Skip to main content

A new Hardy-Hilbert-type inequality with multiparameters and a best possible constant factor

Abstract

By means of weight coefficients and techniques of real analysis, a new Hardy-Hilbert-type inequality with multiparameters and the best possible constant factor is given. The equivalent forms, the operator expression with the norm, and the reverse and some particular inequalities with the best possible constant factors are also considered.

1 Introduction

If \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(f(x),g(y)\geq0\), \(f\in L^{p}(\mathbf{R}_{+})\), \(g\in L^{q}(\mathbf{R}_{+})\), \(\|f\|_{p}=(\int_{0}^{\infty }f^{p}(x)\,dx)^{\frac{1}{p}}>0\), \(\|g\|_{q}>0\), then we have the following Hardy-Hilbert integral inequality [1]:

$$ \int_{0}^{\infty} \int_{0}^{\infty}\frac{f(x)g(y)}{x+y}\,dx\,dy< \frac{\pi}{\sin(\pi/p)}\|f\|_{p}\|g\|_{q}, $$
(1)

where, the constant factor \(\frac{\pi}{\sin(\pi/p)}\) is the best possible. Assuming that \(a_{m},b_{n}\geq0\), \(a=\{a_{m}\}_{m=1}^{\infty }\in l^{p}\), \(b=\{b_{n}\}_{n=1}^{\infty}\in l^{q}\), \(\|a\|_{p}=(\sum_{m=1}^{\infty }a_{m}^{p})^{\frac{1}{p}}>0\), \(\|b\|_{q}>0\), we have the following Hardy-Hilbert inequality with the same best possible constant factor \(\frac{\pi}{\sin(\pi/p)}\) [1]:

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{a_{m}b_{n}}{m+n}< \frac {\pi}{\sin(\pi/p)}\|a \|_{p}\|b\|_{q}. $$
(2)

Inequalities (1) and (2) are important in analysis and its applications [15].

If \(\mu_{i},\upsilon_{j}>0 \) (\(i,j\in\mathbf{N}=\{1,2,\ldots\}\)),

$$ U_{m}:=\sum_{i=1}^{m} \mu_{i},\qquad V_{n}:=\sum_{j=1}^{n} \upsilon_{j}\quad (m,n\in \mathbf{N}), $$
(3)

then we have the following inequality (see Theorem 321 of [1]):

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac{\mu_{m}^{1/q}\upsilon _{n}^{1/p}a_{m}b_{n}}{U_{m}+V_{n}}< \frac{\pi}{\sin(\pi/p)}\|a\|_{p}\|b\|_{q}. $$
(4)

Replacing \(\mu_{m}^{1/q}a_{m}\) and \(\upsilon_{n}^{1/p}b_{n}\) by \(a_{m}\) and \(b_{n}\) in (4), respectively, we have the following equivalent form of (4):

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac {a_{m}b_{n}}{U_{m}+V_{n}}< \frac{\pi}{\sin(\frac{\pi}{p})} \Biggl( \sum_{m=1}^{\infty}\frac {a_{m}^{p}}{\mu _{m}^{p-1}} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty} \frac {b_{n}^{q}}{\upsilon_{n}^{q-1}} \Biggr) ^{\frac{1}{q}}. $$
(5)

For \(\mu_{i}=\upsilon_{j}=1\) (\(i,j\in\mathbf{N}\)), both (4) and (5) reduce to (2). We call (4) and (5) Hardy-Hilbert-type inequalities.

Note

The authors of [1] did not prove that (4) is valid with the best possible constant factor.

In 1998, by introducing an independent parameter \(\lambda\in(0,1]\) Yang [6] gave an extension of (1) with the kernel \(\frac{1}{(x+y)^{\lambda}}\) for \(p=q=2\). Following the results of [6], Yang [5] gave some best extensions of (1) and (2) as follows.

If \(\lambda_{1},\lambda_{2}\in\mathbf{R}\), \(\lambda_{1}+\lambda _{2}=\lambda\), \(k_{\lambda}(x,y)\) is a nonnegative homogeneous function of degree −λ with \(k(\lambda_{1})=\int_{0}^{\infty}k_{\lambda }(t,1)t^{\lambda_{1}-1}\,dt\in\mathbf{R}_{+}\), \(\phi(x)=x^{p(1-\lambda _{1})-1}\), \(\psi(x)=x^{q(1-\lambda_{2})-1}\), \(f(x),g(y)\geq0\),

$$ f\in L_{p,\phi}(\mathbf{R}_{+})= \biggl\{ f;\|f \|_{p,\phi }:= \biggl( \int_{0}^{\infty}\phi(x)\bigl|f(x)\bigr|^{p}\,dx \biggr)^{\frac {1}{p}}< \infty \biggr\} , $$

\(g\in L_{q,\psi}(\mathbf{R}_{+})\), \(\|f\|_{p,\phi},\|g\|_{q,\psi}>0\), then

$$ \int_{0}^{\infty} \int_{0}^{\infty}k_{\lambda }(x,y)f(x)g(y)\,dx \,dy< k(\lambda _{1})\|f\|_{p,\phi}\|g\|_{q,\psi}, $$
(6)

where the constant factor \(k(\lambda_{1})\) is the best possible. Moreover, if \(k_{\lambda}(x,y)\) is finite and \(k_{\lambda}(x,y)x^{\lambda _{1}-1} \) (\(k_{\lambda}(x,y)y^{\lambda_{2}-1}\)) is decreasing with respect to \(x>0 \) (\(y>0\)), then for \(a_{m},b_{n}\geq0\),

$$ a\in l_{p,\phi}= \Biggl\{ a;\|a\|_{p,\phi}:= \Biggl(\sum _{n=1}^{\infty }\phi (n)|a_{n}|^{p} \Biggr)^{\frac{1}{p}}< \infty \Biggr\} , $$

\(b=\{b_{n}\}_{n=1}^{\infty}\in l_{q,\psi}\), \(\|a\|_{p,\phi },\|b\|_{q,\psi }>0\), it follows that

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}k_{\lambda }(m,n)a_{m}b_{n}< k( \lambda_{1})\|a\|_{p,\phi}\|b\|_{q,\psi}, $$
(7)

where the constant factor \(k(\lambda_{1})\) is still the best possible.

Clearly, for \(\lambda=1\), \(k_{1}(x,y)=\frac{1}{x+y}\), \(\lambda _{1}=\frac{1}{q}\), \(\lambda_{2}=\frac{1}{p}\), inequality (6) reduces to (1), whereas (7) reduces to (2). For \(0<\lambda_{1},\lambda _{2}\leq1\), \(\lambda_{1}+\lambda_{2}=\lambda\), we set

$$ k_{\lambda}(x,y)=\frac{1}{(x+y)^{\lambda}} \quad\bigl((x,y)\in\mathbf{R}_{+}^{2} \bigr). $$

Then by (7) it follows that

$$ \sum_{m=1}^{\infty}\sum _{n=1}^{\infty}\frac {a_{m}b_{n}}{(m+n)^{\lambda}}< B( \lambda_{1},\lambda_{2})\|a\|_{p,\phi}\|b \|_{q,\psi}, $$
(8)

where the constant \(B(\lambda_{1},\lambda_{2})\) is the best possible. Some other results including multidimensional Hilbert-type inequalities are provided in [724].

In this paper, by means of weight coefficients and techniques of real analysis, a new Hardy-Hilbert-type inequality with multiparameters and the best possible constant factor is given, which is with the kernel

$$ k_{\lambda}(x,y)=\frac{(\min\{x,y\})^{\alpha}}{(\max\{x,y\})^{\lambda +\alpha}} $$

similar to (4). The equivalent forms, the operator expression with the norm, the reverse and some particular inequalities with the best possible constant factors are also considered.

2 An example and some lemmas

In the following, we make appointment that \(\mu_{i},\upsilon _{j}>0\) (\(i,j\in\mathbf{N}\)), \(U_{m}\) and \(V_{n}\) are defined by (3), \(p\neq0,1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(a_{m},b_{n}\geq0\) (\(m,n\in \mathbf{N}\)),

$$ \|a\|_{p,\Phi_{\lambda}}=\Biggl(\sum_{m=1}^{\infty} \Phi_{\lambda }(m)a_{m}^{p}\Biggr)^{\frac{1}{p}},\qquad\|b \|_{q,\Psi_{\lambda}}=\Biggl(\sum_{n=1}^{\infty} \Psi_{\lambda}(n)b_{n}^{q}\Biggr)^{\frac{1}{q}}, $$

where

$$ \Phi_{\lambda}(m):=\frac{U_{m}^{p(1-\lambda_{1})-1}}{\mu _{m}^{p-1}},\qquad\Psi _{\lambda}(n):= \frac{V_{n}^{q(1-\lambda_{2})-1}}{\upsilon _{n}^{q-1}}\quad (m,n\in\mathbf{N}). $$

We also set

$$\begin{aligned}& \widetilde{\Phi}_{\lambda}(m) :=\bigl(1-\theta(\lambda_{2},m) \bigr)\frac{U_{m}^{p(1-\lambda_{1})-1}}{\mu_{m}^{p-1}},\qquad \widetilde{\Psi}_{\lambda}(n) :=\bigl(1-\vartheta(\lambda_{1},n) \bigr)\frac{ V_{n}^{q(1-\lambda_{2})-1}}{\upsilon_{n}^{q-1}} \quad(m,n\in\mathbf{N}). \end{aligned}$$

Note

For \(0< p<1\) or \(p<0\), we still use the formal symbols \(\|a\|_{p,\Phi_{\lambda}}\), \(\|b\|_{q,\Psi_{\lambda}}\), \(\|a\|_{p,\widetilde{\Phi}_{\lambda}}\), and \(\|b\|_{q,\widetilde{\Psi }_{\lambda}}\).

Example 1

For \(-\alpha<\lambda_{1},\lambda_{2}\leq1-\alpha\), \(\lambda_{1}+\lambda_{2}=\lambda\), we set

$$ k_{\lambda}(x,y)=\frac{(\min\{x,y\})^{\alpha}}{(\max\{x,y\} )^{\lambda +\alpha}} \quad\bigl((x,y)\in\mathbf{R}_{+}^{2} \bigr). $$

We find

$$ \begin{aligned}[b] k(\lambda_{1}) &= \int_{0}^{\infty}k_{\lambda}(t,1)t^{\lambda _{1}-1} \,dt= \int_{0}^{\infty}\frac{(\min\{t,1\})^{\alpha}}{(\max \{t,1\})^{\lambda+\alpha}}t^{\lambda_{1}-1}\,dt\\ &= \int_{0}^{1}t^{\lambda_{1}+\alpha-1}\,dt+ \int_{1}^{\infty}\frac{1}{t^{\lambda+\alpha}}t^{\lambda_{1}-1}\,dt\\ &=\frac{1}{\lambda_{1}+\alpha}+\frac{1}{\lambda_{2}+\alpha}=\frac{\lambda+2\alpha}{(\lambda_{1}+\alpha)(\lambda_{2}+\alpha)}\in \mathbf{R}_{+}. \end{aligned} $$
(9)

Since

$$ k_{\lambda}(x,y)\frac{1}{y^{1-\lambda_{2}}}= \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{y^{\alpha+\lambda_{2}-1}}{x^{\lambda+\alpha}},& 0< y< x, \\ \frac{x^{\alpha}}{y^{1+\lambda_{1}+\alpha}},& y\geq x, \end{array}\displaystyle \right . $$

for \(\lambda_{2}\leq1-\alpha^{{}} \) (\(\lambda_{1}>-\alpha\)), \(k_{\lambda}(x,y)\frac{1}{y^{1-\lambda_{2}}}\) is decreasing for \(y>0\) and strictly decreasing for y large enough. Since

$$ k_{\lambda}(x,y)\frac{1}{x^{1-\lambda_{1}}}= \left \{ \textstyle\begin{array}{@{}l@{\quad}l} \frac{x^{\alpha+\lambda_{1}-1}}{y^{\lambda+\alpha}},& 0< x< y, \\ \frac{y^{\alpha}}{x^{1+\lambda_{2}+\alpha}},& x\geq y, \end{array}\displaystyle \right . $$

for \(\lambda_{1}\leq1-\alpha\) (\(\lambda_{2}>-\alpha\)), \(k_{\lambda}(x,y)\frac{1}{x^{1-\lambda_{1}}}\) is decreasing for \(x>0\) and strictly decreasing for x large enough.

In other words, for \(-\alpha<\lambda_{1},\lambda_{2}\leq1-\alpha \), \(k_{\lambda}(x,y)\frac{1}{y^{1-\lambda_{2}}}\) (\(k_{\lambda }(x,y)\frac{1}{x^{1-\lambda_{1}}}\)) is decreasing for \(y>0\) (\(x>0\)) and strictly decreasing for \(y(x)\) large enough, satisfying \(k(\lambda_{1})\in \mathbf{R}_{+}\).

Lemma 1

If \(g(t) \) (>0) is decreasing in \(\mathbf{R}_{+}\), strictly decreasing in \([n_{0},\infty)\) (\(n_{0}\in\mathbf{N}\)), and satisfying \(\int_{0}^{\infty}g(t)\,dt\in\mathbf{R}_{+}\), then we have

$$ \int_{1}^{\infty}g(t)\,dt< \sum _{n=1}^{\infty}g(n)< \int_{0}^{\infty}g(t)\,dt. $$
(10)

Proof

Since

$$\begin{aligned}& \int_{n}^{n+1}g(t)\,dt \leq g(n)\leq \int_{n-1}^{n}g(t)\,dt \quad(n=1,\ldots,n_{0}), \\& \int_{n_{0}+1}^{n_{0}+2}g(t)\,dt < g(n_{0}+1)< \int_{n_{0}}^{n_{0}+1}g(t)\,dt, \end{aligned}$$

it follows that

$$ 0< \int_{1}^{n_{0}+2}g(t)\,dt< \sum _{n=1}^{n_{0}+1}g(n)< \sum_{n=1}^{n_{0}+1} \int_{n-1}^{n}g(t)\,dt= \int_{0}^{n_{0}+1}g(t)\,dt< \infty. $$

In the same way, we have

$$ 0< \int_{n_{0}+2}^{\infty}g(t)\,dt\leq\sum _{n=n_{0}+2}^{\infty}g(n)\leq \int_{n_{0}+1}^{\infty}g(t)\,dt< \infty. $$

Adding these two inequalities, we have (10). □

Lemma 2

Let \(-\alpha<\lambda_{1},\lambda_{2}\leq 1-\alpha\), \(\lambda_{1}+\lambda_{2}=\lambda\), and \(k(\lambda_{1})\) be as in (9). Define the following weight coefficients:

$$\begin{aligned}& \omega(\lambda_{2},m) :=\sum_{n=1}^{\infty} \frac{(\min\{U_{m},V_{n} \})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{U_{m}^{\lambda_{1}}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}},\quad m\in\mathbf{N}, \end{aligned}$$
(11)
$$\begin{aligned}& \varpi(\lambda_{1},n) :=\sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n} \})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{V_{n}^{\lambda_{2}}\mu_{m}}{U_{m}^{1-\lambda_{1}}},\quad n\in\mathbf{N}. \end{aligned}$$
(12)

Then, we have the following inequalities:

$$\begin{aligned}& \omega(\lambda_{2},m) < k(\lambda_{1})\quad (-\alpha< \lambda_{2}\leq 1-\alpha,\lambda_{1}>-\alpha;m\in \mathbf{N}), \end{aligned}$$
(13)
$$\begin{aligned}& \varpi(\lambda_{1},n) < k(\lambda_{1})\quad (-\alpha< \lambda_{1}\leq 1-\alpha,\lambda_{2}>-\alpha;n\in \mathbf{N}). \end{aligned}$$
(14)

Proof

We set \(\mu(t):=\mu_{m}\), \(t\in(m-1,m] \) (\(m\in\mathbf{N}\)); \(\upsilon(t):=\upsilon_{n}\), \(t\in(n-1,n]\) (\(n\in\mathbf{N}\)), and

$$ U(x):= \int_{0}^{x}\mu(t)\,dt\quad (x\geq0), \qquad V(y):= \int_{0}^{y}\upsilon (t)\,dt\quad (y\geq 0). $$
(15)

Then by (3) it follows that \(U(m)=U_{m}\), \(V(n)=V_{n} \) (\(m,n\in \mathbf{N}\)). For \(x\in(m-1,m)\), \(U^{\prime}(x)=\mu(x)=\mu_{m}\) (\(m\in \mathbf{N}\)); for \(y\in(n-1,n)\), \(V^{\prime}(y)=\upsilon(y)=\upsilon _{n} \) (\(n\in\mathbf{N}\)). Since \(V(y)\) is strictly increasing in \((n-1,n]\), \(-\alpha<\lambda_{2}\leq1-\alpha\), \(\lambda_{1}>-\alpha\), in view of Example 1 and Lemma 1, we find

$$\begin{aligned} \omega(\lambda_{2},m) =&\sum_{n=1}^{\infty} \int_{n-1}^{n}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{U_{m}^{\lambda_{1}}}{V_{n}^{1-\lambda_{2}}}V^{\prime}(y) \,dy \\ < &\sum_{n=1}^{\infty} \int_{n-1}^{n}\frac{(\min\{U_{m},V(y)\} )^{\alpha}}{(\max\{U_{m},V(y)\})^{\lambda+\alpha}}\frac{U_{m}^{\lambda_{1}}}{V^{1-\lambda_{2}}(y)}V^{\prime}(y) \,dy. \end{aligned}$$

Setting \(t=\frac{V(y)}{U_{m}}\), we obtain \(V^{\prime}(y)\,dy=U_{m}\,dt\) and

$$\begin{aligned} \omega(\lambda_{2},m) < &\sum_{n=1}^{\infty} \int_{\frac {V(n-1)}{U_{m}}}^{\frac{V(n)}{U_{m}}}\frac{(\min\{1,t\})^{\alpha}}{(\max\{1,t\} )^{\lambda +\alpha}}t^{\lambda_{2}-1}\,dt \\ =& \int_{0}^{\frac{V(\infty)}{U_{m}}}\frac{(\min\{1,t\})^{\alpha }}{(\max \{1,t\})^{\lambda+\alpha}}t^{\lambda_{2}-1}\,dt \\ \leq& \int_{0}^{\infty}\frac{(\min\{1,t\})^{\alpha}}{(\max \{1,t\})^{\lambda+\alpha}}t^{\lambda_{2}-1} \,dt=k(\lambda_{1}). \end{aligned}$$
(16)

Hence, we have (13). In the same way, we have (14). □

Lemma 3

Let \(-\alpha<\lambda_{1},\lambda_{2}\leq1-\alpha\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(\lambda_{1}+\lambda_{2}=\lambda \), \(k(\lambda_{1})\) be as in (9), \(m_{0},n_{0}\in\mathbf{N}\), \(\mu _{m}\geq\mu_{m+1}\) (\(m\in\{m_{0},m_{0}+1,\ldots\}\)), \(\upsilon _{n}\geq \upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots\}\)), \(U(\infty )=V(\infty)=\infty\). Then

(i) for \(m,n\in\mathbf{N,}\) we have

$$\begin{aligned}& k(\lambda_{1}) \bigl(1-\theta(\lambda_{2},m)\bigr) < \omega(\lambda _{2},m) \quad(-\alpha< \lambda_{2}\leq1-\alpha, \lambda_{1}>-\alpha), \end{aligned}$$
(17)
$$\begin{aligned}& k(\lambda_{1}) \bigl(1-\vartheta(\lambda_{1},n)\bigr) < \varpi(\lambda _{1},n) \quad(-\alpha< \lambda_{1}\leq1-\alpha, \lambda_{2}>-\alpha), \end{aligned}$$
(18)

where, \(\theta(\lambda_{2},m)=O(\frac{1}{U_{m}^{\lambda_{2}+\alpha }})\in (0,1)\), \(\vartheta(\lambda_{1},n)=O(\frac{1}{V_{n}^{\lambda_{1}+\alpha }})\in(0,1)\);

(ii) for any \(a>0\), we have

$$\begin{aligned}& \sum_{m=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+a}} = \frac{1}{a} \biggl( \frac{1}{U_{m_{0}}^{a}}+aO(1) \biggr) , \end{aligned}$$
(19)
$$\begin{aligned}& \sum_{n=1}^{\infty}\frac{\upsilon_{n}}{V_{n}^{1+a}} = \frac {1}{a} \biggl( \frac{1}{V_{n_{0}}^{a}}+a\widetilde{O}(1) \biggr) . \end{aligned}$$
(20)

Proof

Since \(\upsilon_{n}\geq\upsilon_{n+1} \) (\(n\geq n_{0}\)), \(-\alpha<\lambda_{2}\leq1-\alpha\), \(\lambda_{1}>-\alpha\), and \(V(\infty)=\infty\), by Lemma 1 we have

$$\begin{aligned} \omega(\lambda_{2},m)&\geq\sum_{n=n_{0}}^{\infty} \frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{U_{m}^{\lambda_{1}}}{V_{n}^{1-\lambda_{2}}}\upsilon_{n+1}\\ &=\sum_{n=n_{0}}^{\infty} \int_{n}^{n+1}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{U_{m}^{\lambda_{1}}}{V_{n}^{1-\lambda_{2}}}V^{\prime}(y) \,dy\\ &>\sum_{n=n_{0}}^{\infty} \int_{n}^{n+1}\frac{(\min\{U_{m},V(y)\} )^{\alpha }}{(\max\{U_{m},V(y)\})^{\lambda+\alpha}}\frac{U_{m}^{\lambda_{1}}}{ V^{1-\lambda_{2}}(y)}V^{\prime}(y) \,dy\\ &=\sum_{n=n_{0}}^{\infty} \int_{\frac{V(n)}{U_{m}}}^{\frac {V(n+1)}{U_{m}}}\frac{(\min\{1,t\})^{\alpha}}{(\max\{1,t\})^{\lambda+\alpha }}t^{\lambda _{2}-1} \,dt\\ &= \int_{\frac{V(n_{0})}{U_{m}}}^{\infty}\frac{(\min\{1,t\})^{\alpha }}{(\max\{1,t\})^{\lambda+\alpha}}t^{\lambda_{2}-1} \,dt=k(\lambda _{1}) \bigl(1-\theta(\lambda_{2},m)\bigr), \end{aligned}$$

where

$$ \theta(\lambda_{2},m):=\frac{1}{k(\lambda_{1})} \int_{0}^{\frac {V(n_{0})}{U_{m}}}\frac{(\min\{1,t\})^{\alpha}}{(\max\{1,t\})^{\lambda+\alpha }}t^{\lambda_{2}-1} \,dt\in(0,1). $$
(21)

For \(U_{m}>V(n_{0})\), we obtain

$$\begin{aligned} 0 < &\theta(\lambda_{2},m)=\frac{1}{k(\lambda_{1})} \int_{0}^{\frac{V(n_{0})}{U_{m}}}t^{\lambda_{2}+\alpha-1}\,dt \\ =&\frac{1}{(\lambda_{2}+\alpha)k(\lambda_{1})} \biggl( \frac {V_{n_{0}}}{U_{m}} \biggr) ^{\lambda_{2}+\alpha}, \end{aligned}$$

and then \(\theta(\lambda_{2},m)=O(\frac{1}{U_{m}^{\lambda_{2}+\alpha}})\). Hence, we have (17).

In the same way, since \(\mu_{m}\geq\mu_{m+1} \) (\(m\geq m_{0}\)), \(-\alpha <\lambda_{1}\leq1-\alpha\), \(\lambda_{2}>-\alpha\), and \(U(\infty )=\infty\), we have

$$\begin{aligned} \varpi(\lambda_{1},n) \geq&\sum_{m=m_{0}}^{\infty} \frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{V_{n}^{\lambda_{2}}\mu_{m+1}}{U_{m}^{1-\lambda_{1}}} \\ =&\sum_{m=m_{0}}^{\infty} \int_{m}^{m+1}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{V_{n}^{\lambda_{2}}U^{\prime}(x)}{U_{m}^{1-\lambda_{1}}}\,dx \\ >&\sum_{m=m_{0}}^{\infty} \int_{m}^{m+1}\frac{(\min\{U(x),V_{n}\} )^{\alpha }}{(\max\{U(x),V_{n}\})^{\lambda+\alpha}}\frac{V_{n}^{\lambda _{2}}U^{\prime}(x)}{U^{1-\lambda_{1}}(x)}\,dx \\ \overset{t=U(x)/V_{n}}{=}&\sum_{m=m_{0}}^{\infty} \int_{\frac {U(m)}{V_{n}}}^{\frac{U(m+1)}{V_{n}}}\frac{(\min\{t,1\})^{\alpha}}{(\max \{t,1\})^{\lambda+\alpha}}t^{\lambda_{1}-1}\,dt \\ =& \int_{\frac{U(m_{0})}{V_{n}}}^{\infty}\frac{(\min\{t,1\})^{\alpha }}{(\max\{t,1\})^{\lambda+\alpha}}t^{\lambda_{1}-1} \,dt=k(\lambda _{1}) \bigl(1-\vartheta(\lambda_{1},n)\bigr), \end{aligned}$$

where

$$ \vartheta(\lambda_{1},n):=\frac{1}{k(\lambda_{1})} \int_{0}^{\frac {U(m_{0})}{V_{n}}}\frac{(\min\{t,1\})^{\alpha}}{(\max\{t,1\})^{\lambda +\alpha}}t^{\lambda_{1}-1} \,dt\in(0,1). $$
(22)

For \(V_{n}>U(m_{0})\), we obtain

$$ \vartheta(\lambda_{1},n)=\frac{1}{k(\lambda_{1})} \int_{0}^{\frac {U(m_{0})}{V_{n}}}t^{\lambda_{1}+\alpha-1}\,dt= \frac{1}{(\lambda_{1}+\alpha )k(\lambda_{1})} \biggl( \frac{U(m_{0})}{V_{n}} \biggr) ^{\lambda _{1}+\alpha }. $$

Hence, we have (18).

For \(a>0\), we find

$$\begin{aligned}& \begin{aligned}[b] \sum_{m=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+a}} &=\sum _{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+a}}+\sum _{m=m_{0}+1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+a}} \\ &=\sum_{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+a}}+\sum _{m=m_{0}+1}^{\infty } \int_{m-1}^{m}\frac{U^{\prime}(x)}{U_{m}^{1+a}}\,dx \\ &< \sum_{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+a}}+\sum _{m=m_{0}+1}^{\infty } \int_{m-1}^{m}\frac{U^{\prime}(x)}{U^{1+a}(x)}\,dx \\ &=\sum_{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+a}}+ \int_{m_{0}}^{\infty} \frac{dU(x)}{U^{1+a}(x)}=\sum _{m=1}^{m_{0}}\frac{\mu_{m}}{U_{m}^{1+a}}+ \frac{1}{aU_{m_{0}}^{a}} =\frac{1}{a} \Biggl( \frac{1}{U_{m_{0}}^{a}}+a\sum _{m=1}^{m_{0}}\frac {\mu _{m}}{U_{m}^{1+a}} \Biggr) , \end{aligned}\\& \begin{aligned}[b] \sum_{m=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+a}} &\geq \sum_{m=m_{0}}^{\infty}\frac{\mu_{m+1}}{U_{m}^{1+a}}=\sum _{m=m_{0}}^{ \infty} \int_{m}^{m+1}\frac{U^{\prime}(x)}{U_{m}^{1+a}}\,dx \\ &>\sum_{m=m_{0}}^{\infty} \int_{m}^{m+1}\frac{U^{\prime }(x)\,dx}{U^{1+a}(x)}= \int_{m_{0}}^{\infty}\frac{dU(x)}{U^{1+a}(x)}=\frac{1}{aU_{m_{0}}^{a}}. \end{aligned} \end{aligned}$$

Hence, we have (19). In the same way, have (20). □

3 Equivalent inequalities and operator expressions

Theorem 4

If \(-\alpha<\lambda_{1},\lambda_{2}\leq 1-\alpha\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k(\lambda_{1})\) is as in (9), then for \(p>1\), \(0<\|a\|_{p,\Phi_{\lambda }},\|b\|_{q,\Psi_{\lambda}}<\infty\), we have the following equivalent inequalities:

$$\begin{aligned}& I :=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}a_{m}b_{n}}{(\max\{U_{m},V_{n}\})^{\lambda +\alpha}}< k(\lambda_{1}) \|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\Psi _{\lambda }}, \end{aligned}$$
(23)
$$\begin{aligned}& J := \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha }a_{m}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}} \Biggr] ^{p} \Biggr\} ^{\frac {1}{p}}< k( \lambda_{1})\|a\|_{p,\Phi_{\lambda}}. \end{aligned}$$
(24)

Proof

By Hölder’s inequality with weight (see [25]) we have

$$\begin{aligned} & \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha }a_{m}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}} \Biggr] ^{p} \\ &\quad= \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha }}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}} \biggl( \frac{U_{m}^{\frac{1-\lambda _{1}}{q}}a_{m}}{V_{n}^{\frac{1-\lambda_{2}}{p}}\mu_{m}^{\frac {1}{q}}} \biggr) \biggl( \frac{V_{n}^{\frac{1-\lambda_{2}}{p}}\mu_{m}^{\frac {1}{q}}}{U_{m}^{\frac{1-\lambda_{1}}{q}}} \biggr) \Biggr] ^{p} \\ &\quad\leq\sum_{m=1}^{\infty}\frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}} \biggl( \frac{U_{m}^{(1-\lambda _{1})p/q}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p/q}}a_{m}^{p} \biggr) \\ &\qquad{}\times \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\} )^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{V_{n}^{(1-\lambda _{2})(q-1)}\mu_{m}}{U_{m}^{1-\lambda_{1}}} \Biggr] ^{p-1} \\ &\quad=\frac{V_{n}^{1-p\lambda_{2}}}{(\varpi(\lambda _{1},n))^{1-p}\upsilon _{n}}\sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{U_{m}^{(1-\lambda _{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p-1}}a_{m}^{p}. \end{aligned}$$
(25)

In view of (14), we find

$$\begin{aligned} J \leq&\bigl(k(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl[ \sum _{n=1}^{\infty }\sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{U_{m}^{(1-\lambda _{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p-1}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl[ \sum _{m=1}^{\infty }\sum_{n=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{U_{m}^{(1-\lambda _{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p-1}}a_{m}^{p} \Biggr] ^{\frac{1}{p}} \\ =&\bigl(k(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl[ \sum _{m=1}^{\infty}\omega (\lambda _{2},m) \frac{U_{m}^{p(1-\lambda_{1})-1}}{\mu_{m}^{p-1}}a_{m}^{p} \Biggr] ^{\frac{1}{p}}. \end{aligned}$$
(26)

Then by (13) we have (24).

By Hölder’s inequality we have

$$\begin{aligned} I =&\sum_{n=1}^{\infty} \Biggl[ \frac{\upsilon_{n}^{\frac {1}{p}}}{V_{n}^{\frac{1}{p}-\lambda_{2}}}\sum_{m=1}^{\infty} \frac{(\min \{U_{m},V_{n}\})^{\alpha}a_{m}}{(\max\{U_{m},V_{n}\})^{\lambda +\alpha}} \Biggr] \biggl( \frac{V_{n}^{\frac{1}{p}-\lambda_{2}}}{\upsilon _{n}^{\frac{1}{p}}}b_{n} \biggr) \\ \leq&J\|b\|_{q,\Psi_{\lambda}}. \end{aligned}$$
(27)

Then by (24) we have (23).

On the other hand, assuming that (23) is valid, we set

$$ b_{n}:=\frac{\upsilon_{n}}{V_{n}^{1-p\lambda_{2}}} \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha}a_{m}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}} \Biggr] ^{p-1},\quad n\in\mathbf{N}. $$

Then we find \(J^{p}=\|b\|_{q,\Psi_{\lambda}}^{q}\). If \(J=0\), then (24) is trivially valid; if \(J=\infty\), then by (26) and (13) it is impossible. Suppose that \(0< J<\infty\). By (23) it follows that

$$\begin{aligned}& \|b\|_{q,\Psi_{\lambda}}^{q} =J^{p}=I< k(\lambda_{1}) \|a\|_{p,\Phi _{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(28)
$$\begin{aligned}& \|b\|_{q,\Psi_{\lambda}}^{q-1} =J< k_{s}( \lambda_{1})\|a\|_{p,\Phi _{\lambda}}, \end{aligned}$$
(29)

and then (24) follows, which is equivalent to (23). □

Theorem 5

With the assumptions of Theorem 4, if \(m_{0},n_{0}\in \mathbf{N}\), \(\mu_{m}\geq\mu_{m+1} \) (\(m\in\{m_{0},m_{0}+1,\ldots\} \)), \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in\{n_{0},n_{0}+1,\ldots \}\)), \(U(\infty)=V(\infty)=\infty\), then the constant factor \(k(\lambda _{1})\) in (23) and (24) is the best possible.

Proof

For \(\varepsilon\in(0,p(\lambda_{1}+\alpha))\), we set \(\widetilde{\lambda}_{1}=\lambda_{1}-\frac{\varepsilon}{p} \) (\(\in (-\alpha ,1-\alpha)\)), \(\widetilde{\lambda}_{2}=\lambda_{2}+\frac{\varepsilon }{p}\) (\(>-\alpha\)), and \(\widetilde{a}=\{\widetilde{a}_{m}\} _{m=1}^{\infty}\), \(\widetilde{b}=\{\widetilde{b}_{n}\}_{n=1}^{\infty}\),

$$ \widetilde{a}_{m}:=U_{m}^{\widetilde{\lambda}_{1}-1}\mu _{m}=U_{m}^{\lambda _{1}-\frac{\varepsilon}{p}-1}\mu_{m},\qquad\widetilde {b}_{n}=V_{n}^{\widetilde{\lambda}_{2}-\varepsilon-1}\upsilon_{n}=V_{n}^{\lambda_{2}-\frac{\varepsilon}{q}-1} \upsilon_{n}. $$
(30)

Then by (19), (20), and (18) we have

$$\begin{aligned}& \begin{aligned}[b] \|\widetilde{a}\|_{p,\Phi_{\lambda}}\|\widetilde{b}\|_{q,\Psi _{\lambda }}&= \Biggl( \sum _{m=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+\varepsilon }} \Biggr) ^{\frac{1}{p}} \Biggl( \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}} \Biggr) ^{\frac{1}{q}}\\ &=\frac{1}{\varepsilon} \biggl( \frac{1}{U_{m_{0}}^{\varepsilon }}+\varepsilon O(1) \biggr) ^{\frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\widetilde{O}(1) \biggr) ^{\frac{1}{q}}, \end{aligned}\\& \begin{aligned}[b] \widetilde{I} &:=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}\widetilde{a}_{m}\widetilde{b}_{n} \\ &=\sum_{n=1}^{\infty} \Biggl[ \sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{V_{n}^{\widetilde{\lambda}_{2}}\mu_{m}}{U_{m}^{1-\widetilde{\lambda }_{1}}} \Biggr] \frac{\upsilon_{n}}{V_{n}^{\varepsilon+1}} \\ &=\sum_{n=1}^{\infty}\varpi(\widetilde{ \lambda}_{1},n)\frac {\upsilon_{n}}{V_{n}^{\varepsilon+1}}\geq k(\widetilde{ \lambda}_{1})\sum_{n=1}^{\infty } \bigl(1-\vartheta(\widetilde{\lambda}_{1},n)\bigr)\frac{\upsilon_{n}}{V_{n}^{\varepsilon+1}} \\ &=k(\widetilde{\lambda}_{1}) \Biggl( \sum _{n=1}^{\infty}\frac{\upsilon _{n}}{V_{n}^{\varepsilon+1}}-\sum _{n=1}^{\infty}O\biggl(\frac{\upsilon _{n}}{V_{n}^{\frac{\varepsilon}{q}+\lambda_{1}+\alpha+1}}\biggr) \Biggr) \\ &=\frac{1}{\varepsilon}k(\widetilde{\lambda}_{1}) \biggl[ \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\bigl(\widetilde{O}(1)-O(1)\bigr) \biggr] . \end{aligned} \end{aligned}$$

If there exists a positive constant \(K\leq k(\lambda_{1})\) such that (23) is valid when replacing \(k(\lambda_{1})\) to K, then, in particular, we have \(\varepsilon\widetilde{I}<\varepsilon K\|\widetilde {a}\|_{p,\Phi _{\lambda}}\|\widetilde{b}\|_{q,\Psi_{\lambda}}\), namely,

$$\begin{aligned} k(\widetilde{\lambda}_{1}) \biggl[ \frac{1}{V_{n_{0}}^{\varepsilon}}+ \varepsilon\bigl(\widetilde{O}(1)-O(1)\bigr) \biggr] < K \biggl( \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{ \frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon \widetilde{O}(1) \biggr) ^{\frac{1}{q}}. \end{aligned}$$

It follows that \(k(\lambda_{1})\leq K \) (\(\varepsilon\rightarrow0^{+}\)). Hence, \(K=k(\lambda_{1})\) is the best possible constant factor of (23).

The constant factor \(k(\lambda_{1})\) in (24) is still the best possible. Otherwise, we would reach a contradiction by (27) that the constant factor in (23) is not the best possible. □

For \(p>1\), we find \(\Psi_{\lambda}^{1-p}(n)=\frac{\upsilon_{n}}{V_{n}^{1-p\lambda_{2}}}\) and define the following normed spaces:

$$\begin{aligned}& l_{p,\Phi_{\lambda}} :=\bigl\{ a=\{a_{m}\}_{m=1}^{\infty}; \|a\|_{p,\Phi _{\lambda}}< \infty\bigr\} , \\& l_{q,\Psi_{\lambda}} :=\bigl\{ b=\{b_{n}\}_{n=1}^{\infty}; \|b\|_{q,\Psi _{\lambda}}< \infty\bigr\} , \\& l_{p,\Psi_{\lambda}^{1-p}} :=\bigl\{ c=\{c_{n}\}_{n=1}^{\infty }; \|c\|_{p,\Psi _{\lambda}^{1-p}}< \infty\bigr\} . \end{aligned}$$

Assuming that \(a=\{a_{m}\}_{m=1}^{\infty}\in l_{p,\Phi_{\lambda}}\) and setting

$$ c=\{c_{n}\}_{n=1}^{\infty},\qquad c_{n}:=\sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}a_{m},\quad n \in\mathbf{N}, $$

we can rewrite (24) as

$$ \|c\|_{p,\Psi_{\lambda}^{1-p}}< k(\lambda_{1})\|a\|_{p,\Phi_{\lambda }}< \infty, $$

namely, \(c\in l_{p,\Psi_{\lambda}^{1-p}}\).

Definition 1

Define a Hardy-Hilbert-type operator \(T:l_{p,\Phi _{\lambda}}\rightarrow l_{p,\Psi_{\lambda}^{1-p}}\) as follows: For any \(a=\{a_{m}\}_{m=1}^{\infty}\in l_{p,\Phi_{\lambda}}\), there exists a unique representation \(Ta=c\in l_{p,\Psi_{\lambda}^{1-p}}\). Define the formal inner product of Ta and \(b=\{b_{n}\}_{n=1}^{\infty}\in l_{q,\Psi _{\lambda}}\) as follows:

$$ (Ta,b):=\sum_{n=1}^{\infty} \Biggl[ \sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}a_{m} \Biggr] b_{n}. $$
(31)

Then we can rewrite (23) and (24) as follows:

$$\begin{aligned}& (Ta,b) < k(\lambda_{1})\|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\Psi _{\lambda }}, \end{aligned}$$
(32)
$$\begin{aligned}& \|Ta\|_{p,\Psi_{\lambda}^{1-p}} < k(\lambda_{1})\|a\|_{p,\Phi _{\lambda }}. \end{aligned}$$
(33)

Define the norm of the operator T as follows:

$$ \|T\|:=\sup_{a(\neq\theta)\in l_{p,\Phi_{\lambda}}}\frac {\|Ta\|_{p,\Psi _{\lambda}^{1-p}}}{\|a\|_{p,\Phi_{\lambda}}}. $$

Then by (31) we find \(\|T\|\leq k(\lambda_{1})\). Since by Theorem 5 the constant factor in (31) is the best possible, we have

$$ \|T\|=k(\lambda_{1})=\frac{\lambda+2\alpha}{(\lambda_{1}+\alpha )(\lambda_{2}+\alpha)}. $$

4 Some equivalent reverse inequalities

Theorem 6

If \(-\alpha<\lambda_{1},\lambda_{2}\leq1-\alpha\), \(\lambda_{1}+\lambda_{2}=\lambda\), \(k(\lambda_{1})\) is as in (9), \(m_{0},n_{0}\in\mathbf{N}\), \(\mu_{m}\geq\mu_{m+1} \) (\(m\in \{m_{0},m_{0}+1, \ldots\}\)), \(\upsilon_{n}\geq\upsilon_{n+1}\) (\(n\in \mathbf{\{}n_{0},n_{0}+1, \ldots\}\)), \(U(\infty)=V(\infty)=\infty\), then for \(0< p<1\), \(0<\|a\|_{p,\Phi_{\lambda}},\|b\|_{q,\Psi_{\lambda }}<\infty \), we have the following equivalent inequalities with the best possible constant factor \(k(\lambda_{1})\):

$$\begin{aligned}& I =\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}a_{m}b_{n}>k( \lambda_{1})\|a\|_{p,\widetilde{\Phi}_{\lambda }}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(34)
$$\begin{aligned}& J = \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha }a_{m}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}} \Biggr] ^{p} \Biggr\} ^{\frac {1}{p}}>k( \lambda_{1})\|a\|_{p,\widetilde{\Phi}_{\lambda}}. \end{aligned}$$
(35)

Proof

By the reverse Hölder’s inequality and (14), we have the reverses of (25), (26), and (27). Then by (17) we have (35). By (35) and the reverse of (27) we have (34).

On the other hand, assuming that (34) is valid, we set \(b_{n}\) as in Theorem 4. Then we find \(J^{p}=\|b\|_{q,\Psi_{\lambda }}^{q}\). If \(J=\infty \), then (35) is trivially valid; if \(J=0\), then by reverse of (26) and (17) it is impossible. Suppose that \(0< J<\infty\). By (34) it follows that

$$\begin{aligned}& \|b\|_{q,\Psi_{\lambda}}^{q} =J^{p}=I>k_{s}( \lambda_{1})\|a\|_{p,\widetilde{\Phi}_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(36)
$$\begin{aligned}& \|b\|_{q,\Psi_{\lambda}}^{q-1} =J>k_{s}(\lambda _{1})\|a\|_{p,\widetilde{\Phi}_{\lambda}}, \end{aligned}$$
(37)

and then (35) follows, which is equivalent to (34).

For \(\varepsilon\in(0,p(\lambda_{1}+\alpha))\), we set \(\widetilde{\lambda}_{1}\), \(\widetilde{\lambda}_{2}\), \(\widetilde{a}_{m}\), and \(\widetilde{b}_{n}\) as (30). Then by (19), (20), and (14) we find

$$\begin{aligned}& \begin{aligned}[b] \|a\|_{p,\widetilde{\Phi}_{\lambda}}\|b\|_{q,\Psi_{\lambda}}&= \Biggl[ \sum _{m=1}^{\infty}\bigl(1-\theta(\lambda_{2},m) \bigr)\frac{\mu_{m}}{U_{m}^{1+\varepsilon}} \Biggr] ^{\frac{1}{p}} \Biggl( \sum _{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}} \Biggr) ^{\frac{1}{q}}\\ &= \Biggl( \sum_{m=1}^{\infty} \frac{\mu_{m}}{U_{m}^{1+\varepsilon}}-\sum_{m=1}^{\infty}O \biggl(\frac{\mu_{m}}{U_{m}^{1+\lambda_{2}+\alpha +\varepsilon}}\biggr) \Biggr) ^{\frac{1}{p}} \Biggl( \sum _{n=1}^{\infty}\frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}} \Biggr) ^{\frac{1}{q}} \\ &=\frac{1}{\varepsilon} \biggl[ \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon \bigl(O(1)-O_{1}(1)\bigr) \biggr] ^{\frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\widetilde{O}(1) \biggr) ^{\frac{1}{q}}, \end{aligned}\\& \begin{aligned}[b] \widetilde{I} &=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}\widetilde{a}_{m}\widetilde{b}_{n}\\ &=\sum_{n=1}^{\infty} \Biggl[ \sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{V_{n}^{\widetilde{\lambda}_{2}}\mu_{m}}{U_{m}^{1-\widetilde{\lambda }_{1}}} \Biggr] \frac{\upsilon_{n}}{V_{n}^{\varepsilon+1}} \\ &=\sum_{n=1}^{\infty}\varpi(\widetilde{ \lambda}_{1},n)\frac {\upsilon_{n}}{V_{n}^{\varepsilon+1}}\leq k(\widetilde{ \lambda}_{1})\sum_{n=1}^{\infty}\frac{\upsilon_{n}}{V_{n}^{\varepsilon+1}} \\ &=\frac{1}{\varepsilon}k(\widetilde{\lambda}_{1}) \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\widetilde{O}(1) \biggr) . \end{aligned} \end{aligned}$$

If there exists a constant \(K\geq k(\lambda_{1})\) such that (34) is valid when replacing \(k(\lambda_{1})\) to K, then, in particular, we have \(\varepsilon\widetilde{I}>\varepsilon K\|\widetilde{a}\|_{p,\widetilde {\Phi}_{\lambda}}\|\widetilde{b}\|_{q,\Psi_{\lambda}}\), namely,

$$\begin{aligned} k(\widetilde{\lambda}_{1}) \biggl( \frac{1}{V_{n_{0}}^{\varepsilon}}+ \varepsilon\widetilde{O}(1) \biggr) >K \biggl[ \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon \bigl(O(1)-O_{1}(1) \bigr) \biggr] ^{\frac{1}{p}} \biggl( \frac{1}{V_{n_{0}}^{\varepsilon }}+\varepsilon \widetilde{O}(1) \biggr) ^{\frac{1}{q}}. \end{aligned}$$

It follows that \(k(\lambda_{1})\geq K \) (\(\varepsilon\rightarrow0^{+}\)). Hence, \(K=k(\lambda_{1})\) is the best possible constant factor of (34).

The constant factor \(k(\lambda_{1})\) in (35) is still the best possible. Otherwise, we would reach a contradiction by the reverse of (27) that the constant factor in (34) is not the best possible. □

Theorem 7

With the assumptions of Theorem 6, if \(p<0\), then we have the following equivalent inequalities with the best possible constant factor \(k(\lambda_{1})\):

$$\begin{aligned}& I =\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}a_{m}b_{n}>k( \lambda_{1})\|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\widetilde {\Psi }_{\lambda}}, \end{aligned}$$
(38)
$$\begin{aligned}& \begin{aligned}[b] J_{1} &:= \Biggl\{ \sum_{n=1}^{\infty} \frac{V_{n}^{p\lambda _{2}-1}\upsilon _{n}}{(1-\vartheta(\lambda_{1},n))^{p-1}} \Biggl[ \sum_{m=1}^{\infty } \frac{(\min\{U_{m},V_{n}\})^{\alpha}a_{m}}{(\max\{U_{m},V_{n}\})^{\lambda +\alpha}} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}} \\ &>k(\lambda_{1})\|a\|_{p,\Phi_{\lambda}}. \end{aligned} \end{aligned}$$
(39)

Proof

By the reverse Hölder inequality with weight, since \(p<0\), by (18) we have

$$\begin{aligned} & \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha }}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}}a_{m} \Biggr] ^{p} \\ &\quad= \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha }}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}} \biggl( \frac{U_{m}^{(1-\lambda _{1})/q}}{V_{n}^{(1-\lambda_{2})/p}\mu_{m}^{1/q}}a_{m} \biggr) \biggl( \frac{V_{n}^{(1-\lambda_{2})/p}\mu_{m}^{1/q}}{U_{m}^{(1-\lambda _{1})/q}} \biggr) \Biggr] ^{p} \\ &\quad\leq\sum_{m=1}^{\infty}\frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}} \frac{U_{m}^{(1-\lambda_{1})p/q}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p/q}}a_{m}^{p} \\ &\qquad{}\times \Biggl[ \sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\} )^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{V_{n}^{(1-\lambda _{2})(q-1)}\mu_{m}}{U_{m}^{1-\lambda_{1}}} \Biggr] ^{p-1} \\ &\quad=\frac{V_{n}^{1-p\lambda_{2}}}{(\varpi(\lambda_{1},n))^{1-p}}\sum_{m=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{U_{m}^{(1-\lambda _{1})(p-1)}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p-1}}a_{m}^{p} \\ &\quad\leq\frac{(k(\lambda_{1}))^{p-1}V_{n}^{1-p\lambda _{2}}}{(1-\vartheta (\lambda_{1},n))^{1-p}\upsilon_{n}}\sum_{m=1}^{\infty} \frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{U_{m}^{(1-\lambda_{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu _{m}^{p-1}}a_{m}^{p}, \\ &J_{1} \geq\bigl(k(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl\{ \sum_{n=1}^{\infty }\sum _{m=1}^{\infty}\frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}}\frac{U_{m}^{(1-\lambda _{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p-1}}a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\hphantom{J_{1}}=\bigl(k(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl\{ \sum _{m=1}^{\infty }\sum_{n=1}^{\infty} \frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max \{U_{m},V_{n}\})^{\lambda+\alpha}}a_{m}\frac{U_{m}^{(1-\lambda _{1})(p-1)}\upsilon_{n}}{V_{n}^{1-\lambda_{2}}\mu_{m}^{p-1}}a_{m}^{p} \Biggr\} ^{\frac{1}{p}} \\ &\hphantom{J_{1}}=\bigl(k(\lambda_{1})\bigr)^{\frac{1}{q}} \Biggl\{ \sum _{m=1}^{\infty}\omega (\lambda_{2},m) \frac{U_{m}^{p(1-\lambda_{1})-1}}{\mu_{m}^{p-1}}a_{m}^{p} \Biggr\} ^{\frac{1}{p}}. \end{aligned}$$
(40)

Then by (13) we have (39).

By the reverse Hölder inequality we have

$$\begin{aligned} I={}&\sum_{n=1}^{\infty}\frac{V_{n}^{\lambda_{2}-\frac{1}{p}}\upsilon _{n}^{1/p}}{(1-\vartheta(\lambda_{1},n))^{1/q}} \Biggl[ \sum_{m=1}^{\infty}\frac{(\min\{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda +\alpha}}a_{m} \Biggr] \\ &{}\times \biggl[ \bigl(1-\vartheta(\lambda_{1},n)\bigr)^{\frac{1}{q}} \frac {V_{n}^{\frac{1}{p}-\lambda_{2}}}{\upsilon_{n}^{1/p}}b_{n} \biggr] \geq J_{1}\|b \|_{q,\widetilde{\Psi}_{\lambda}}. \end{aligned}$$
(41)

Then by (39) we have (38).

On the other hand, assuming that (38) is valid, we set \(b_{n}\) as follows:

$$ b_{n}:=\frac{V_{n}^{p\lambda_{2}-1}\upsilon_{n}}{(1-\vartheta(\lambda _{1},n))^{p-1}} \Biggl[ \sum_{m=1}^{\infty} \frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}a_{m} \Biggr] ^{p-1},\quad n\in \mathbf{N}. $$

Then we find \(J_{1}^{p}=\|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q}\). If \(J_{1}=\infty\), then (39) is trivially valid; if \(J_{1}=0\), then by (40) and (13) it is impossible. Suppose that \(0< J_{1}<\infty\). By (38) it follows that

$$\begin{aligned}& \|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q} =J_{1}^{p}=I>k_{s}( \lambda _{1})\|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\widetilde{\Psi}_{\lambda}}, \\& \|b\|_{q,\widetilde{\Psi}_{\lambda}}^{q-1} =J_{1}>k_{s}( \lambda _{1})\|a\|_{p,\Phi_{\lambda}}, \end{aligned}$$

and then (39) follows, which is equivalent to (38).

For \(\varepsilon\in(0,q(\lambda_{2}+\alpha))\), we set \(\widetilde{\lambda}_{1}=\lambda_{1}+\frac{\varepsilon}{q} \) (\(>-\alpha\)), \(\widetilde{\lambda}_{2}=\lambda_{2}-\frac{\varepsilon}{q} \) (\(\in(-\alpha ,1-\alpha)\)), and

$$ \widetilde{a}_{m}:=U_{m}^{\widetilde{\lambda}_{1}-1-\varepsilon}\mu _{m}=U_{m}^{\lambda_{1}-\frac{\varepsilon}{p}-1}\mu_{m},\qquad\widetilde{b} _{n}=V_{n}^{\widetilde{\lambda}_{2}-1}\upsilon_{n}=V_{n}^{\lambda _{2}-\frac{\varepsilon}{q}-1} \upsilon_{n}. $$

Then by (19), (20), and (13) we have

$$\begin{aligned}& \begin{aligned}[b] \|\widetilde{a}\|_{p,\Phi_{\lambda}}\|\widetilde{b}\|_{q,\widetilde {\Psi}_{\lambda}}&= \Biggl( \sum _{m=1}^{\infty}\frac{\mu _{m}}{U_{m}^{1+\varepsilon }} \Biggr) ^{\frac{1}{p}} \Biggl[ \sum_{n=1}^{\infty} \bigl(1-\vartheta(\lambda _{1},n)\bigr)\frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}} \Biggr] ^{\frac{1}{q}}\\ &= \Biggl( \sum_{m=1}^{\infty} \frac{\mu_{m}}{U_{m}^{1+\varepsilon }} \Biggr) ^{\frac{1}{p}} \Biggl( \sum _{n=1}^{\infty}\frac{\upsilon_{n}}{V_{n}^{1+\varepsilon}}-\sum _{n=1}^{\infty}O\biggl(\frac{\upsilon_{n}}{V_{n}^{1+\lambda_{1}+\alpha+\varepsilon}}\biggr) \Biggr) ^{\frac{1}{q}}\\ &=\frac{1}{\varepsilon} \biggl( \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{\frac{1}{p}} \biggl[ \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\bigl( \widetilde{O}(1)-O_{1}(1)\bigr) \biggr] ^{\frac{1}{q}}, \end{aligned}\\& \begin{aligned}[b] \widetilde{I} &=\sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha}}\widetilde{a}_{m}\widetilde{b}_{n}\\ &=\sum_{m=1}^{\infty} \Biggl[ \sum _{n=1}^{\infty}\frac{(\min \{U_{m},V_{n}\})^{\alpha}}{(\max\{U_{m},V_{n}\})^{\lambda+\alpha }}\frac{U_{m}^{\widetilde{\lambda}_{1}}\upsilon_{n}}{V_{n}^{1-\widetilde {\lambda}_{2}}} \Biggr] \frac{\mu_{m}}{U_{m}^{1+\varepsilon}}\\ &=\sum_{m=1}^{\infty}\omega(\widetilde{ \lambda}_{2},m)\frac{\mu _{m}}{U_{m}^{1+\varepsilon}}\leq k(\widetilde{ \lambda}_{1})\sum_{n=1}^{\infty}\frac{\mu_{m}}{U_{m}^{1+\varepsilon}}\\ &=\frac{1}{\varepsilon}k(\widetilde{\lambda}_{1}) \biggl( \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) . \end{aligned} \end{aligned}$$

If there exists a constant \(K\geq k(\lambda_{1})\) such that (38) is valid when replacing \(k(\lambda_{1})\) to K, then, in particular, we have \(\varepsilon\widetilde{I}>\varepsilon K\|\widetilde{a}\|_{p,\Phi _{\lambda }}\|\widetilde{b}\|_{q,\widetilde{\Psi}_{\lambda}}\), namely,

$$\begin{aligned} k(\widetilde{\lambda}_{1}) \biggl( \frac{1}{U_{m_{0}}^{\varepsilon}}+ \varepsilon O(1) \biggr) >K \biggl( \frac{1}{U_{m_{0}}^{\varepsilon}}+\varepsilon O(1) \biggr) ^{ \frac{1}{p}} \biggl[ \frac{1}{V_{n_{0}}^{\varepsilon}}+\varepsilon\bigl(\widetilde{O}(1)-O_{1}(1) \bigr) \biggr] ^{\frac{1}{q}}. \end{aligned}$$

It follows that \(k(\lambda_{1})\geq K \) (\(\varepsilon\rightarrow0^{+}\)). Hence, \(K=k(\lambda_{1})\) is the best possible constant factor of (38).

The constant factor \(k(\lambda_{1})\) in (39) is still the best possible. Otherwise, we would reach a contradiction by (41) that the constant factor in (38) is not the best possible. □

Remark 1

(i) For \(\alpha=0\) and \(0<\lambda _{1},\lambda_{2}\leq1\) in (23) and (24), we have the following equivalent inequalities:

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(\max \{U_{m},V_{n}\})^{\lambda}}< \frac{\lambda}{\lambda_{1}\lambda_{2}}\|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(42)
$$\begin{aligned}& \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \frac{a_{m}}{(\max\{U_{m},V_{n}\})^{\lambda }} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< \frac{\lambda}{\lambda_{1}\lambda _{2}}\|a\|_{p,\Phi_{\lambda}}; \end{aligned}$$
(43)

(ii) for \(\alpha=-\lambda\) and \(-1\leq\lambda_{1},\lambda_{2}<0\) in (23) and (24), we have the following equivalent inequalities:

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty}\frac{a_{m}b_{n}}{(\min \{U_{m},V_{n}\})^{\lambda}}< \frac{(-\lambda)}{\lambda_{1}\lambda _{2}}\|a\|_{p,\Phi_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(44)
$$\begin{aligned}& \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1-p\lambda _{2}}} \Biggl[ \sum_{m=1}^{\infty} \frac{a_{m}}{(\min\{U_{m},V_{n}\})^{\lambda }} \Biggr] ^{p} \Biggr\} ^{\frac{1}{p}}< \frac{(-\lambda)}{\lambda _{1}\lambda _{2}}\|a\|_{p,\Phi_{\lambda}}; \end{aligned}$$
(45)

(iii) for \(\lambda=0\), \(|\lambda_{1}|<\alpha \) (\(0<\alpha\leq\frac {1}{2}\)); \(|\lambda_{1}|<1-\alpha\) (\(\frac{1}{2}<\alpha\leq1\)), \(\lambda _{2}=-\lambda _{1}\) in (23) and (24), we have the following equivalent inequalities:

$$\begin{aligned}& \sum_{n=1}^{\infty}\sum _{m=1}^{\infty} \biggl( \frac{\min\{ U_{m},V_{n}\}}{\max\{U_{m},V_{n}\}} \biggr) ^{\alpha}a_{m}b_{n}< \frac{2\alpha}{\alpha ^{2}-\lambda_{1}^{2}}\|a \|_{p,\Phi_{\lambda}}\|b\|_{q,\Psi_{\lambda}}, \end{aligned}$$
(46)
$$\begin{aligned}& \Biggl\{ \sum_{n=1}^{\infty} \frac{\upsilon_{n}}{V_{n}^{1+p\lambda _{1}}} \Biggl[ \sum_{m=1}^{\infty} \biggl( \frac{\min\{U_{m},V_{n}\}}{\max \{U_{m},V_{n}\}} \biggr) ^{\alpha}a_{m} \Biggr] ^{p} \Biggr\} ^{\frac {1}{p}}< \frac{2\alpha}{\alpha^{2}-\lambda_{1}^{2}}\|a \|_{p,\Phi_{\lambda}}. \end{aligned}$$
(47)

In view of Theorem 5, the constant factors in these inequalities with the particular kernels are all the best possible.

References

  1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  2. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Boston (1991)

    Book  MATH  Google Scholar 

  3. Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science Publishers, Sharjah (2009)

    Google Scholar 

  4. Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science Publishers, Sharjah (2011)

    Google Scholar 

  5. Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)

    Google Scholar 

  6. Yang, BC: On Hilbert’s integral inequality. J. Math. Anal. Appl. 220, 778-785 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, BC, Brnetić, I, Krnić, M, Pečarić, JE: Generalization of Hilbert and Hardy-Hilbert integral inequalities. Math. Inequal. Appl. 8(2), 259-272 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Krnić, M, Pečarić, JE: Hilbert’s inequalities and their reverses. Publ. Math. (Debr.) 67(3-4), 315-331 (2005)

    MATH  Google Scholar 

  9. Yang, BC, Rassias, TM: On the way of weight coefficient and research for Hilbert-type inequalities. Math. Inequal. Appl. 6(4), 625-658 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Yang, BC, Rassias, TM: On a Hilbert-type integral inequality in the subinterval and its operator expression. Banach J. Math. Anal. 4(2), 100-110 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Azar, L: On some extensions of Hardy-Hilbert’s inequality and applications. J. Inequal. Appl. 2009, 546829 (2009)

    MathSciNet  Google Scholar 

  12. Arpad, B, Choonghong, O: Best constant for certain multilinear integral operator. J. Inequal. Appl. 2006, 28582 (2006)

    Google Scholar 

  13. Kuang, JC, Debnath, L: On Hilbert’s type inequalities on the weighted Orlicz spaces. Pac. J. Appl. Math. 1(1), 95-103 (2007)

    MathSciNet  MATH  Google Scholar 

  14. Zhong, WY: The Hilbert-type integral inequality with a homogeneous kernel of Lambda-degree. J. Inequal. Appl. 2008, 917392 (2008)

    Article  Google Scholar 

  15. Hong, Y: On Hardy-Hilbert integral inequalities with some parameters. J. Inequal. Pure Appl. Math. 6(4), 92 (2005)

    MathSciNet  Google Scholar 

  16. Zhong, WY, Yang, BC: On multiple Hardy-Hilbert’s integral inequality with kernel. J. Inequal. Appl. 2007, 27962 (2007). doi:10.1155/2007/27

    Article  MathSciNet  Google Scholar 

  17. Yang, BC, Krnić, M: On the norm of a multi-dimensional Hilbert-type operator. Sarajevo J. Math. 7(20), 223-243 (2011)

    MathSciNet  Google Scholar 

  18. Krnić, M, Pečarić, JE, Vuković, P: On some higher-dimensional Hilbert’s and Hardy-Hilbert’s type integral inequalities with parameters. Math. Inequal. Appl. 11, 701-716 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Krnić, M, Vuković, P: On a multidimensional version of the Hilbert-type inequality. Anal. Math. 38, 291-303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rassias, MT, Yang, BC: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75-93 (2013)

    Article  MathSciNet  Google Scholar 

  21. Rassias, MT, Yang, BC: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263-277 (2013)

    Article  MathSciNet  Google Scholar 

  22. Rassias, MT, Yang, BC: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800-813 (2014)

    Article  MathSciNet  Google Scholar 

  23. Rassias, MT, Yang, BC: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Math. Comput. 249, 408-418 (2014)

    Article  MathSciNet  Google Scholar 

  24. Li, YJ, He, B: On inequalities of Hilbert’s type. Bull. Aust. Math. Soc. 76(1), 1-13 (2007)

    Article  MATH  Google Scholar 

  25. Kuang, JC: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Hunan Province Natural Science Foundation (No. 2015JJ4041) and Science Research General Foundation Item of Hunan Institution of Higher Learning College and University (No. 14C0938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Shi.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BY carried out the mathematical studies, participated in the sequence alignment, and drafted the manuscript. YS participated in the design of the study and performed the numerical analysis. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Yang, B. A new Hardy-Hilbert-type inequality with multiparameters and a best possible constant factor. J Inequal Appl 2015, 380 (2015). https://doi.org/10.1186/s13660-015-0900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0900-4

MSC

Keywords