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Abstract
In this paper, a kind of new type Bézier operators is introduced. The Korovkin type
approximation theorem of these operators is investigated. The rates of convergence
of these operators are studied by means of modulus of continuity. Then, by using the
Ditzian-Totik modulus of smoothness, a direct theorem concerned with an
approximation for these operators is also obtained.
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1 Introduction
In view of the Bézier basis function, which was introduced by Bézier [], in , Chang
[] defined the generalized Bernstein-Bézier polynomials for any α > , and a function f
defined on [, ] as follows:

Bn,α(f ; x) =
n∑

k=

f
(

k
n

)[
Jα
n,k(x) – Jα

n,k+(x)
]
, ()

where Jn,n+(x) = , and Jn,k(x) =
∑n

i=k Pn,i(x), k = , , . . . , n, Pn,i(x) =
( n

i
)
xi( – x)n–i. Jn,k(x) is

the Bézier basis function of degree n.
Obviously, when α = , Bn,α(f ; x) become the well-known Bernstein polynomials Bn(f ; x),

and for any x ∈ [, ], we have  = Jn,(x) > Jn,(x) > · · · > Jn,n(x) = xn, Jn,k(x) – Jn,k+(x) =
Pn,k(x).

During the last ten years, the Bézier basis function was extensively used for constructing
various generalizations of many classical approximation processes. Some Bézier type op-
erators, which are based on the Bézier basis function, have been introduced and studied
(e.g., see [–]).

In , Ren [] introduced Bernstein type operators as follows:

Ln(f ; x) = f ()Pn,(x) +
n–∑

k=

Pn,k(x)Bn,k(f ) + f ()Pn,n(x), ()

where f ∈ C[, ], x ∈ [, ], Pn,k(x) =
( n

k
)
xk( – x)n–k , k = , , . . . , n, and Bn,k(f ) =


B(nk,n(n–k))

∫ 
 tnk–( – t)n(n–k)–f (t) dt, k = , . . . , n – , B(·, ·) is the beta function.
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The moments of the operators Ln(f ; x) were obtained as follows (see []).

Remark  For Ln(tj; x), j = , , , we have

(i) Ln(; x) = ;

(ii) Ln(t; x) = x;

(iii) Ln
(
t; x

)
=

n(n – )
n + 

x +
n + 
n + 

x.

In the present paper, we will study the Bézier variant of the Bernstein type operators
Ln(f ; x), which have been given by (). We introduce a new type of Bézier operators as
follows:

Ln,α(f ; x) = f ()Q(α)
n,(x) +

n–∑

k=

Q(α)
n,k(x)Bn,k(f ) + f ()Q(α)

n,n(x), ()

where f ∈ C[, ], x ∈ [, ], α > , Q(α)
n,k(x) = Jα

n,k(x) – Jα
n,k+(x), Jn,n+(x) = , Jn,k(x) =

∑n
i=k Pn,i(x), k = , , . . . , n, Pn,i(x) =

( n
i
)
xi( – x)n–i, and Bn,k(f ) = 

B(nk,n(n–k))
∫ 

 tnk–( –
t)n(n–k)–f (t) dt, k = , . . . , n – , B(·, ·) is the beta function.

It is clear that Ln,α(f ; x) are linear and positive on C[, ]. When α = , Ln,α(f ; x) become
the operators Ln(f ; x).

The goal of this paper is to study the approximation properties of these operators with
the help of the Korovkin type approximation theorem. We also estimate the rates of con-
vergence of these operators by using a modulus of continuity. Then we obtain the direct
theorem concerned with an approximation for these operators by means of the Ditzian-
Totik modulus of smoothness.

In the paper, for f ∈ C[, ], we denote ‖f ‖ = max{|f (x)| : x ∈ [, ]}. ω(f , δ) (δ > ) de-
notes the usual modulus of continuity of f ∈ C[, ].

2 Some lemmas
Now, we give some lemmas, which are necessary to prove our results.

Lemma  (see []) Let α > . We have

(i) lim
n→∞


n

n∑

k=

Jα
n,k(x) = x uniformly on [, ];

(ii) lim
n→∞


n

n∑

k=

kJα
n,k(x) =

x


uniformly on [, ].

Lemma  Let α > . We have

(i) Ln,α(; x) = ;

(ii) lim
n→∞ Ln,α(t; x) = x uniformly on [, ];

(iii) lim
n→∞ Ln,α

(
t; x

)
= x uniformly on [, ].



Ren and Zeng Journal of Inequalities and Applications  (2015) 2015:412 Page 3 of 10

Proof By simple calculation, we obtain Bn,k() = , Bn,k(t) = k
n , Bn,k(t) = 

n+ (k + k
n ).

(i) Since
∑n

k= Q(α)
n,k(x) = , by () we can get Ln,α(; x) = .

(ii) By (), we have

Ln,α(t; x) =
n–∑

k=

Q(α)
n,k(x)

k
n

+ Q(α)
n,n(x)

=
[
Jα
n,(x) – Jα

n,(x)
] 

n
+ · · · +

[
Jα
n,n–(x) – Jα

n,n(x)
]n – 

n
+ Jα

n,n(x)
n
n

=

n

n∑

k=

Jα
n,k(x),

thus, by Lemma (i), we have limn→∞ Ln,α(t; x) = x uniformly on [, ].
(iii) By (), we have

Ln,α
(
t; x

)
=


n + 

n–∑

k=

Q(α)
n,k(x)

(
k +

k
n

)
+ Q(α)

n,n(x)

=


n + 

n∑

k=

(
k –  +


n

)
Jα
n,k(x)

=


n + 

[
n · 

n

n∑

k=

kJα
n,k(x) – n · 

n

n∑

k=

Jα
n,k(x) +


n

n∑

k=

Jα
n,k(x)

]
,

thus, by Lemma , we have limn→∞ Ln,α(t; x) = x uniformly on [, ]. �

Lemma  (see []) For x ∈ [, ], k = , , . . . , n, we have

 ≤ Q(α)
n,k(x) ≤

{
αPn,k(x), α ≥ ;
Pα

n,k(x),  < α < .

Lemma  (see []) For  < α < , β > , we have

n∑

k=

|k – nx|βPα
n,k(x) ≤ (n + )–α(A β

α
)αn

β
 ,

where the constant As only depends on s.

Lemma  For α ≥ , we have

(i) Ln,α
(
(t – x); x

) ≤ α


· 

n
;

(ii) Ln,α
(|t – x|; x

) ≤
√

α


·
√


n

.

Proof (i) By (), Lemma  and Remark , we obtain

Ln,α
(
(t – x); x

)

= xQ(α)
n,(x) +

n–∑

k=

Q(α)
n,k(x)Bn,k

(
(t – x)) + ( – x)Q(α)

n,n(x)
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≤ α

[
xPn,(x) +

n–∑

k=

Pn,k(x)Bn,k
(
(t – x)) + ( – x)Pn,n(x)

]

= αLn
(
(t – x); x

)

=
(n + )α
n + 

x( – x), ()

since max≤x≤ x( – x) = 
 , and for any n ∈ N , one can get n(n+)

n+ ≤ , so we have

Ln,α
(
(t – x); x

) ≤ α


· 

n
.

(ii) In view of Ln,α(; x) = , by the Cauchy-Schwarz inequality, we have

Ln,α
(|t – x|; x

) ≤ √
Ln,α(; x)

√
Ln,α

(
(t – x); x

)
,

thus, we get

Ln,α
(|t – x|; x

) ≤
√

α


·
√


n

. �

Lemma  For  < α < , we have

(i) Ln,α
(
(t – x); x

) ≤ Mαn–α ;

(ii) Ln,α
(|t – x|; x

) ≤ √
Mα · n– α

 .

Here the constant Mα only depends on α.

Proof (i) By () and Lemma , we obtain

Ln,α
(
(t – x); x

)

= xQ(α)
n,(x) +

n–∑

k=

Q(α)
n,k(x)Bn,k

(
(t – x)) + ( – x)Q(α)

n,n(x)

≤ xPα
n,(x) +

n–∑

k=

Pα
n,k(x)Bn,k

(
(t – x)) + ( – x)Pα

n,n(x)

=
n∑

k=

Pα
n,k(x)

[


n + 

(
k +

k
n

)
– x

k
n

+ x
]

=


n + 

n∑

k=

(k – nx)Pα
n,k(x) +


n + 

n∑

k=

Pα
n,k(x)

(
k
n

– x
k
n

+ x
)

:= I + I.

By Lemma , we have I ≤ n(n+)
n+ (n + )–α(A 

α
)α ≤ (A 

α
)αn–α , where the constant A 

α

only depends on α.
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Using the Hölder inequality, we have
∑n

k= Pα
n,k(x) ≤ (n + )–α[

∑n
k= Pn,k(x)]α , and | k

n –
x k

n + x| ≤ , so we have

I ≤ 
n + 

(n + )–α

[ n∑

k=

Pn,k(x)

]α

=


n + 
(n + )–α ≤ n–α .

Denote Mα = (A 
α

)α + , then we can get

Ln,α
(
(t – x); x

) ≤ Mαn–α .

(ii) Since

Ln,α
(|t – x|; x

) ≤ √
Ln,α(; x)

√
Ln,α

(
(t – x); x

)
,

thus, we get

Ln,α
(|t – x|; x

) ≤ √
Mα · n– α

 . �

Lemma  For f ∈ C[, ], x ∈ [, ] and α > , we have

∣∣Ln,α(f ; x)
∣∣ ≤ ‖f ‖.

Proof By () and Lemma (i), we have

∣∣Ln,α(f ; x)
∣∣ ≤ ‖f ‖Ln,α(; x) = ‖f ‖. �

3 Main results
First of all we give the following convergence theorem for the sequence {Ln,α(f ; x)}.

Theorem  Let α > . Then the sequence {Ln,α(f ; x)} converges to f uniformly on [, ] for
any f ∈ C[, ].

Proof Since Ln,α(f ; x) is bounded and positive on C[, ], and by Lemma , we have
limn→∞ ‖Ln,α(ej; ·) – ej‖ =  for ej(t) = tj, j = , , . So, according to the well-known
Bohman-Korovkin theorem ([], p., Theorem .), we see that the sequence {Ln,α(f ; x)}
converges to f uniformly on [, ] for any f ∈ C[, ]. �

Next we estimate the rates of convergence of the sequence {Ln,α} by means of the mod-
ulus of continuity.

Theorem  Let f ∈ C[, ], x ∈ [, ]. Then
(i) when α ≥ , we have ‖Ln,α(f ; ·) – f ‖ ≤ ( +

√
α
 )ω(f , √

n );
(ii) when  < α < , we have ‖Ln,α(f ; ·) – f ‖ ≤ ( +

√
Mα)ω(f , n– α

 ).
Here the constant Mα only depends on α.
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Proof (i) When α ≥ , by Lemma (i), we have

∣∣Ln,α(f ; x) – f (x)
∣∣

≤ ∣∣f () – f (x)
∣∣Q(α)

n,(x) +
n–∑

k=

Q(α)
n,k(x)Bn,k

(∣∣f (t) – f (x)
∣∣) +

∣∣f () – f (x)
∣∣Q(α)

n,n(x)

≤ ω
(
f , | – x|)Q(α)

n,(x) +
n–∑

k=

Q(α)
n,k(x)Bn,k

(
ω

(
f , |t – x|)) + ω

(
f , | – x|)Q(α)

n,n(x)

≤ (
 +

√
n| – x|)ω

(
f ,

√
n

)
Q(α)

n,(x)

+
n–∑

k=

Q(α)
n,k(x)Bn,k

((
 +

√
n|t – x|)ω

(
f ,

√
n

))

+
(
 +

√
n| – x|)ω

(
f ,

√
n

)
Q(α)

n,n(x)

≤ ω

(
f ,

√
n

)
+

√
nω

(
f ,

√
n

)
Ln,α

(|t – x|; x
)
,

so, by Lemma (ii), we obtain |Ln,α(f ; x) – f (x)| ≤ ( +
√

α
 )ω(f , √

n ). The desired result fol-
lows immediately.

(ii) When  < α < , by Lemma (i), we have

∣∣Ln,α(f ; x) – f (x)
∣∣

≤ ω
(
f , | – x|)Q(α)

n,(x) +
n–∑

k=

Q(α)
n,k(x)Bn,k

(
ω

(
f , |t – x|)) + ω

(
f , | – x|)Q(α)

n,n(x)

≤ (
 + n

α
 | – x|)ω(

f , n– α

)
Q(α)

n,(x) +
n–∑

k=

Q(α)
n,k(x)Bn,k

(
 + n

α
 |t – x|)ω(

f , n– α

)

+
(
 + n

α
 | – x|)ω(

f , n– α

)
Q(α)

n,n(x)

= ω
(
f , n– α


)

+ n
α
 ω

(
f , n– α


)
Ln,α

(|t – x|; x
)
,

so, by Lemma (ii), we obtain |Ln,α(f ; x) – f (x)| ≤ ( +
√

Mα)ω(f , n– α
 ). The desired result

follows immediately. �

Theorem  Letf ∈ C[, ], x ∈ [, ]. Then
(i) when α ≥ , we have

∣∣Ln,α(f ; x) – f (x)
∣∣ ≤ ∥∥f ′∥∥

√
α

n
+ ω

(
f ′,

√
n

)(
 +

√
α



)√
α

n
;

(ii) when  < α < , we have

∣∣Ln,α(f ; x) – f (x)
∣∣ ≤ ∥∥f ′∥∥√

Mαn–α + ω
(
f ′, n– α


)
( +

√
Mα)

√
Mαn–α ,

where the constant Mα only depends on α.
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Proof Let f ∈ C[, ]. For any t, x ∈ [, ], δ > , we have

∣∣f (t) – f (x) – f ′(x)(t – x)
∣∣ ≤

∣∣∣∣
∫ t

x

∣∣f ′(u) – f ′(x)
∣∣du

∣∣∣∣

≤ ω
(
f ′, |t – x|)|t – x|

≤ ω
(
f ′, δ

)(|t – x| + δ–(t – x)),

hence, by the Cauchy-Schwarz inequality, we have

∣∣Ln,α
(
f (t) – f (x) – f ′(x)(t – x); x

)∣∣

≤ ω
(
f ′, δ

)(
Ln,α

(|t – x|; x
)

+ δ–Ln,α
(
(t – x); x

))

≤ ω
(
f ′, δ

)(√
Ln,α(; x)

+ δ–
√

Ln,α
(
(t – x); x

))√
Ln,α

(
(t – x); x

)
.

So we get

∣∣Ln,α(f ; x) – f (x)
∣∣

≤ ∥∥f ′∥∥Ln,α
(|t – x|; x

)

+ ω
(
f ′, δ

)(
 + δ–

√
Ln,α

(
(t – x); x

))√
Ln,α

(
(t – x); x

)
. ()

(i) When α ≥ , taking δ = √
n in (), by Lemma  and inequality (), we obtain the

desired result.
(ii) When  < α < , taking δ = n– α

 in (), by Lemma  and inequality (), we obtain the
desired result. �

Finally we study the direct theorem concerned with an approximation for the sequence
{Ln,α} by means of the Ditzian-Totik modulus of smoothness. For the next theorem we
shall use some notations.

For f ∈ C[, ], ϕ(x) =
√

x( – x),  ≤ λ ≤ , x ∈ [, ], let

ωϕλ (f , t) = sup
<h≤t

sup
x± hϕλ(x)

 ∈[,]

∣∣∣∣f
(

x +
hϕλ(x)



)
– f

(
x –

hϕλ(x)


)∣∣∣∣

be the Ditzian-Totik modulus of first order, and let

Kϕλ (f , t) = inf
g∈Wλ

{‖f – g‖ + t
∥∥ϕλg ′∥∥}

()

be the corresponding K-functional, where Wλ = {f |f ∈ ACloc[, ],‖ϕλf ′‖ < ∞,‖f ′‖ < ∞}.
It is well known that (see [])

Kϕλ (f , t) ≤ Cωϕλ (f , t), ()

for some absolute constant C > .
Now we state our next main result.
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Theorem  Let f ∈ C[, ], α ≥ , ϕ(x) =
√

x( – x), x ∈ [, ],  ≤ λ ≤ . Then there exists
an absolute constant C >  such that

∣∣Ln,α(f ; x) – f (x)
∣∣ ≤ Cωϕλ

(
f ,

ϕ–λ(x)√
n

)
.

Proof Let g ∈ Wλ, by Lemma (i) and Lemma , we have

∣∣Ln,α(f ; x) – f (x)
∣∣

≤ ∣∣Ln,α(f – g; x)
∣∣ +

∣∣f (x) – g(x)
∣∣ +

∣∣Ln,α(g; x) – g(x)
∣∣

≤ ‖f – g‖ +
∣∣Ln,α(g; x) – g(x)

∣∣. ()

Since g(t) =
∫ t

x g ′(u) du + g(x), Ln,α(; x) = , so, we have

∣∣Ln,α(g; x) – g(x)
∣∣ ≤

∣∣∣∣Ln,α

(∫ t

x

∣∣g ′(u)
∣∣du; x

)∣∣∣∣

≤ ∥∥ϕλg ′∥∥Ln,α

(∣∣∣∣
∫ t

x
ϕ–λ(u) du

∣∣∣∣; x
)

. ()

By the Hölder inequality, we get

∣∣∣∣
∫ t

x
ϕ–λ(u) du

∣∣∣∣ ≤
∣∣∣∣
∫ t

x

√
u( – u)

du
∣∣∣∣
λ

|t – x|–λ, ()

also, in view of  ≤ √
u +

√
 – u < ,  ≤ u ≤ , we have

∣∣∣∣
∫ t

x

√
u( – u)

du
∣∣∣∣ ≤

∣∣∣∣
∫ t

x

(
√
u

+
√

 – u

)
du

∣∣∣∣

≤ 
(|√t –

√
x| + |√ – x –

√
 – t|)

≤ 
( |t – x|√

t +
√

x
+

|t – x|√
 – t +

√
 – x

)

≤ |t – x|
(

√
x

+
√

 – x

)

≤ |t – x|ϕ–(x), ()

thus, by () and (), we obtain

∣∣∣∣
∫ t

x
ϕ–λ(u) du

∣∣∣∣ ≤ Cϕ–λ(x)|t – x|, ()

also, by () and (), we have

∣∣Ln,α(g; x) – g(x)
∣∣ ≤ C

∥∥ϕλg ′∥∥Ln,α
(
ϕ–λ(x)|t – x|; x

)

= C
∥∥ϕλg ′∥∥ϕ–λ(x)Ln,α

(|t – x|; x
)
. ()
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In view of () and Lemma (i), by the Cauchy-Schwarz inequality, we have

Ln,α
(|t – x|; x

) ≤ √
Ln,α(; x)

√
Ln,α

(
(t – x); x

)

≤
√

(n + )α
n + 

x( – x)

≤ C
ϕ(x)√

n
, ()

so, by () and (), we obtain

∣∣Ln,α(g; x) – g(x)
∣∣ ≤ C

∥∥ϕλg ′∥∥ϕ–λ(x)√
n

, ()

thus, by () and (), we have

∣∣Ln,α(f ; x) – f (x)
∣∣ ≤ ‖f – g‖ + C

∥∥ϕλg ′∥∥ϕ–λ(x)√
n

. ()

Then, in view of (), (), and (), we obtain

∣∣Ln,α(f ; x) – f (x)
∣∣ ≤ CKϕλ

(
f ,

ϕ–λ(x)√
n

)
≤ Cωϕλ

(
f ,

ϕ–λ(x)√
n

)
,

where C is a positive constant, in different places the value of C may be different. �

4 Conclusions
In this paper, a new kind of type Bézier operators is introduced. The Korovkin type approx-
imation theorem of these operators is investigated. The rates of convergence of these oper-
ators are studied by means of the modulus of continuity. Then, by using the Ditzian-Totik
modulus of smoothness, a direct theorem concerned with an approximation for these op-
erators is obtained. Further, we can also study the inverse theorem and an equivalent the-
orem concerned with an approximation for these operators.
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