Open Access

Bounds for q-integrals of \({}_{r+1}\psi_{r+1}\) with applications

Journal of Inequalities and Applications20152015:416

https://doi.org/10.1186/s13660-015-0946-3

Received: 15 July 2015

Accepted: 16 December 2015

Published: 30 December 2015

Abstract

In this paper, we establish an inequality for the q-integral of the bilateral basic hypergeometric function \({}_{r+1}\psi_{r+1}\). As applications of the inequality, we give some sufficient conditions for the convergence of q-series.

Keywords

inequality q-integralthe bilateral basic hypergeometric function \({}_{r+1}\psi_{r+1}\) convergence

MSC

26D1533D15

1 Introduction and main result

q-series, which are also called basic hypergeometric series, play a very important role in many fields, such as affine root systems, Lie algebras and groups, number theory, orthogonal polynomials, and physics. The inequality technique is one of the useful tools in the study of special functions. There are many papers about the inequalities and the q-integral; see [19]. In this paper, we derive an inequality for the q-integral of the bilateral basic hypergeometric function \({}_{r+1}\psi_{r+1}\). Some applications of the inequality are also given. The main result of this paper is the following inequality for q-integrals.

Theorem 1.1

Let a, b be any real numbers such that \(0< q< b< a<1\), and let \(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\). Then for any \(c>0\), \(t>0\), such that \(c>b/a\), \(c+t<1\), we have
$$ \biggl\vert \int_{0}^{t}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \leq \frac{Mt(q,b/a;q)_{\infty}}{(c+t,b/ac;q)_{\infty}}, $$
(1.1)
where
$$ M=\max \Biggl\{ \prod_{i=1}^{r} \frac{(-|a_{i}|; q)_{\infty}}{(|b_{i}|; q)_{\infty}},\prod_{i=1}^{r} \frac{(-q/|b_{i}|; q)_{\infty}}{(q/|a_{i}|; q)_{\infty}} \Biggr\} . $$
Before we give the proof of the theorem, we recall some definitions, notation, and well-known results which will be used in this paper. Throughout the whole paper, it is supposed that \(0< q<1\). The q-shifted factorials are defined as
$$ (a; q)_{0}=1, \qquad (a; q)_{n}=\prod _{k=0}^{n-1}\bigl(1-aq^{k}\bigr), \qquad (a; q)_{\infty}=\prod_{k=0}^{\infty}\bigl(1-aq^{k}\bigr). $$
(1.2)
We also adopt the following compact notation for the multiple q-shifted factorial:
$$ (a_{1}, a_{2},\ldots,a_{m};q)_{n}=(a_{1};q)_{n}(a_{2};q)_{n} \cdots (a_{m};q)_{n}, $$
(1.3)
where n is an integer or ∞. We may extend the definition (1.2) of \((a; q)_{n}\) to
$$ (a; q)_{\alpha}=\frac{(a; q)_{\infty}}{(aq^{\alpha}; q)_{\infty}}, $$
(1.4)
for any complex number α. In particular,
$$ (a; q)_{-n}=\frac{(a; q)_{\infty}}{(aq^{-n}; q)_{\infty}} =\frac{1}{(aq^{-n}; q)_{n}}= \frac{(-q/a)^{n}}{(q/a; q)_{n}}q^{n\choose 2}. $$
(1.5)
The following is the well-known Ramanujan \({}_{1}\psi_{1}\) summation formula [10, 11],
$$ \sum_{n=-\infty}^{\infty} \frac{(a;q)_{n}}{(b;q)_{n}}z^{n} =\frac{(q,b/a,az,q/az;q)_{\infty}}{(b,q/a,z,b/az;q)_{\infty}},\quad |b/a|< |z|< 1. $$
(1.6)
The bilateral basic hypergeometric series \({}_{r}\psi_{s}\) is defined by
$$ {}_{r}\psi_{s} \biggl({{a_{1}, a_{2}, \ldots, a_{r}} \atop {b_{1}, b_{2}, \ldots, b_{s}}} ; q, z \biggr) = \sum_{n=-\infty}^{\infty}\frac{(a_{1}, a_{2}, \ldots, a_{r};q)_{n} }{(b_{1}, b_{2}, \ldots, b_{s} ;q)_{n}}(-1)^{(s-r)n}q^{(s-r){n\choose 2}}z^{n}. $$
(1.7)
Jackson defined the q-integral by [12]
$$ \int_{0}^{d}f(t)\, d_{q}t=d(1-q)\sum _{n=0}^{\infty}f\bigl(dq^{n} \bigr)q^{n} $$
(1.8)
and
$$ \int_{c}^{d}f(t)\, d_{q}t= \int_{0}^{d}f(t)\, d_{q}t- \int_{0}^{c}f(t)\, d_{q}t. $$
(1.9)
In [13], the author uses Ramanujan’s \({}_{1}\psi_{1}\) summation formula to give the following inequality: Let a, b be any real numbers such that \(q< b< a<1\) or \(a< b<0\), and let \(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\). Then for any \(b/a<|z|<1\), we have
$$ \biggl\vert {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, z \biggr)\biggr\vert \leq M\frac{(q,b/a,a|z|,q/a|z|;q)_{\infty}}{(b,q/a,|z|,b/a|z|;q)_{\infty}}, $$
(1.10)
where
$$ M=\max \Biggl\{ \prod_{i=1}^{r} \frac{(-|a_{i}|; q)_{\infty}}{(|b_{i}|; q)_{\infty}},\prod_{i=1}^{r} \frac{(-q/|b_{i}|; q)_{\infty}}{(q/|a_{i}|; q)_{\infty}} \Biggr\} . $$

2 The proof of theorem

In this section, we use (1.10) to prove Theorem 1.1.

Proof

Under the conditions of the theorem 1.1, it is easy to see that
$$ b/a< c+tq^{n}< 1. $$
(2.1)
Letting \(z=c+tq^{n}\) in (1.10) gives
$$\begin{aligned}& \biggl\vert {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+tq^{n} \biggr)\biggr\vert \\& \quad \leq M\frac{(q,b/a,a(c+tq^{n}),q/a(c+tq^{n});q)_{\infty }}{(b,q/a,c+tq^{n},b/a(c+tq^{n});q)_{\infty}},\quad n=0,1,2,\ldots. \end{aligned}$$
(2.2)
Since \(0< b< a(c+tq^{n})< a<1\), we have
$$ \bigl(a\bigl(c+tq^{n}\bigr),q/a\bigl(c+tq^{n} \bigr);q\bigr)_{\infty}< (b,q/a;q)_{\infty} $$
(2.3)
and
$$ \bigl(c+tq^{n},b/a\bigl(c+tq^{n}\bigr);q \bigr)_{\infty}\geq(c+t,b/ac;q)_{\infty}. $$
(2.4)
Combining (2.2), (2.3), and (2.4), we get
$$ \biggl\vert {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+tq^{n} \biggr)\biggr\vert \leq M\frac{(q,b/a,;q)_{\infty}}{(c+t,b/ac;q)_{\infty}}, \quad n=0,1,2,\ldots. $$
(2.5)
By the definition of the q-integral (1.8), we get
$$\begin{aligned}& \int_{0}^{t}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \quad = t(1-q)\sum_{n=0}^{\infty}q^{n}{}_{r+1} \psi_{r+1} \biggl({{a_{1},a_{2}, \ldots,a_{r+1}} \atop {b_{1},b_{2}, \ldots,b_{r}}} ; q, tq^{n} \biggr). \end{aligned}$$
(2.6)
Consequently,
$$\begin{aligned}& \biggl\vert \int_{0}^{t}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad =\Biggl\vert t(1-q)\sum_{n=0}^{\infty}q^{n}{}_{r+1} \psi_{r+1} \biggl({{a_{1},a_{2}, \ldots,a_{r+1}} \atop {b_{1},b_{2}, \ldots,b_{r}}} ; q, tq^{n} \biggr)\Biggr\vert \\& \quad \leq t(1-q)\sum_{n=0}^{\infty}q^{n} \biggl\vert {}_{r+1}\psi_{r+1} \biggl({{a_{1},a_{2}, \ldots,a_{r+1}} \atop {b_{1},b_{2}, \ldots,b_{r}}} ; q, tq^{n} \biggr)\biggr\vert . \end{aligned}$$
(2.7)
Using (2.5) one gets
$$\begin{aligned}& \biggl\vert \int_{0}^{t}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq t(1-q)M\frac{(q,b/a,;q)_{\infty}}{(c+t,b/ac;q)_{\infty}}\sum_{n=0}^{\infty}q^{n} = \frac{Mt(q,b/a,;q)_{\infty}}{(c+t,b/ac;q)_{\infty}}. \end{aligned}$$
(2.8)
Thus, we complete the proof. □

From (1.1) and the definition of the q-integral (1.9), we can easily get the following result.

Corollary 2.1

Under the conditions of the theorem, we have
$$\begin{aligned}& \biggl\vert \int_{s}^{t} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{M(q,b/a,;q)_{\infty}}{(c+t,c+s,b/ac;q)_{\infty}}\bigl[t(c+s;q)_{\infty }+s(c+t;q)_{\infty} \bigr], \end{aligned}$$
(2.9)
where \(s>0\) and \(c+s<1\).

Proof

By the definition of the q-integral (1.9), we get
$$\begin{aligned}& \biggl\vert \int_{s}^{t} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad = \biggl\vert \int_{0}^{t} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \qquad {}- \int_{0}^{s} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \biggl\vert \int_{0}^{t} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \qquad {}+\biggl\vert \int_{0}^{s} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{Mt(q,b/a,;q)_{\infty}}{(c+t,b/ac;q)_{\infty}} +\frac{Ms(q,b/a,;q)_{\infty}}{(c+s,b/ac;q)_{\infty}} \\& \quad = \frac{M(q,b/a,;q)_{\infty}}{(c+t,c+s,b/ac;q)_{\infty }}\bigl[t(c+s;q)_{\infty}+s(c+t;q)_{\infty} \bigr]. \end{aligned}$$
(2.10)
Thus, the inequality (2.9) holds. □

3 Some applications of the inequality

In this section, we use the inequality obtained in this paper to give some sufficient conditions for the convergence of the q-series. Convergence is an important problem in the study of q-series. There are some results about it. For example, Ito used an inequality technique to give a sufficient condition for the convergence of a special q-series called the Jackson integral [14].

Theorem 3.1

Suppose that
  1. (1)

    a, b, c be any positive real numbers such that \(0< q< b< a<1\), \(c>b/a\);

     
  2. (2)

    \(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\);

     
  3. (3)

    \(\{t_{n}\}\) be any positive number series, such that \(c+t_{n}<1\) and \(\sum_{n=1}^{\infty}t_{n}\) converges.

     
Then the q-series
$$ \sum_{n=0}^{\infty} \int_{0}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.1)
converges absolutely.

Proof

Since \(\sum_{n=1}^{\infty}t_{n}\) converges, we get
$$ \lim_{n\rightarrow\infty}t_{n}=0. $$
(3.2)
So, there exists an integer \(N_{0}\) such that, when \(n>N_{0}\),
$$ c+t_{n}\leq d< 1. $$
(3.3)
When \(n>N_{0}\), letting \(t=t_{n}\) in (1.1) gives
$$\begin{aligned}& \biggl\vert \int_{0}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{Mt_{n}(q,b/a;q)_{\infty}}{(c+t_{n},b/ac;q)_{\infty}}\leq \frac{M(q,b/a;q)_{\infty}}{(d,b/ac;q)_{\infty}}t_{n}. \end{aligned}$$
(3.4)
From (3.4) and the convergence of \(\sum_{n=1}^{\infty}t_{n}\), it is sufficient to establish that (3.1) is absolutely convergent. □

Corollary 3.2

Let \(\{s_{n}\}\) be any positive number series such that \(c+s_{n}<1\) and \(\sum_{n=1}^{\infty}s_{n}\) converges. Under the conditions of Theorem  3.1, then the q-series
$$ \sum_{n=0}^{\infty} \int_{s_{n}}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.5)
converges absolutely.

Proof

By the definition of the q-integral (1.9), we get
$$\begin{aligned}& \int_{s_{n}}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \quad = \int_{0}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \qquad {}- \int_{0}^{s_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z. \end{aligned}$$
(3.6)
Since both
$$ \int_{0}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.7)
and
$$ \int_{0}^{s_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.8)
are absolutely convergent, so (3.5) is absolutely convergent. □

Theorem 3.3

Suppose that
  1. (1)

    a, b, c, d be any positive real numbers such that \(0< q< b< a<1\), \(c>b/a\), \(c+d<1\);

     
  2. (2)

    \(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\);

     
  3. (3)

    \(\{t_{n}\}\) be any positive number series, such that \(t_{n}\leq d\) and \(c+d<1\);

     
  4. (4)

    \(\sum_{n=1}^{\infty}e_{n}\) converges absolutely.

     
Then the q-series
$$ \sum_{n=0}^{\infty}e_{n} \int_{0}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.9)
converges absolutely.

Proof

Using (1.1) gives
$$\begin{aligned}& \biggl\vert e_{n} \int_{0}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{Mt_{n}(q,b/a;q)_{\infty}}{(c+t_{n},b/ac;q)_{\infty}}|e_{n}| \leq\frac{Md(q,b/a;q)_{\infty}}{(c+d,b/ac;q)_{\infty}}|e_{n}|. \end{aligned}$$
(3.10)
Because \(\sum_{n=1}^{\infty}e_{n}\) converges absolutely, (3.10) is sufficient to establish that (3.9) is absolutely convergent. □

Corollary 3.4

Suppose that
  1. (1)

    a, b, c, d be any positive real numbers such that \(0< q< b< a<1\), \(c>b/a\), \(c+d<1\);

     
  2. (2)

    \(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\);

     
  3. (3)

    \(\{t_{n}\}\), \(\{s_{n}\}\) be any positive number series, such that \(t_{n}\leq d\), \(s_{n}\leq d\), and \(c+d<1\);

     
  4. (4)

    \(\sum_{n=1}^{\infty}e_{n}\) converges absolutely.

     
Then the q-series
$$ \sum_{n=0}^{\infty}e_{n} \int_{s_{n}}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.11)
converges absolutely.

Proof

By the definition of the q-integral (1.9), we get
$$\begin{aligned}& \biggl\vert e_{n} \int_{s_{n}}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad = \biggl\vert e_{n} \int_{0}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \qquad {}-e_{n} \int_{0}^{s_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \biggl\vert e_{n} \int_{0}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \qquad {}+\biggl\vert e_{n} \int_{0}^{s_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{Mt_{n}(q,b/a;q)_{\infty}}{(c+t_{n},b/ac;q)_{\infty}}|e_{n}| +\frac{Ms_{n}(q,b/a;q)_{\infty}}{(c+s_{n},b/ac;q)_{\infty}}|e_{n}| \\& \quad \leq \frac{2Md(q,b/a;q)_{\infty}}{(c+d,b/ac;q)_{\infty}}|e_{n}|. \end{aligned}$$
(3.12)
Since \(\sum_{n=1}^{\infty}e_{n}\) converges absolutely, (3.11) converges absolutely. □

Declarations

Acknowledgements

This work was supported by the National Natural Science Foundation (grant No. 11271057) of China.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, Changzhou University
(2)
College of Mathematics and Physics, Chongqing University of Science and Technology

References

  1. Anderson, GD, Barnard, RW, Vamanamurthy, KC, Vuorinen, M: Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 347(5), 1713-1723 (1995) MATHMathSciNetView ArticleGoogle Scholar
  2. Giordano, C, Laforgia, A, Pečarić, J: Supplements to known inequalities for some special functions. J. Math. Anal. Appl. 200, 34-41 (1996) MATHMathSciNetView ArticleGoogle Scholar
  3. Giordano, C, Laforgia, A, Pečarić, J: Unified treatment of Gautschi-Kershaw type inequalities for the gamma function. J. Comput. Appl. Math. 99, 167-175 (1998) MATHMathSciNetView ArticleGoogle Scholar
  4. Giordano, C, Laforgia, A: Inequalities and monotonicity properties for the gamma function. J. Comput. Appl. Math. 133, 387-396 (2001) MATHMathSciNetView ArticleGoogle Scholar
  5. Giordano, C, Laforgia, A: On the Bernstein-type inequalities for ultraspherical polynomials. J. Comput. Appl. Math. 153, 243-284 (2003) MATHMathSciNetView ArticleGoogle Scholar
  6. Örkcü, M: Approximation properties of bivariate extension of q-Szász-Mirakjan-Kantorovich operators. J. Inequal. Appl. 2013, 324 (2013) View ArticleGoogle Scholar
  7. Tariboon, J, Ntouyas, SK: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121 (2014) View ArticleGoogle Scholar
  8. Araci, S, Acikgoz, M, Seo, J-J: A new family of q-analogue of Genocchi numbers and polynomials of higher order. Kyungpook Math. J. 54(1), 131-141 (2014) MATHMathSciNetView ArticleGoogle Scholar
  9. Araci, S, Agyuz, E, Acikgoz, M: On a q-analog of some numbers and polynomials. J. Inequal. Appl. 2015, 19 (2015) MathSciNetView ArticleGoogle Scholar
  10. Andrews, GE: The Theory of Partitions. Encyclopedia of Mathematics and Applications, vol. 2. Addison-Wesley, Reading (1976) MATHGoogle Scholar
  11. Gasper, G, Rahman, M: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990) MATHGoogle Scholar
  12. Jackson, FH: On q-definite integrals. Q. J. Pure Appl. Math. 50, 101-112 (1910) Google Scholar
  13. Wang, M: Some convergence theorems for the q-integral. Publ. Math. (Debr.) 82(2), 399-406 (2013) MATHView ArticleGoogle Scholar
  14. Ito, M: Convergence and asymptotic behavior of Jackson integrals associated with irreducible reduced root systems. J. Approx. Theory 124, 154-180 (2003) MATHMathSciNetView ArticleGoogle Scholar

Copyright

© He et al. 2015