Skip to content

Advertisement

  • Research
  • Open Access

Approximation of a kind of new type Bézier operators

Journal of Inequalities and Applications20152015:412

https://doi.org/10.1186/s13660-015-0940-9

  • Received: 13 September 2015
  • Accepted: 9 December 2015
  • Published:

The Erratum to this article has been published in Journal of Inequalities and Applications 2016 2016:17

Abstract

In this paper, a kind of new type Bézier operators is introduced. The Korovkin type approximation theorem of these operators is investigated. The rates of convergence of these operators are studied by means of modulus of continuity. Then, by using the Ditzian-Totik modulus of smoothness, a direct theorem concerned with an approximation for these operators is also obtained.

Keywords

  • Bézier type operators
  • Korovich type approximation theorem
  • rate of convergence
  • direct theorem
  • modulus of smoothness

MSC

  • 41A10
  • 41A25
  • 41A36

1 Introduction

In view of the Bézier basis function, which was introduced by Bézier [1], in 1983, Chang [2] defined the generalized Bernstein-Bézier polynomials for any \(\alpha>0\), and a function f defined on \([0,1]\) as follows:
$$ B_{n,\alpha}(f;x)=\sum_{k=0}^{n}f \biggl(\frac{k}{n}\biggr)\bigl[J^{\alpha}_{n,k}(x)-J^{\alpha}_{n,k+1}(x) \bigr], $$
(1)
where \(J_{n,n+1}(x)=0\), and \(J_{n,k}(x)=\sum_{i=k}^{n}P_{n,i}(x)\), \(k=0,1,\ldots,n\), \(P_{n,i}(x)=\bigl ({\scriptsize\begin{matrix}{} n\cr i\end{matrix}} \bigr )x^{i}(1-x)^{n-i}\). \(J_{n,k}(x)\) is the Bézier basis function of degree n.

Obviously, when \(\alpha=1\), \(B_{n,\alpha}(f;x)\) become the well-known Bernstein polynomials \(B_{n}(f;x)\), and for any \(x\in[0,1]\), we have \(1=J_{n,0}(x)>J_{n,1}(x)>\cdots>J_{n,n}(x)=x^{n}\), \(J_{n,k}(x)-J_{n,k+1}(x)=P_{n,k}(x)\).

During the last ten years, the Bézier basis function was extensively used for constructing various generalizations of many classical approximation processes. Some Bézier type operators, which are based on the Bézier basis function, have been introduced and studied (e.g., see [39]).

In 2012, Ren [10] introduced Bernstein type operators as follows:
$$ L_{n}(f;x)=f(0)P_{n,0}(x)+\sum _{k=1}^{n-1}P_{n,k}(x)B_{n,k}(f)+f(1)P_{n,n}(x), $$
(2)
where \(f\in C[0,1]\), \(x\in[0,1]\), \(P_{n,k}(x)=\bigl ( {\scriptsize\begin{matrix}{}n\cr k\end{matrix}} \bigr )x^{k}(1-x)^{n-k}\), \(k=0,1,\ldots,n\), and \(B_{n,k}(f)= \frac{1}{B(nk,n(n-k))}\int_{0}^{1}t^{nk-1}(1-t)^{n(n-k)-1}f(t)\, dt\), \(k=1,\ldots,n-1\), \(B(\cdot,\cdot)\) is the beta function.

The moments of the operators \(L_{n}(f;x)\) were obtained as follows (see [10]).

Remark 1

For \(L_{n}(t^{j};x)\), \(j=0,1,2\), we have
$$\begin{aligned} (\mathrm{i})&\quad L_{n}(1;x)=1; \\ (\mathrm{ii})&\quad L_{n}(t;x)=x; \\ (\mathrm{iii})&\quad L_{n}\bigl(t^{2};x\bigr)= \frac{n(n-1)}{n^{2}+1}x^{2}+ \frac{n+1}{n^{2}+1}x. \end{aligned}$$
In the present paper, we will study the Bézier variant of the Bernstein type operators \(L_{n}(f;x)\), which have been given by (2). We introduce a new type of Bézier operators as follows:
$$ L_{n,\alpha}(f;x)=f(0)Q^{(\alpha)}_{n,0}(x)+\sum _{k=1}^{n-1}Q^{(\alpha)}_{n,k}(x)B_{n,k}(f)+f(1)Q^{(\alpha)}_{n,n}(x), $$
(3)
where \(f\in C[0,1]\), \(x\in[0,1]\), \(\alpha>0\), \(Q^{(\alpha)}_{n,k}(x)=J^{\alpha}_{n,k}(x)-J^{\alpha}_{n,k+1}(x)\), \(J_{n,n+1}(x)=0\), \(J_{n,k}(x)=\sum_{i=k}^{n}P_{n,i}(x)\), \(k=0,1,\ldots,n\), \(P_{n,i}(x)=\bigl ( {\scriptsize\begin{matrix}{}n\cr i\end{matrix}} \bigr )x^{i}(1-x)^{n-i}\), and \(B_{n,k}(f)=\frac{1}{B(nk,n(n-k))}\int_{0}^{1}t^{nk-1}(1-t)^{n(n-k)-1}f(t)\, dt\), \(k=1,\ldots,n-1\), \(B(\cdot,\cdot)\) is the beta function.

It is clear that \(L_{n,\alpha}(f;x)\) are linear and positive on \(C[0,1]\). When \(\alpha=1\), \(L_{n,\alpha}(f;x)\) become the operators \(L_{n}(f;x)\).

The goal of this paper is to study the approximation properties of these operators with the help of the Korovkin type approximation theorem. We also estimate the rates of convergence of these operators by using a modulus of continuity. Then we obtain the direct theorem concerned with an approximation for these operators by means of the Ditzian-Totik modulus of smoothness.

In the paper, for \(f\in C[0, 1]\), we denote \(\|f\|=\max\{{|f (x)| : x\in[0, 1]}\}\). \(\omega(f,\delta)\) (\(\delta>0\)) denotes the usual modulus of continuity of \(f\in C[0,1]\).

2 Some lemmas

Now, we give some lemmas, which are necessary to prove our results.

Lemma 1

(see [2])

Let \(\alpha>0\). We have
$$\begin{aligned} (\mathrm{i})&\quad \lim_{n\rightarrow\infty}\frac{1}{n}\sum _{k=1}^{n}J_{n,k}^{\alpha}(x)=x\quad \textit{uniformly on } [0,1]; \\ (\mathrm{ii})&\quad \lim_{n\rightarrow\infty}\frac{1}{n^{2}}\sum _{k=1}^{n}kJ_{n,k}^{\alpha}(x)= \frac{x^{2}}{2} \quad \textit{uniformly on } [0,1]. \end{aligned}$$

Lemma 2

Let \(\alpha>0\). We have
$$\begin{aligned} (\mathrm{i})&\quad L_{n,\alpha}(1;x)=1; \\ (\mathrm{ii})&\quad\lim_{n\rightarrow\infty}L_{n,\alpha}(t;x)=x \quad \textit{uniformly on } [0,1]; \\ (\mathrm{iii})&\quad\lim_{n\rightarrow\infty}L_{n,\alpha} \bigl(t^{2};x\bigr)=x^{2} \quad \textit{uniformly on } [0,1]. \end{aligned}$$

Proof

By simple calculation, we obtain \(B_{n,k}(1)=1\), \(B_{n,k}(t)=\frac{k}{n}\), \(B_{n,k}(t^{2})=\frac{1}{n^{2}+1}(k^{2}+\frac{k}{n})\).

(i) Since \(\sum_{k=0}^{n}Q^{(\alpha)}_{n,k}(x)=1\), by (3) we can get \(L_{n,\alpha}(1;x)=1\).

(ii) By (3), we have
$$\begin{aligned} L_{n,\alpha}(t;x) =&\sum_{k=1}^{n-1}Q^{(\alpha)}_{n,k}(x) \frac{k}{n}+Q^{(\alpha)}_{n,n}(x) \\ =&\bigl[J^{\alpha}_{n,1}(x)-J^{\alpha}_{n,2}(x) \bigr]\frac{1}{n}+\cdots+\bigl[J^{\alpha }_{n,n-1}(x)-J^{\alpha}_{n,n}(x) \bigr]\frac{n-1}{n} +J^{\alpha}_{n,n}(x)\frac{n}{n} \\ =&\frac{1}{n}\sum_{k=1}^{n}J^{\alpha}_{n,k}(x), \end{aligned}$$
thus, by Lemma 1(i), we have \(\lim_{n\rightarrow\infty}L_{n,\alpha}(t;x)=x\) uniformly on \([0,1]\).
(iii) By (3), we have
$$\begin{aligned} L_{n,\alpha}\bigl(t^{2};x\bigr) =&\frac{1}{n^{2}+1}\sum _{k=1}^{n-1}Q^{(\alpha)}_{n,k}(x) \biggl(k^{2}+\frac{k}{n}\biggr)+Q^{(\alpha )}_{n,n}(x) \\ =&\frac{1}{n^{2}+1}\sum_{k=1}^{n} \biggl(2k-1+\frac{1}{n}\biggr)J^{\alpha }_{n,k}(x) \\ =&\frac{1}{n^{2}+1}\Biggl[2n^{2}\cdot\frac{1}{n^{2}}\sum _{k=1}^{n}kJ_{n,k}^{\alpha}(x) -n\cdot \frac{1}{n}\sum_{k=1}^{n}J_{n,k}^{\alpha}(x)+ \frac {1}{n}\sum_{k=1}^{n}J_{n,k}^{\alpha}(x) \Biggr], \end{aligned}$$
thus, by Lemma 1, we have \(\lim_{n\rightarrow\infty}L_{n,\alpha}(t^{2};x)=x^{2}\) uniformly on \([0,1]\). □

Lemma 3

(see [11])

For \(x\in[0,1]\), \(k=0,1,\ldots,n\), we have
$$0\leq Q_{n,k}^{(\alpha)}(x)\leq \left \{ \textstyle\begin{array}{l@{\quad}l} \alpha P_{n,k}(x), & \alpha\geq1; \\ P^{\alpha}_{n,k}(x), & 0< \alpha< 1. \end{array}\displaystyle \right . $$

Lemma 4

(see [12])

For \(0<\alpha<1\), \(\beta>0\), we have
$$\sum_{k=0}^{n}|k-nx|^{\beta}P^{\alpha}_{n,k}(x) \leq(n+1)^{1-\alpha}(A_{\frac {\beta}{\alpha}})^{\alpha}n^{\frac{\beta}{2}}, $$
where the constant \(A_{s}\) only depends on s.

Lemma 5

For \(\alpha\geq1\), we have
$$\begin{aligned} (\mathrm{i})&\quad L_{n,\alpha}\bigl((t-x)^{2};x\bigr)\leq \frac{\alpha}{2}\cdot\frac{1}{n}; \\ (\mathrm{ii})&\quad L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr)\leq\sqrt{ \frac{\alpha}{2}}\cdot\sqrt{\frac{1}{n}}. \end{aligned}$$

Proof

(i) By (3), Lemma 3 and Remark 1, we obtain
$$\begin{aligned}& L_{n,\alpha}\bigl((t-x)^{2};x\bigr) \\& \quad =x^{2}Q^{(\alpha)}_{n,0}(x) +\sum _{k=1}^{n-1}Q^{(\alpha )}_{n,k}(x)B_{n,k} \bigl((t-x)^{2}\bigr)+(1-x)^{2}Q^{(\alpha)}_{n,n}(x) \\& \quad \leq\alpha\Biggl[x^{2}P_{n,0}(x) +\sum _{k=1}^{n-1}P_{n,k}(x)B_{n,k} \bigl((t-x)^{2}\bigr)+(1-x)^{2}P_{n,n}(x)\Biggr] \\& \quad =\alpha L_{n}\bigl((t-x)^{2};x\bigr) \\& \quad =\frac{(n+1)\alpha}{n^{2}+1}x(1-x), \end{aligned}$$
(4)
since \(\max_{0\leq x\leq1 }x(1-x)=\frac{1}{4}\), and for any \(n\in N\), one can get \(\frac{n(n+1)}{n^{2}+1}\leq2\), so we have
$$L_{n,\alpha}\bigl((t-x)^{2};x\bigr)\leq\frac{\alpha}{2}\cdot \frac{1}{n}. $$
(ii) In view of \(L_{n,\alpha}(1;x)=1\), by the Cauchy-Schwarz inequality, we have
$$L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr)\leq\sqrt{L_{n,\alpha}(1;x)} \sqrt{L_{n,\alpha }\bigl((t-x)^{2};x\bigr)}, $$
thus, we get
$$L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr)\leq\sqrt{\frac{\alpha}{2}} \cdot\sqrt{\frac{1}{n}}. $$
 □

Lemma 6

For \(0<\alpha<1\), we have
$$\begin{aligned} (\mathrm{i})&\quad L_{n,\alpha}\bigl((t-x)^{2};x\bigr)\leq M_{\alpha}n^{-\alpha}; \\ (\mathrm{ii})&\quad L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr)\leq \sqrt{M_{\alpha}}\cdot n^{-\frac{\alpha}{2}}. \end{aligned}$$
Here the constant \(M_{\alpha}\) only depends on α.

Proof

(i) By (3) and Lemma 3, we obtain
$$\begin{aligned}& L_{n,\alpha}\bigl((t-x)^{2};x\bigr) \\& \quad =x^{2}Q^{(\alpha)}_{n,0}(x) +\sum _{k=1}^{n-1}Q^{(\alpha )}_{n,k}(x)B_{n,k} \bigl((t-x)^{2}\bigr)+(1-x)^{2}Q^{(\alpha)}_{n,n}(x) \\& \quad \leq x^{2}P^{\alpha}_{n,0}(x) +\sum _{k=1}^{n-1}P^{\alpha }_{n,k}(x)B_{n,k} \bigl((t-x)^{2}\bigr)+(1-x)^{2}P^{\alpha}_{n,n}(x) \\& \quad =\sum_{k=0}^{n}P^{\alpha}_{n,k}(x) \biggl[\frac {1}{n^{2}+1}\biggl(k^{2}+\frac{k}{n}\biggr)-2x \frac{k}{n}+x^{2}\biggr] \\& \quad =\frac{1}{n^{2}+1}\sum_{k=0}^{n}(k-nx)^{2}P^{\alpha}_{n,k}(x) +\frac{1}{n^{2}+1}\sum_{k=0}^{n}P^{\alpha}_{n,k}(x) \biggl(\frac {k}{n}-2x\frac{k}{n}+x^{2}\biggr) \\& \quad :=I_{1}+I_{2}. \end{aligned}$$

By Lemma 4, we have \(I_{1}\leq\frac{n(n+1)}{n^{2}+1}(n+1)^{-\alpha}(A_{\frac{2}{\alpha }})^{\alpha}\leq2(A_{\frac{2}{\alpha}})^{\alpha}n^{-\alpha}\), where the constant \(A_{\frac{2}{\alpha}}\) only depends on α.

Using the Hölder inequality, we have \(\sum_{k=0}^{n}P^{\alpha}_{n,k}(x)\leq(n+1)^{1-\alpha}[\sum_{k=0}^{n}P_{n,k}(x)]^{\alpha}\), and \(|\frac{k}{n}-2x\frac{k}{n}+x^{2}|\leq4\), so we have
$$\begin{aligned} I_{2} \leq&\frac{4}{n^{2}+1}(n+1)^{1-\alpha}\Biggl[\sum _{k=0}^{n}P_{n,k}(x)\Biggr]^{\alpha} \\ =& \frac{4}{n^{2}+1}(n+1)^{1-\alpha}\leq 4n^{-\alpha}. \end{aligned}$$
Denote \(M_{\alpha}=2(A_{\frac{2}{\alpha}})^{\alpha}+4\), then we can get
$$L_{n,\alpha}\bigl((t-x)^{2};x\bigr)\leq M_{\alpha}n^{-\alpha}. $$
(ii) Since
$$L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr)\leq\sqrt{L_{n,\alpha}(1;x)} \sqrt{L_{n,\alpha }\bigl((t-x)^{2};x\bigr)}, $$
thus, we get
$$L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr)\leq\sqrt{M_{\alpha}}\cdot n^{-\frac{\alpha}{2}}. $$
 □

Lemma 7

For \(f\in C[0,1]\), \(x\in[0,1]\) and \(\alpha> 0\), we have
$$\bigl\vert L_{n,\alpha}(f;x)\bigr\vert \leq \| f\|. $$

Proof

By (3) and Lemma 2(i), we have
$$\bigl\vert L_{n,\alpha}(f;x)\bigr\vert \leq\|f\|L_{n,\alpha}(1;x) = \|f\|. $$
 □

3 Main results

First of all we give the following convergence theorem for the sequence \(\{L_{n,\alpha}(f;x)\}\).

Theorem 1

Let \(\alpha>0\). Then the sequence \(\{L_{n,\alpha}(f;x)\}\) converges to f uniformly on \([0,1]\) for any \(f\in C[0,1]\).

Proof

Since \(L_{n,\alpha}(f;x)\) is bounded and positive on \(C[0,1]\), and by Lemma 2, we have \(\lim_{n\rightarrow\infty}\|L_{n,\alpha}(e_{j};\cdot)-e_{j}\|=0\) for \(e_{j}(t)=t^{j}\), \(j=0,1,2\). So, according to the well-known Bohman-Korovkin theorem ([13], p.40, Theorem 1.9), we see that the sequence \(\{L_{n,\alpha}(f;x)\}\) converges to f uniformly on \([0,1]\) for any \(f\in C[0,1]\). □

Next we estimate the rates of convergence of the sequence \(\{ L_{n,\alpha}\}\) by means of the modulus of continuity.

Theorem 2

Let \(f\in C[0,1]\), \(x\in[0,1]\). Then
  1. (i)

    when \(\alpha\geq1\), we have \(\|L_{n,\alpha}(f;\cdot)-f\|\leq(1+\sqrt{\frac{\alpha}{2}})\omega(f,\frac {1}{\sqrt{n}})\);

     
  2. (ii)

    when \(0<\alpha<1\), we have \(\|L_{n,\alpha}(f;\cdot)-f\|\leq(1+\sqrt{M_{\alpha}})\omega(f,n^{-\frac {\alpha}{2}})\).

     
Here the constant \(M_{\alpha}\) only depends on α.

Proof

(i) When \(\alpha\geq1\), by Lemma 2(i), we have
$$\begin{aligned}& \bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \\& \quad \leq\bigl\vert f(0)-f(x)\bigr\vert Q^{(\alpha)}_{n,0}(x) +\sum_{k=1}^{n-1}Q^{(\alpha )}_{n,k}(x)B_{n,k} \bigl(\bigl\vert f(t)-f(x)\bigr\vert \bigr)+\bigl\vert f(1)-f(x)\bigr\vert Q^{(\alpha)}_{n,n}(x) \\& \quad \leq\omega\bigl(f,\vert 0-x\vert \bigr)Q^{(\alpha)}_{n,0}(x) +\sum_{k=1}^{n-1}Q^{(\alpha)}_{n,k}(x)B_{n,k} \bigl(\omega \bigl(f,\vert t-x\vert \bigr)\bigr)+\omega\bigl(f,\vert 1-x \vert \bigr)Q^{(\alpha)}_{n,n}(x) \\& \quad \leq\bigl(1+\sqrt{n} \vert 0-x\vert \bigr)\omega\biggl(f, \frac{1}{\sqrt{n}}\biggr)Q_{n,0}^{(\alpha)}(x) \\& \qquad {}+\sum _{k=1}^{n-1}Q^{(\alpha)}_{n,k}(x)B_{n,k} \biggl(\bigl(1+\sqrt {n}\vert t-x\vert \bigr)\omega\biggl(f,\frac{1}{\sqrt{n}} \biggr)\biggr) \\& \qquad {}+\bigl(1+\sqrt{n} \vert 1-x\vert \bigr)\omega\biggl(f, \frac{1}{\sqrt{n}}\biggr)Q^{(\alpha)}_{n,n}(x) \\& \quad \leq\omega\biggl(f,\frac{1}{\sqrt{n}}\biggr)+\sqrt{n}\omega\biggl(f, \frac{1}{\sqrt {n}}\biggr)L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr), \end{aligned}$$
so, by Lemma 5(ii), we obtain \(|L_{n,\alpha}(f;x)-f(x)|\leq(1+\sqrt{\frac{\alpha}{2}})\omega(f,\frac {1}{\sqrt{n}})\). The desired result follows immediately.
(ii) When \(0<\alpha<1\), by Lemma 2(i), we have
$$\begin{aligned}& \bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \\& \quad \leq\omega\bigl(f,\vert 0-x\vert \bigr)Q^{(\alpha)}_{n,0}(x) +\sum_{k=1}^{n-1}Q^{(\alpha)}_{n,k}(x)B_{n,k} \bigl(\omega \bigl(f,\vert t-x\vert \bigr)\bigr)+\omega\bigl(f,\vert 1-x \vert \bigr)Q^{(\alpha)}_{n,n}(x) \\& \quad \leq\bigl(1+n^{\frac{\alpha}{2}}\vert 0-x\vert \bigr)\omega \bigl(f,n^{-\frac{\alpha }{2}}\bigr)Q_{n,0}^{(\alpha)}(x) +\sum _{k=1}^{n-1}Q^{(\alpha)}_{n,k}(x)B_{n,k} \bigl(1+n^{\frac{\alpha }{2}}\vert t-x\vert \bigr)\omega\bigl(f,n^{-\frac{\alpha}{2}} \bigr) \\& \qquad {}+\bigl(1+n^{\frac{\alpha}{2}}\vert 1-x\vert \bigr)\omega \bigl(f,n^{-\frac{\alpha}{2}}\bigr)Q^{(\alpha )}_{n,n}(x) \\& \quad =\omega\bigl(f,n^{-\frac{\alpha}{2}}\bigr)+n^{\frac{\alpha}{2}}\omega \bigl(f,n^{-\frac{\alpha}{2}}\bigr)L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr), \end{aligned}$$
so, by Lemma 6(ii), we obtain \(|L_{n,\alpha}(f;x)-f(x)|\leq(1+\sqrt{M_{\alpha}})\omega(f,n^{-\frac {\alpha}{2}})\). The desired result follows immediately. □

Theorem 3

\(Let f\in C^{1}[0,1]\), \(x\in[0,1]\). Then
  1. (i)
    when \(\alpha\geq1\), we have
    $$ \bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \leq\bigl\Vert f'\bigr\Vert \sqrt{\frac{\alpha}{2n}} +\omega \biggl(f',\frac{1}{\sqrt{n}}\biggr) \biggl(1+\sqrt{ \frac{\alpha}{2}}\biggr)\sqrt{\frac {\alpha}{2n}}; $$
     
  2. (ii)
    when \(0<\alpha<1\), we have
    $$ \bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \leq\bigl\Vert f'\bigr\Vert \sqrt{M_{\alpha}n^{-\alpha}} +\omega \bigl(f',n^{-\frac{\alpha}{2}}\bigr) (1+\sqrt{M_{\alpha}}) \sqrt{M_{\alpha }n^{-\alpha}}, $$
    where the constant \(M_{\alpha}\) only depends on α.
     

Proof

Let \(f\in C^{1}[0,1]\). For any \(t, x\in[0,1]\), \(\delta>0\), we have
$$\begin{aligned} \bigl\vert f(t)-f(x)-f'(x) (t-x)\bigr\vert \leq&\biggl\vert \int_{x}^{t}\bigl\vert f'(u)-f'(x) \bigr\vert \, du\biggr\vert \\ \leq&\omega\bigl(f',\vert t-x\vert \bigr)|t-x| \\ \leq&\omega\bigl(f',\delta\bigr) \bigl(\vert t-x\vert + \delta^{-1}(t-x)^{2}\bigr), \end{aligned}$$
hence, by the Cauchy-Schwarz inequality, we have
$$\begin{aligned}& \bigl\vert L_{n,\alpha}\bigl(f(t)-f(x)-f'(x) (t-x);x\bigr) \bigr\vert \\& \quad \leq\omega\bigl(f',\delta\bigr) \bigl(L_{n,\alpha}\bigl( \vert t-x\vert ;x\bigr)+\delta ^{-1}L_{n,\alpha} \bigl((t-x)^{2};x\bigr) \bigr) \\& \quad \leq\omega\bigl(f',\delta\bigr) \bigl(\sqrt{L_{n,\alpha}(1;x)} \\& \qquad {}+\delta^{-1}\sqrt{L_{n,\alpha}\bigl((t-x)^{2};x \bigr)}\bigr)\sqrt{L_{n,\alpha}\bigl((t-x)^{2};x\bigr)}. \end{aligned}$$
So we get
$$\begin{aligned}& \bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \\& \quad \leq\bigl\Vert f'\bigr\Vert L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr) \\& \qquad {}+\omega\bigl(f',\delta\bigr) \bigl(1+\delta^{-1} \sqrt{L_{n,\alpha }\bigl((t-x)^{2};x\bigr)}\bigr) \sqrt{L_{n,\alpha}\bigl((t-x)^{2};x\bigr)}. \end{aligned}$$
(5)
  1. (i)

    When \(\alpha\geq1\), taking \(\delta=\frac{1}{\sqrt{n}}\) in (5), by Lemma 5 and inequality (5), we obtain the desired result.

     
  2. (ii)

    When \(0<\alpha<1\), taking \(\delta=n^{-\frac{\alpha}{2}}\) in (5), by Lemma 6 and inequality (5), we obtain the desired result.

     
 □

Finally we study the direct theorem concerned with an approximation for the sequence \(\{L_{n,\alpha}\}\) by means of the Ditzian-Totik modulus of smoothness. For the next theorem we shall use some notations.

For \(f\in C[0,1]\), \(\varphi(x)=\sqrt{x(1-x)}\), \(0\leq\lambda\leq 1\), \(x\in [0,1]\), let
$$\omega_{\varphi^{\lambda}}(f,t)=\sup_{0< h\leq t}\sup_{x\pm \frac{h\varphi^{\lambda}(x)}{2}\in[0,1]} \biggl\vert f\biggl(x+\frac{h\varphi^{\lambda }(x)}{2}\biggr)-f\biggl(x-\frac{h\varphi^{\lambda}(x)}{2} \biggr)\biggr\vert $$
be the Ditzian-Totik modulus of first order, and let
$$ K_{\varphi^{\lambda}}(f,t)=\inf_{g\in W_{\lambda}}\bigl\{ \| f-g \|+t\bigl\Vert \varphi^{\lambda}g'\bigr\Vert \bigr\} $$
(6)
be the corresponding K-functional, where \(W_{\lambda}=\{f|f\in \mathit{AC}_{\mathrm{loc}}[0,1], \|\varphi^{\lambda}f'\|<\infty, \|f'\|<\infty\}\).
It is well known that (see [14])
$$ K_{\varphi^{\lambda}}(f,t)\leq C\omega_{\varphi^{\lambda}}(f,t), $$
(7)
for some absolute constant \(C>0\).

Now we state our next main result.

Theorem 4

Let \(f\in C[0,1]\), \(\alpha\geq1\), \(\varphi(x)=\sqrt{x(1-x)}\), \(x\in [0,1]\), \(0\leq\lambda\leq1\). Then there exists an absolute constant \(C>0\) such that
$$\bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \leq C\omega_{\varphi^{\lambda}} \biggl(f,\frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}\biggr). $$

Proof

Let \(g\in W_{\lambda}\), by Lemma 2(i) and Lemma 7, we have
$$\begin{aligned}& \bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \\& \quad \leq\bigl\vert L_{n,\alpha}(f-g;x)\bigr\vert +\bigl\vert f(x)-g(x)\bigr\vert +\bigl\vert L_{n,\alpha }(g;x)-g(x)\bigr\vert \\& \quad \leq2\|f-g\|+\bigl\vert L_{n,\alpha}(g;x)-g(x)\bigr\vert . \end{aligned}$$
(8)
Since \(g(t)=\int_{x}^{t}g'(u)\, du+g(x)\), \(L_{n,\alpha}(1;x)=1\), so, we have
$$\begin{aligned} \bigl\vert L_{n,\alpha}(g;x)-g(x)\bigr\vert \leq&\biggl\vert L_{n,\alpha}\biggl( \int _{x}^{t}\bigl\vert g'(u)\bigr\vert \, du;x\biggr)\biggr\vert \\ \leq&\bigl\Vert \varphi^{\lambda}g'\bigr\Vert L_{n,\alpha}\biggl(\biggl\vert \int_{x}^{t}\varphi^{-\lambda }(u)\, du\biggr\vert ;x\biggr). \end{aligned}$$
(9)
By the Hölder inequality, we get
$$ \biggl\vert \int_{x}^{t}\varphi^{-\lambda}(u)\, du\biggr\vert \leq\biggl\vert \int_{x}^{t}\frac{1}{\sqrt{u(1-u)}}\, du\biggr\vert ^{\lambda}|t-x|^{1-\lambda}, $$
(10)
also, in view of \(1\leq\sqrt{u}+\sqrt{1-u}<2\), \(0\leq u\leq1\), we have
$$\begin{aligned} \biggl\vert \int_{x}^{t}\frac{1}{\sqrt{u(1-u)}}\, du\biggr\vert \leq&\biggl\vert \int_{x}^{t}\biggl(\frac {1}{\sqrt{u}}+ \frac{1}{\sqrt{1-u}}\biggr)\, du\biggr\vert \\ \leq&2 \bigl(\vert \sqrt{t}-\sqrt{x} \vert +\vert \sqrt{1-x}-\sqrt{1-t} \vert \bigr) \\ \leq&2\biggl(\frac{\vert t-x\vert }{\sqrt{t}+\sqrt{x}}+\frac{\vert t-x\vert }{\sqrt{1-t}+\sqrt {1-x}}\biggr) \\ \leq&2\vert t-x\vert \biggl(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{1-x}}\biggr) \\ \leq&4\vert t-x\vert \varphi^{-1}(x), \end{aligned}$$
(11)
thus, by (10) and (11), we obtain
$$ \biggl\vert \int_{x}^{t}\varphi^{-\lambda}(u)\, du\biggr\vert \leq C\varphi^{-\lambda}(x)|t-x|, $$
(12)
also, by (9) and (12), we have
$$\begin{aligned} \bigl\vert L_{n,\alpha}(g;x)-g(x)\bigr\vert \leq&C\bigl\Vert \varphi^{\lambda}g'\bigr\Vert L_{n,\alpha }\bigl( \varphi^{-\lambda}(x)\vert t-x\vert ;x\bigr) \\ =&C\bigl\Vert \varphi^{\lambda}g'\bigr\Vert \varphi^{-\lambda}(x)L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr). \end{aligned}$$
(13)
In view of (4) and Lemma 2(i), by the Cauchy-Schwarz inequality, we have
$$\begin{aligned} L_{n,\alpha}\bigl(\vert t-x\vert ;x\bigr) \leq& \sqrt{L_{n,\alpha}(1;x)}\sqrt{L_{n,\alpha }\bigl((t-x)^{2};x \bigr)} \\ \leq&\sqrt{\frac{(n+1)\alpha}{n^{2}+1}x(1-x)} \\ \leq&C\frac{\varphi(x)}{\sqrt{n}}, \end{aligned}$$
(14)
so, by (13) and (14), we obtain
$$ \bigl\vert L_{n,\alpha}(g;x)-g(x)\bigr\vert \leq C\bigl\Vert \varphi^{\lambda}g'\bigr\Vert \frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}, $$
(15)
thus, by (8) and (15), we have
$$ \bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \leq 2\|f-g \|+C\bigl\Vert \varphi^{\lambda}g'\bigr\Vert \frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}. $$
(16)
Then, in view of (16), (6), and (7), we obtain
$$ \bigl\vert L_{n,\alpha}(f;x)-f(x)\bigr\vert \leq CK_{\varphi^{\lambda}} \biggl(f,\frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}\biggr)\leq C\omega_{\varphi^{\lambda}}\biggl(f, \frac{\varphi^{1-\lambda}(x)}{\sqrt{n}}\biggr), $$
where C is a positive constant, in different places the value of C may be different. □

4 Conclusions

In this paper, a new kind of type Bézier operators is introduced. The Korovkin type approximation theorem of these operators is investigated. The rates of convergence of these operators are studied by means of the modulus of continuity. Then, by using the Ditzian-Totik modulus of smoothness, a direct theorem concerned with an approximation for these operators is obtained. Further, we can also study the inverse theorem and an equivalent theorem concerned with an approximation for these operators.

Notes

Declarations

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61572020), the Class A Science and Technology Project of Education Department of Fujian Province of China (Grant No. JA12324), and the Natural Science Foundation of Fujian Province of China (Grant Nos. 2014J01021 and 2013J01017).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics and Computer Science, Wuyi University, Wuyishan, 354300, China
(2)
School of Mathematical Sciences, Xiamen University, Xiamen, 361005, China

References

  1. Bézier, P: Numerical Control: Mathematics and Applications. Wiley, London (1972) MATHGoogle Scholar
  2. Chang, GZ: Generalized Bernstein-Bézier polynomial. J. Comput. Math. 1(4), 322-327 (1983) MATHGoogle Scholar
  3. Zeng, XM, Chen, W: On the rate of convergence of the generalized Durrmeyer type operators for functions of bounded variation. J. Approx. Theory 102, 1-12 (2000) MATHMathSciNetView ArticleGoogle Scholar
  4. Zeng, XM, Gupta, V: Rate of convergence of Baskakov-Bézier type operators for locally bounded functions. Comput. Math. Appl. 44, 1445-1453 (2002) MATHMathSciNetView ArticleGoogle Scholar
  5. Deo, N: Direct and inverse theorems for Szász-Lupas type operators in simultaneous approximation. Mat. Vesn. 58, 19-29 (2006) MATHMathSciNetGoogle Scholar
  6. Guo, S, Qi, Q, Liu, G: The central approximation theorem for Baskakov-Bézier operators. J. Approx. Theory 147, 112-124 (2007) MATHMathSciNetView ArticleGoogle Scholar
  7. Liang, L, Sun, W: On pointwise approximation for a type of generalized Kantorovich-Bézier operators. J. Southwest Univ. 33(10), 103-106 (2011) Google Scholar
  8. Liu, G, Yang, X: On the approximation for generalized Szasz-Durrmeyer type operators in the space \(L_{p}[0,\infty)\). J. Inequal. Appl. 2014, 447 (2014). doi:10.1186/1029-242X-2014-447 View ArticleGoogle Scholar
  9. Deng, X, Wu, G: On approximation of Bernstein-Durrmeyer-Bézier operators in Orlicz spaces. Pure Appl. Math. 31(3), 307-317 (2015) Google Scholar
  10. Ren, MY: Approximation properties of a kind of Bernstein type operators. J. Wuyi Univ. 31(2), 1-4 (2012) Google Scholar
  11. Li, P, Huang, Y: Approximation order generalized Bernstein-Bézier polynomials. J. Univ. Sci. Technol. China 15(1), 15-18 (1985) MATHGoogle Scholar
  12. Li, Z: Approximation properties of the Bernstein-Kantorovic-Bézier polynomials. J. Nat. Sci. Hunan Norm. Univ. 9(1), 14-19 (1986) MATHGoogle Scholar
  13. Chen, WZ: Operators Approximation Theory. Xiamen University Press, Xiamen (1989) (in Chinese) Google Scholar
  14. Ditzian, Z, Totik, V: Moduli of Smoothness. Springer, New York (1987) MATHView ArticleGoogle Scholar

Copyright

Advertisement