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Abstract
In this paper, we establish an inequality for the q-integral of the bilateral basic
hypergeometric function r+1ψr+1. As applications of the inequality, we give some
sufficient conditions for the convergence of q-series.
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1 Introduction and main result
q-series, which are also called basic hypergeometric series, play a very important role in
many fields, such as affine root systems, Lie algebras and groups, number theory, orthog-
onal polynomials, and physics. The inequality technique is one of the useful tools in the
study of special functions. There are many papers about the inequalities and the q-integral;
see [–]. In this paper, we derive an inequality for the q-integral of the bilateral basic
hypergeometric function r+ψr+. Some applications of the inequality are also given. The
main result of this paper is the following inequality for q-integrals.

Theorem . Let a, b be any real numbers such that  < q < b < a < , and let ai, bi be
any real numbers such that |ai| > q, |bi| <  for i = , , . . . , r with r ≥  and |bb · · ·br| ≤
|aa · · ·ar|. Then for any c > , t > , such that c > b/a, c + t < , we have

∣
∣
∣
∣

∫ t


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣
≤ Mt(q, b/a; q)∞

(c + t, b/ac; q)∞
, (.)

where

M = max

{ r
∏

i=

(–|ai|; q)∞
(|bi|; q)∞

,
r

∏

i=

(–q/|bi|; q)∞
(q/|ai|; q)∞

}

.

Before we give the proof of the theorem, we recall some definitions, notation, and well-
known results which will be used in this paper. Throughout the whole paper, it is supposed
that  < q < . The q-shifted factorials are defined as

(a; q) = , (a; q)n =
n–
∏

k=

(

 – aqk), (a; q)∞ =
∞
∏

k=

(

 – aqk). (.)
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We also adopt the following compact notation for the multiple q-shifted factorial:

(a, a, . . . , am; q)n = (a; q)n(a; q)n · · · (am; q)n, (.)

where n is an integer or ∞. We may extend the definition (.) of (a; q)n to

(a; q)α =
(a; q)∞

(aqα ; q)∞
, (.)

for any complex number α. In particular,

(a; q)–n =
(a; q)∞

(aq–n; q)∞
=


(aq–n; q)n

=
(–q/a)n

(q/a; q)n
q(n

). (.)

The following is the well-known Ramanujan ψ summation formula [, ],

∞
∑

n=–∞

(a; q)n

(b; q)n
zn =

(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

, |b/a| < |z| < . (.)

The bilateral basic hypergeometric series rψs is defined by

rψs

(
a, a, . . . , ar

b, b, . . . , bs
; q, z

)

=
∞

∑

n=–∞

(a, a, . . . , ar ; q)n

(b, b, . . . , bs; q)n
(–)(s–r)nq(s–r)(n

)zn. (.)

Jackson defined the q-integral by []

∫ d


f (t) dqt = d( – q)

∞
∑

n=

f
(

dqn)qn (.)

and

∫ d

c
f (t) dqt =

∫ d


f (t) dqt –

∫ c


f (t) dqt. (.)

In [], the author uses Ramanujan’s ψ summation formula to give the following in-
equality: Let a, b be any real numbers such that q < b < a <  or a < b < , and let
ai, bi be any real numbers such that |ai| > q, |bi| <  for i = , , . . . , r with r ≥  and
|bb · · ·br| ≤ |aa · · ·ar|. Then for any b/a < |z| < , we have

∣
∣
∣
∣r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, z

)∣
∣
∣
∣
≤ M

(q, b/a, a|z|, q/a|z|; q)∞
(b, q/a, |z|, b/a|z|; q)∞

, (.)

where

M = max

{ r
∏

i=

(–|ai|; q)∞
(|bi|; q)∞

,
r

∏

i=

(–q/|bi|; q)∞
(q/|ai|; q)∞

}

.

2 The proof of theorem
In this section, we use (.) to prove Theorem ..
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Proof Under the conditions of the theorem ., it is easy to see that

b/a < c + tqn < . (.)

Letting z = c + tqn in (.) gives
∣
∣
∣
∣r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + tqn

)∣
∣
∣
∣

≤ M
(q, b/a, a(c + tqn), q/a(c + tqn); q)∞

(b, q/a, c + tqn, b/a(c + tqn); q)∞
, n = , , , . . . . (.)

Since  < b < a(c + tqn) < a < , we have

(

a
(

c + tqn), q/a
(

c + tqn); q
)

∞ < (b, q/a; q)∞ (.)

and

(

c + tqn, b/a
(

c + tqn); q
)

∞ ≥ (c + t, b/ac; q)∞. (.)

Combining (.), (.), and (.), we get
∣
∣
∣
∣r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + tqn

)∣
∣
∣
∣
≤ M

(q, b/a, ; q)∞
(c + t, b/ac; q)∞

, n = , , , . . . . (.)

By the definition of the q-integral (.), we get

∫ t


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz

= t( – q)
∞

∑

n=

qn
r+ψr+

(
a, a, . . . , ar+

b, b, . . . , br
; q, tqn

)

. (.)

Consequently,

∣
∣
∣
∣

∫ t


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
t( – q)

∞
∑

n=

qn
r+ψr+

(
a, a, . . . , ar+

b, b, . . . , br
; q, tqn

)
∣
∣
∣
∣
∣

≤ t( – q)
∞

∑

n=

qn
∣
∣
∣
∣r+ψr+

(
a, a, . . . , ar+

b, b, . . . , br
; q, tqn

)∣
∣
∣
∣
. (.)

Using (.) one gets

∣
∣
∣
∣

∫ t


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

≤ t( – q)M
(q, b/a, ; q)∞

(c + t, b/ac; q)∞

∞
∑

n=

qn =
Mt(q, b/a, ; q)∞
(c + t, b/ac; q)∞

. (.)

Thus, we complete the proof. �
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From (.) and the definition of the q-integral (.), we can easily get the following result.

Corollary . Under the conditions of the theorem, we have
∣
∣
∣
∣

∫ t

s
r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

≤ M(q, b/a, ; q)∞
(c + t, c + s, b/ac; q)∞

[

t(c + s; q)∞ + s(c + t; q)∞
]

, (.)

where s >  and c + s < .

Proof By the definition of the q-integral (.), we get
∣
∣
∣
∣

∫ t

s
r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz

–
∫ s


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ t


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

+
∣
∣
∣
∣

∫ s


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

≤ Mt(q, b/a, ; q)∞
(c + t, b/ac; q)∞

+
Ms(q, b/a, ; q)∞
(c + s, b/ac; q)∞

=
M(q, b/a, ; q)∞

(c + t, c + s, b/ac; q)∞
[

t(c + s; q)∞ + s(c + t; q)∞
]

. (.)

Thus, the inequality (.) holds. �

3 Some applications of the inequality
In this section, we use the inequality obtained in this paper to give some sufficient con-
ditions for the convergence of the q-series. Convergence is an important problem in the
study of q-series. There are some results about it. For example, Ito used an inequality
technique to give a sufficient condition for the convergence of a special q-series called the
Jackson integral [].

Theorem . Suppose that
() a, b, c be any positive real numbers such that  < q < b < a < , c > b/a;
() ai, bi be any real numbers such that |ai| > q, |bi| <  for i = , , . . . , r with r ≥  and

|bb · · ·br| ≤ |aa · · ·ar|;
() {tn} be any positive number series, such that c + tn <  and

∑∞
n= tn converges.

Then the q-series

∞
∑

n=

∫ tn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz (.)

converges absolutely.
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Proof Since
∑∞

n= tn converges, we get

lim
n→∞ tn = . (.)

So, there exists an integer N such that, when n > N,

c + tn ≤ d < . (.)

When n > N, letting t = tn in (.) gives

∣
∣
∣
∣

∫ tn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

≤ Mtn(q, b/a; q)∞
(c + tn, b/ac; q)∞

≤ M(q, b/a; q)∞
(d, b/ac; q)∞

tn. (.)

From (.) and the convergence of
∑∞

n= tn, it is sufficient to establish that (.) is absolutely
convergent. �

Corollary . Let {sn} be any positive number series such that c + sn <  and
∑∞

n= sn con-
verges. Under the conditions of Theorem ., then the q-series

∞
∑

n=

∫ tn

sn
r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz (.)

converges absolutely.

Proof By the definition of the q-integral (.), we get

∫ tn

sn
r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz

=
∫ tn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz

–
∫ sn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz. (.)

Since both
∫ tn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz (.)

and
∫ sn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz (.)

are absolutely convergent, so (.) is absolutely convergent. �

Theorem . Suppose that
() a, b, c, d be any positive real numbers such that  < q < b < a < , c > b/a, c + d < ;
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() ai, bi be any real numbers such that |ai| > q, |bi| <  for i = , , . . . , r with r ≥  and
|bb · · ·br| ≤ |aa · · ·ar|;

() {tn} be any positive number series, such that tn ≤ d and c + d < ;
()

∑∞
n= en converges absolutely.

Then the q-series

∞
∑

n=

en

∫ tn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz (.)

converges absolutely.

Proof Using (.) gives

∣
∣
∣
∣
en

∫ tn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

≤ Mtn(q, b/a; q)∞
(c + tn, b/ac; q)∞

|en| ≤ Md(q, b/a; q)∞
(c + d, b/ac; q)∞

|en|. (.)

Because
∑∞

n= en converges absolutely, (.) is sufficient to establish that (.) is absolutely
convergent. �

Corollary . Suppose that
() a, b, c, d be any positive real numbers such that  < q < b < a < , c > b/a, c + d < ;
() ai, bi be any real numbers such that |ai| > q, |bi| <  for i = , , . . . , r with r ≥  and

|bb · · ·br| ≤ |aa · · ·ar|;
() {tn}, {sn} be any positive number series, such that tn ≤ d, sn ≤ d, and c + d < ;
()

∑∞
n= en converges absolutely.

Then the q-series

∞
∑

n=

en

∫ tn

sn
r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz (.)

converges absolutely.

Proof By the definition of the q-integral (.), we get

∣
∣
∣
∣
en

∫ tn

sn
r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

=
∣
∣
∣
∣
en

∫ tn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz

– en

∫ sn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

≤
∣
∣
∣
∣
en

∫ tn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣

+
∣
∣
∣
∣
en

∫ sn


r+ψr+

(
a, a, . . . , ar

b, b, . . . , br
; q, c + z

)

dqz
∣
∣
∣
∣
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≤ Mtn(q, b/a; q)∞
(c + tn, b/ac; q)∞

|en| +
Msn(q, b/a; q)∞
(c + sn, b/ac; q)∞

|en|

≤ Md(q, b/a; q)∞
(c + d, b/ac; q)∞

|en|. (.)

Since
∑∞

n= en converges absolutely, (.) converges absolutely. �
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