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Abstract
In this paper, we present the best possible parameters p and q such that the double
inequality

Mp(a,b) < V(a,b) <Mq(a,b)

holds for all a,b > 0 with a �= b, whereMr(a,b) = [(ar + br)/2]1/r (r �= 0) andM0(a,b) =√
ab is the rth power mean and V(a,b) = (a – b)/[

√
2 sinh–1((a – b)/

√
2ab)] is the

second Yang mean.
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1 Introduction
For r ∈ R, the rth power mean Mr(a, b) of two distinct positive real numbers a and b is
defined by

Mr(a, b) =

⎧
⎨

⎩

( ar+br

 )/r , r �= ,√
ab, r = .

(.)

It is well known that Mr(a, b) is continuous and strictly increasing with respect to r ∈R

for fixed a, b >  with a �= b. Many classical means are special cases of the power mean, for
example, M–(a, b) = ab/(a + b) = H(a, b) is the harmonic mean, M(a, b) =

√
ab = G(a, b)

is the geometric mean, M(a, b) = (a + b)/ = A(a, b) is the arithmetic mean, and M(a, b) =
√

(a + b)/ = Q(a, b) is the quadratic mean. The main properties for the power mean are
given in [].

Let

L(a, b) =
a – b

log a – log b
, I(a, b) =


e

(
aa

bb

)/(a–b)

, P(a, b) =
a – b

 arcsin( a–b
a+b )

,

U(a, b) =
a – b√

 arctan( a–b√
ab

)
, T∗(a, b) =


π

∫ π/



√
a cos θ + b sin θdθ ,
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NS(a, b) =
a – b

 sinh–( a–b
a+b )

, X(a, b) = A(a, b)eG(a,b)/P(a,b)–,

T(a, b) =
a – b

 arctan( a–b
a+b )

, B(a, b) = Q(a, b)eA(a,b)/T(a,b)–,

and

V (a, b) =
a – b√

 sinh–( a–b√
ab

)
(.)

be, respectively, the logarithmic mean, identric mean, first Seiffert mean [], first Yang
mean [], Toader mean [], Neuman-Sándor mean [, ], Sándor mean [], second Seif-
fert mean [], Sándor-Yang mean [], and second Yang mean [] of two distinct positive
real numbers a and b, where sinh–(x) = log(x +

√
x + ) is the inverse hyperbolic sine

function.
Recently, the bounds for certain bivariate means in terms of the power mean have at-

tracted the attention of many mathematicians. Radó [] (see also [–]) proved that the
double inequalities

Mp(a, b) < L(a, b) < Mq(a, b),

Mλ(a, b) < I(a, b) < Mμ(a, b)
(.)

hold for all a, b >  with a �= b if and only if p ≤ , q ≥ /, λ ≤ /, and μ ≥ log .
In [–], the authors proved that the double inequality

Mp(a, b) < T∗(a, b) < Mq(a, b)

holds for all a, b >  with a �= b if and only if p ≤ / and q ≥ log /(logπ – log ).
Jagers [], Hästö [, ], Yang [], and Costin and Toader [] proved that p =

log / logπ , q = /, p = log /(logπ – log ), and q = / are the best possible parame-
ters such that the double inequalities

Mp (a, b) < P(a, b) < Mq (a, b),

Mp (a, b) < T(a, b) < Mq (a, b)
(.)

hold for all a, b >  with a �= b.
In [–], the authors proved that the double inequalities

Mλ (a, b) < NS(a, b) < Mμ (a, b),

Mλ (a, b) < U(a, b) < Mμ (a, b),

Mλ (a, b) < X(a, b) < Mμ (a, b),

hold for all a, b >  with a �= b if and only if λ ≤ log / log[ log( +
√

)], μ ≥ /, λ ≤
 log /( logπ – log ), μ ≥ /, λ ≤ /, and μ ≥ log /( + log ).
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Very recently, Yang and Chu [] showed that p =  log /( +  log  – π ) and q = /
are the best possible parameters such that the double inequality

Mp(a, b) < B(a, b) < Mq(a, b)

holds for all a, b >  with a �= b.
The main purpose of this paper is to present the best possible parameters p and q such

that the double inequality

Mp(a, b) < V (a, b) < Mq(a, b)

holds for all a, b >  with a �= b.

2 Lemmas
In order to prove our main results we need three lemmas, which we present in this sec-
tion.

Lemma . Let t > , p ∈R, and

f (t, p) =  sinh
[
(p – )t

]
+ sinh

[
(p + )t

]
+ sinh

[
(p – )t

]

+ p sinh(t) – sinh(t). (.)

Then the following statements are true:
(i) f (t, p) >  for all t >  if and only if p ≥ /;

(ii) f (t, p) <  for all t >  if and only if p ≤ .

Proof It follows from (.) that

∂f (t, p)
∂t

= sinh(t) + t cosh
[
(p – )t

]
+ t cosh

[
(p + )t

]
+ t cosh

[
(p – )t

]

>  (.)

for all t >  and p ∈R.
(i) If f (t, p) >  for all t > , then (.) leads to

lim
t→+

f (t, p)
t

= 
(

p –



)

≥ ,

which gives p ≥ /.
If p ≥ /, then (.) and (.) lead to the conclusion that

f (t, p) ≥ f
(

t,



)

=



sinh(t) – sinh(t) –  sinh

(



t
)

– sinh

(



t
)

+ sinh

(



t
)

=



sinh
(




t
)

cosh

(



t
)[

 cosh
(




t
)

+  cosh

(



t
)

– 
]

> 

for all t > .
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(ii) If f (t, p) <  for all t > , then from part (i) we know that p < /. We assert that p ≤ ,
otherwise  < p < / and (.) leads to

lim
t→+∞

f (t, p)
et

= lim
t→+∞

– sinh[( – p)t] + sinh[( + p)t] – sinh[( – p)t] + p sinh(t) – sinh(t)
et

=
p


> ,

which contradicts with f (t, p) <  for all t > .
If p ≤ , then from (.) and (.) we have

f (t, p) ≤ f (t, ) = – sinh(t) – sinh(t) < 

for all t > . �

Lemma . The double inequality

[
cosh(pt)

]/p <
√

 sinh(t)
sinh–[

√
 sinh(t)]

<
[
cosh(qt)

]/q (.)

holds for all t >  if and only if p ≤  and q ≥ /. Here

[
cosh(pt)

]/p∣∣
p= := lim

p→

[
cosh(pt)

]/p.

Proof Let t > , p ∈R and F(t, p) be defined by

F(t, p) = log

[ √
 sinh(t)

sinh–(
√

 sinh(t))

]

–

p

log
[
cosh(pt)

]
. (.)

Then making use of the power series formulas

sinh(t) = t +
t

!
+

t

!
+

t

!
+ · · · =

∞∑

n=

tn+

(n + )!
,

cosh(t) =  +
t

!
+

t

!
+

t

!
+ · · · =

∞∑

n=

tn

(n)!
,

sinh–(t) = t –



× t


+

 × 
 × 

× t


–

 ×  × 
 ×  × 

× t


+ · · ·

=
∞∑

n=

(–)n(n)!tn+

n(n!)(n + )

we get

log

[ √
 sinh(t)

sinh–(
√

 sinh(t))

]

=
t


+ o

(
t),


p

log
[
cosh(pt)

]
= –




pt + o
(
t) (.)

for t → +.
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It follows from (.) and (.) that

F
(
+, p

)
= , (.)

∂F(t, p)
∂t

=
cosh[(p – )t]

sinh(t) cosh(pt) sinh–[
√

 sinh(t)]
f(t, p), (.)

where

f(t, p) = sinh–[√ sinh(t)
]

–
√

 sinh(t) cosh(pt) cosh(t)√
cosh(t) cosh[(p – )t]

, (.)

f(, p) = , (.)

∂f(t, p)
∂t

= –
√

 sinh(t)
[cosh(t)]/ cosh[(p – )t]

f (t, p), (.)

where f (t, p) is defined by Lemma ..

lim
t→

F(t, p)
t = –




(

p –



)

(.)

and

lim
t→+∞ F(t, p) = –∞ (.)

if p > .
We first prove that the inequality

√
 sinh(t)

sinh–[
√

 sinh(t)]
<

[
cosh(pt)

]/p (.)

holds for all t >  if and only if p ≥ /.
If p ≥ /, then inequality (.) holds for all t >  follows easily from Lemma .(i),

(.), (.), (.), (.), and (.).
If inequality (.) holds for all t > , then (.) and (.) lead to p ≥ /.
Next, we prove that the inequality

√
 sinh(t)

sinh–[
√

 sinh(t)]
>

[
cosh(pt)

]/p (.)

holds for all t >  if and only if p ≤ .
If p ≤ , then that inequality (.) holds for all t >  follows easily from Lemma .(ii),

(.), (.), (.), (.), and (.).
If inequality (.) holds for all t > , then (.) leads to F(t, p) > . We assert that p ≤ ,

otherwise p >  and (.) implies that there exists large enough T >  such that F(t, p) < 
for t ∈ (T,∞). �

Lemma . Let t > , p ∈R, and f(t, p) be defined by (.). Then the following statements
are true:
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(i) f(t, p) <  for all t >  if and only if p ≥ /;
(ii) f (t, p) >  for all t >  if and only if p ≤ .

Proof (i) If p ≥ /, then f(t, p) <  for all t >  follows easily from (.) and (.) together
with Lemma .(i).

If f(t, p) <  for all t > , then (.) leads to

lim
t→

f(t, p)
t =

–
√

(p – 
 )t + o(t)
t = –

√

(

p –



)

≤ ,

which gives p ≥ /.
(ii) If p ≤ , then f(t, p) >  for all t >  follows easily from (.) and (.) together with

Lemma .(ii).
Note that

f(t, p)
e(|p|–|p–|)t sinh(t)

=
sinh–[

√
 sinh(t)]

e(|p|–|p–|)t sinh(t)
–

√
 cosh(t) cosh(pt)

e(|p|–|p–|)t cosh[(p – )t]
√

cosh(t)

=
log[

√
 sinh(t) +

√
cosh(t)]

e(|p|–|p–|)t sinh(t)
–

√
( + e–|p|t) cosh(t)

( + e–|p–|t)
√

cosh(t)
. (.)

If f(t, p) >  for all t > , then

lim
t→+∞

f(t, p)
e(|p|–|p–|)t sinh(t)

≥ 

and we assert that p ≤ . Otherwise, equation (.) leads to

lim
t→+∞

f(t, p)
e(|p|–|p–|)t sinh(t)

= –
√




< 

if p =  and

lim
t→+∞

f(t, p)
e(|p|–|p–|)t sinh(t)

= –
√

 < 

if p ∈ (, ) ∪ (,∞). �

3 Main results
Theorem . The double inequality

Mp(a, b) < V (a, b) < Mq(a, b)

holds for all a, b >  with a �= b if and only if p ≤  and q ≥ /.

Proof Since both Mr(a, b) and V (a, b) are symmetric and homogeneous of degree , with-
out loss of generality, we assume that a > b > . Let t = 

 log(a/b) >  and r ∈ R, then (.)
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and (.) lead to

V (a, b) =
√

abV
(√

a
b

,
√

b
a

)

=
√

abV
(
et , e–t) =

√
ab sinh(t)

sinh–[
√

 sinh(t)]
(.)

and

Mr(a, b) =
√

abMr

(√
a
b

,
√

b
a

)

=
√

abMr
(
et , e–t) =

√
ab

[
cosh(rt)

]/r . (.)

Therefore, Theorem . follows easily from (.) and (.) together with Lemma .. �

Theorem . The double inequality

ap– + bp–

ap + bp
ab

√
(a + b)
a + b

< V (a, b) <
aq– + bq–

aq + bq
ab

√
(a + b)
a + b

holds for all a, b >  with a �= b if and only if p ≥ / and q ≤ .

Proof Without loss of generality, we assume that a > b > . Let t = 
 log(a/b) >  and r ∈R,

then

ar– + br–

ar + br
ab

√
(a + b)
a + b

=
√

ab cosh[(r – )t]
√

cosh(t)
cosh(t) cosh(rt)

. (.)

Therefore, Theorem . follows easily from (.) and (.) together with Lemma .. �

Let p ∈ R and a, b > . Then the pth Lehmer mean [] Lp(a, b) = ap++bp+

ap+bp is strictly
increasing with respect to p ∈ R for fixed a, b >  with a �= b. From Theorem . we get
Corollary . immediately.

Corollary . The double inequality

Q(a, b)G(a, b)
A(a, b)Lp–(a, b)

< V (a, b) <
Q(a, b)G(a, b)

A(a, b)Lq–(a, b)

holds for all a, b >  with a �= b if and only if p ≥ / and q ≤ .

Let p = /, , , +∞ and q = , –/, –, –, –∞. Then Corollary . leads to

Corollary . The inequalities

min{a, b}Q(a, b)
A(a, b)

<
G(a, b)
Q(a, b)

<
G(a, b)Q(a, b)

A(a, b)

<
Q(a, b)G/(a, b)M/

/(a, b)
A(a, b)M/

/(a, b)
< V (a, b) < Q(a, b)

<
Q(a, b)[A(a, b) – G(a, b)]

A(a, b)

<
Q(a, b)
A(a, b)

<
Q(a, b) – G(a, b)

Q(a, b)
< max{a, b}Q(a, b)

A(a, b)

hold for all a, b >  with a �= b.
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From (.), (.), and Theorem . we clearly see that M/(a, b) is the sharp upper power
mean bound for the -order generalized logarithmic mean L/(a, b), the first Seiffert
mean P(a, b), and the second Yang mean V (a, b). In [], Theorem , Yang and Chu proved
that the inequality

P(a, b) > L/r(ar , br) (.)

holds for all a, b >  with a �= b if and only if r ≤ .
As a result of comparing V (a, b) with L/(a, b), we have the following.

Theorem . The inequality

V (a, b) < L/(a, b)

holds for all a, b >  with a �= b.

Proof We assume that a > b. Let t = 
 log(a/b) > , then

L/(a, b) =
(

a – b

(log a – log b)

)/

=
√

ab
√

sinh(t)
t

. (.)

It follows from (.) and (.) that

L/(a, b) – V (a, b)

=
√

ab
√

sinh(t)√
t sinh–(

√
 sinh(t))

[
sinh–(√ sinh(t)

)
–

√
t tanh(t)

]
. (.)

Let

g(t) = sinh–(√ sinh(t)
)

–
√

t tanh(t). (.)

Then simple computation leads to

g() = , (.)

g ′(t) =
√


(

cosh(t)√
cosh(t)

–
t + sinh(t) cosh(t)

 cosh(t)
√

t tanh(t)

)

, (.)

(
cosh(t)√
cosh(t)

)

–
(

t + sinh(t) cosh(t)
 cosh(t)

√
t tanh(t)

)

=
cosh(t)
cosh(t)

–
(t + sinh(t) cosh(t))

t sinh(t) cosh(t)

=
(t cosh(t) – sinh(t))(sinh(t) cosh(t) – t)

t sinh(t) cosh(t) cosh(t)

=
sinh(t) – t

t sinh(t) cosh(t) cosh(t)

(

cosh(t) –
sinh(t)

t

)

>  (.)

for t > .
Therefore, Theorem . follows easily from (.)-(.). �
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Remark . From (.), (.), Theorems ., and . we get the inequalities

M(a, b) < V (a, b) < L/(a, b) < P(a, b) < M/(a, b)

for all a, b >  with a �= b.
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