh(2t)} ]}{e^{(|p|-|p-1|)t}\sinh (t)}-\frac{\sqrt{2} (1+e^{-2|p|t} )\cosh(t)}{ (1+e^{-2|p-1|t} )\sqrt{\cosh(2t)}}. \end{aligned}
(2.15)

If $$f_{1}(t,p)>0$$ for all $$t>0$$, then

$$\lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}\geq0$$

and we assert that $$p\leq0$$. Otherwise, equation (2.15) leads to

$$\lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}=-\frac{\sqrt{2}}{2}< 0$$

if $$p=1$$ and

$$\lim_{t\rightarrow+\infty}\frac{f_{1}(t,p)}{e^{(|p|-|p-1|)t}\sinh (t)}=-\sqrt{2}< 0$$

if $$p\in(0, 1)\cup(1, \infty)$$.â€ƒâ–¡

## 3 Main results

### Theorem 3.1

The double inequality

$$M_{p}(a,b)< V(a,b)< M_{q}(a,b)$$

holds for all $$a, b>0$$ with $$a\neq b$$ if and only if $$p\leq0$$ and $$q\geq2/3$$.

### Proof

Since both $$M_{r}(a,b)$$ and $$V(a,b)$$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $$a>b>0$$. Let $$t=\frac{1}{2}\log(a/b)>0$$ and $$r\in\mathbb{R}$$, then (1.1) and (1.2) lead to

$$V(a,b)=\sqrt{ab}V \biggl(\sqrt{\frac{a}{b}}, \sqrt{\frac{b}{a}} \biggr)=\sqrt{ab}V \bigl(e^{t}, e^{-t} \bigr) = \frac{\sqrt{2ab}\sinh(t)}{\sinh^{-1}[\sqrt{2}\sinh(t)]}$$
(3.1)

and

$$M_{r}(a,b)=\sqrt{ab}M_{r} \biggl(\sqrt{\frac{a}{b}}, \sqrt{\frac{b}{a}} \biggr)=\sqrt{ab}M_{r} \bigl(e^{t}, e^{-t} \bigr) =\sqrt{ab}\bigl[\cosh(rt)\bigr]^{1/r}.$$
(3.2)

Therefore, TheoremÂ 3.1 follows easily from (3.1) and (3.2) together with LemmaÂ 2.2.â€ƒâ–¡

### Theorem 3.2

The double inequality

$$\frac{a^{p-1}+b^{p-1}}{a^{p}+b^{p}}\frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b}< V(a,b) < \frac{a^{q-1}+b^{q-1}}{a^{q}+b^{q}} \frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b}$$

holds for all $$a, b>0$$ with $$a\neq b$$ if and only if $$p\geq2/3$$ and $$q\leq0$$.

### Proof

Without loss of generality, we assume that $$a>b>0$$. Let $$t=\frac{1}{2}\log(a/b)>0$$ and $$r\in\mathbb{R}$$, then

$$\frac{a^{r-1}+b^{r-1}}{a^{r}+b^{r}}\frac{ab\sqrt{2 (a^{2}+b^{2} )}}{a+b}=\frac{\sqrt{ab}\cosh[(r-1)t]\sqrt{\cosh(2t)}}{\cosh(t)\cosh(rt)}.$$
(3.3)

Therefore, TheoremÂ 3.2 follows easily from (3.1) and (3.3) together with LemmaÂ 2.3.â€ƒâ–¡

Let $$p\in\mathbb{R}$$ and $$a, b>0$$. Then the pth Lehmer mean [28] $$L_{p}(a,b)=\frac{a^{p+1}+b^{p+1}}{a^{p}+b^{p}}$$ is strictly increasing with respect to $$p\in\mathbb{R}$$ for fixed $$a, b>0$$ with $$a\neq b$$. From TheoremÂ 3.2 we get CorollaryÂ 3.3 immediately.

### Corollary 3.3

The double inequality

$$\frac{Q(a,b)G^{2}(a,b)}{A(a,b)L_{p-1}(a,b)}< V(a,b)< \frac {Q(a,b)G^{2}(a,b)}{A(a,b)L_{q-1}(a,b)}$$

holds for all $$a, b>0$$ with $$a\neq b$$ if and only if $$p\geq2/3$$ and $$q\leq0$$.

Let $$p=2/3, 1, 2, +\infty$$ and $$q=0, -1/2, -1, -2, -\infty$$. Then CorollaryÂ 3.3 leads to

### Corollary 3.4

The inequalities

\begin{aligned} \min\{a, b\}\frac{Q(a,b)}{A(a,b)} < &\frac{G^{2}(a,b)}{Q(a,b)}< \frac {G^{2}(a,b)Q(a,b)}{A^{2}(a,b)} \\ < &\frac {Q(a,b)G^{4/3}(a,b)M^{1/3}_{1/3}(a,b)}{A(a,b)M^{2/3}_{2/3}(a,b)}< V(a,b) < Q(a,b) \\ < &\frac{Q(a,b)[2A(a,b)-G(a,b)]}{A(a,b)} \\ < &\frac{Q^{3}(a,b)}{A^{2}(a,b)} < \frac {2Q^{2}(a,b)-G^{2}(a,b)}{Q(a,b)}< \max\{a, b\}\frac{Q(a,b)}{A(a,b)} \end{aligned}

hold for all $$a, b>0$$ with $$a\neq b$$.

From (1.3), (1.4), and TheoremÂ 3.1 we clearly see that $$M_{2/3}(a,b)$$ is the sharp upper power mean bound for the 2-order generalized logarithmic mean $$L^{1/2}(a^{2}, b^{2})$$, the first Seiffert mean $$P(a,b)$$, and the second Yang mean $$V(a,b)$$. In [29], TheoremÂ 3, Yang and Chu proved that the inequality

$$P(a,b)>L^{1/r} \bigl(a^{r}, b^{r} \bigr)$$
(3.4)

holds for all $$a, b>0$$ with $$a\neq b$$ if and only if $$r\leq2$$.

As a result of comparing $$V(a,b)$$ with $$L^{1/2} (a^{2}, b^{2} )$$, we have the following.

### Theorem 3.5

The inequality

$$V(a,b)< L^{1/2} \bigl(a^{2}, b^{2} \bigr)$$

holds for all $$a, b>0$$ with $$a\neq b$$.

### Proof

We assume that $$a>b$$. Let $$t=\frac{1}{2}\log(a/b)>0$$, then

$$L^{1/2} \bigl(a^{2}, b^{2} \bigr)= \biggl( \frac{a^{2}-b^{2}}{2(\log a-\log b)} \biggr)^{1/2}=\sqrt{ab}\sqrt{\frac {\sinh(2t)}{2t}}.$$
(3.5)

It follows from (3.1) and (3.5) that

\begin{aligned}& L^{1/2} \bigl(a^{2}, b^{2} \bigr)-V(a,b) \\& \quad=\frac{\sqrt{ab}\sqrt{\sinh(2t)}}{\sqrt{2t}\sinh^{-1} (\sqrt{2}\sinh(t) )} \bigl[\sinh^{-1} \bigl(\sqrt{2}\sinh(t) \bigr)- \sqrt{2t}\tanh(t) \bigr]. \end{aligned}
(3.6)

Let

$$g(t)=\sinh^{-1} \bigl(\sqrt{2}\sinh(t) \bigr)-\sqrt{2t}\tanh(t).$$
(3.7)

Then simple computation leads to

\begin{aligned}& g(0)=0, \end{aligned}
(3.8)
\begin{aligned}& g^{\prime}(t)=\sqrt{2} \biggl(\frac{\cosh(t)}{\sqrt{\cosh(2t)}}-\frac {t+\sinh(t)\cosh(t)}{2\cosh^{2}(t)\sqrt{t\tanh(t)}} \biggr), \end{aligned}
(3.9)
\begin{aligned}& \biggl(\frac{\cosh(t)}{\sqrt{\cosh(2t)}} \biggr)^{2}- \biggl( \frac{t+\sinh(t)\cosh(t)}{2\cosh^{2}(t)\sqrt{t\tanh(t)}} \biggr)^{2} \\& \quad=\frac{\cosh^{2}(t)}{\cosh(2t)}-\frac{(t+\sinh(t)\cosh(t))^{2}}{4t\sinh (t)\cosh^{3}(t)} \\& \quad=\frac{(2t\cosh(2t)-\sinh(2t))(\sinh(2t)\cosh(2t)-2t)}{16t\sinh(t)\cosh (2t)\cosh^{3}(t)} \\& \quad =\frac{\sinh(4t)-4t}{16t\sinh(t)\cosh(2t)\cosh^{3}(t)} \biggl(\cosh(2t)- \frac{\sinh(2t)}{2t} \biggr)>0 \end{aligned}
(3.10)

for $$t>0$$.

Therefore, TheoremÂ 3.5 follows easily from (3.6)-(3.10).â€ƒâ–¡

### Remark 3.6

From (1.4), (3.4), Theorems 3.1, and 3.5 we get the inequalities

$$M_{0}(a,b)< V(a,b)< L^{1/2} \bigl(a^{2}, b^{2} \bigr)< P(a,b)< M_{2/3}(a,b)$$

for all $$a, b>0$$ with $$a\neq b$$.

## References

1. Bullen, PS, MitrinoviÄ‡, DS, VasiÄ‡, PM: Means and Their Inequalities. Reidel, Dordrecht (1988)

2. Seiffert, H-J: Problem 887. Nieuw Arch. Wiskd. 11(2), 176 (1993)

3. Yang, Z-H: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, Article ID 541 (2013)

4. Toader, G: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358-368 (1998)

5. Neuman, E, SÃ¡ndor, J: On the Schwab-Borchardt mean. Math. Pannon. 14(2), 253-266 (2003)

6. Neuman, E, SÃ¡ndor, J: On the Schwab-Borchardt mean II. Math. Pannon. 17(1), 49-59 (2006)

7. SÃ¡ndor, J: Two sharp inequalities for trigonometric and hyperbolic functions. Math. Inequal. Appl. 15(2), 409-413 (2012)

8. Seiffert, H-J: Aufgabe Î²16. Die Wurzel 29, 221-222 (1995)

9. RadÃ³, T: On convex functions. Trans. Am. Math. Soc. 37(2), 266-285 (1935)

10. Lin, TP: The power mean and the logarithmic mean. Am. Math. Mon. 81, 879-883 (1974)

11. Stolarsky, KB: The power and generalized logarithmic means. Am. Math. Mon. 87(7), 545-548 (1980)

12. Pittenger, AO: Inequalities between arithmetic and logarithmic means. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 678-715, 15-18 (1980)

13. Qiu, S-L, Shen, J-M: On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 17(3), 1-7 (1997) (in Chinese)

14. Qiu, S-L: The Muir mean and the complete elliptic integral of the second kind. J. Hangzhou Inst. Electron. Eng. 20(1), 28-33 (2000) (in Chinese)

15. Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000)

16. Alzer, H, Qiu, S-L: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004)

17. Jagers, AA: Solution of problem 887. Nieuw Arch. Wiskd. 12(2), 230-231 (1994)

18. HÃ¤stÃ¶, PA: A monotonicity property of ratios of symmetric homogeneous means. JIPAM. J. Inequal. Pure Appl. Math. 3(5), Article ID 71 (2002)

19. HÃ¤stÃ¶, PA: Optimal inequalities between Seiffertâ€™s mean and power means. Math. Inequal. Appl. 7(1), 47-53 (2004)

20. Yang, Z-H: Sharp bounds for the second Seiffert mean in terms of power means. arXiv:1206.5494 [math.CA]

21. Costin, I, Toader, G: Optimal evaluations of some Seiffert-type means by power means. Appl. Math. Comput. 219(9), 4745-4754 (2013)

22. Yang, Z-H: Sharp power means bounds for Neuman-SÃ¡ndor mean. arXiv:1208.0895 [math.CA]

23. Yang, Z-H: Estimates for Neuman-SÃ¡ndor mean by power means and their relative errors. J. Math. Inequal. 7(4), 711-726 (2013)

24. Chu, Y-M, Long, B-Y: Bounds of the Neuman-SÃ¡ndor mean using power and identric means. Abstr. Appl. Anal. 2013, Article ID 832591 (2013)

25. Yang, Z-H, Wu, L-M, Chu, Y-M: Optimal power mean bounds for Yang mean. J. Inequal. Appl. 2014, Article ID 401 (2014)

26. Chu, Y-M, Yang, Z-H, Wu, L-M: Sharp power mean bounds for SÃ¡ndor mean. Abstr. Appl. Anal. 2015, Article ID 172867 (2015)

27. Yang, Z-H, Chu, Y-M: Optimal evaluations for the SÃ¡ndor-Yang mean by power mean. arXiv:1506.07777 [math.CA]

28. Lehmer, DH: On the compounding of certain means. J. Math. Anal. Appl. 36(4), 183-200 (1971)

29. Yang, Z-H, Chu, Y-M: An optimal inequalities chain for bivariate means. J. Math. Inequal. 9(2), 331-343 (2015)

## Acknowledgements

The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions. The research was supported by the Major Project Foundation of the Department of Education of Hunan Province under Grant 12A026.

## Author information

Authors

### Corresponding author

Correspondence to Yu-Ming Chu.

### Competing interests

The authors declare that they have no competing interests.

### Authorsâ€™ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

## Rights and permissions

Reprints and permissions

Li, JF., Yang, ZH. & Chu, YM. Optimal power mean bounds for the second Yang mean. J Inequal Appl 2016, 31 (2016). https://doi.org/10.1186/s13660-016-0970-y