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1 Introduction
If p > , 

p + 
q = , f (x), g(y) ≥ , f ∈ Lp(R+), g ∈ Lq(R+), ‖f ‖p = (

∫ ∞
 f p(x) dx)


p > , ‖g‖q > ,

then we have the following Hardy-Hilbert integral inequality []:

∫ ∞



∫ ∞



f (x)g(y)
x + y

dx dy <
π

sin(π/p)
‖f ‖p‖g‖q, ()

where, the constant factor π
sin(π/p) is the best possible. Assuming that am, bn ≥ , a =

{am}∞m= ∈ lp, b = {bn}∞n= ∈ lq, ‖a‖p = (
∑∞

m= ap
m)


p > , ‖b‖q > , we have the following

Hardy-Hilbert inequality with the same best possible constant factor π
sin(π/p) []:

∞∑

m=

∞∑

n=

ambn

m + n
<

π

sin(π/p)
‖a‖p‖b‖q. ()

Inequalities () and () are important in analysis and its applications [–].
If μi,υj >  (i, j ∈ N = {, , . . .}),

Um :=
m∑

i=

μi, Vn :=
n∑

j=

υj (m, n ∈ N), ()
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then we have the following inequality (see Theorem  of []):

∞∑

m=

∞∑

n=

μ
/q
m υ

/p
n ambn

Um + Vn
<

π

sin(π/p)
‖a‖p‖b‖q. ()

Replacing μ
/q
m am and υ

/p
n bn by am and bn in (), respectively, we have the following equiv-

alent form of ():

∞∑

m=

∞∑

n=

ambn

Um + Vn
<

π

sin( π
p )

( ∞∑

m=

ap
m

μ
p–
m

) 
p
( ∞∑

n=

bq
n

υ
q–
n

) 
q

. ()

For μi = υj =  (i, j ∈ N), both () and () reduce to (). We call () and () Hardy-Hilbert-
type inequalities.

Note The authors of [] did not prove that () is valid with the best possible constant
factor.

In , by introducing an independent parameter λ ∈ (, ] Yang [] gave an extension
of () with the kernel 

(x+y)λ for p = q = . Following the results of [], Yang [] gave some
best extensions of () and () as follows.

If λ,λ ∈ R, λ + λ = λ, kλ(x, y) is a nonnegative homogeneous function of degree –λ

with k(λ) =
∫ ∞

 kλ(t, )tλ– dt ∈ R+, φ(x) = xp(–λ)–, ψ(x) = xq(–λ)–, f (x), g(y) ≥ ,

f ∈ Lp,φ(R+) =
{

f ;‖f ‖p,φ :=
(∫ ∞


φ(x)

∣
∣f (x)

∣
∣p dx

) 
p

< ∞
}

,

g ∈ Lq,ψ (R+), ‖f ‖p,φ ,‖g‖q,ψ > , then

∫ ∞



∫ ∞


kλ(x, y)f (x)g(y) dx dy < k(λ)‖f ‖p,φ‖g‖q,ψ , ()

where the constant factor k(λ) is the best possible. Moreover, if kλ(x, y) is finite and
kλ(x, y)xλ– (kλ(x, y)yλ–) is decreasing with respect to x >  (y > ), then for am, bn ≥ ,

a ∈ lp,φ =

{

a;‖a‖p,φ :=

( ∞∑

n=

φ(n)|an|p
) 

p

< ∞
}

,

b = {bn}∞n= ∈ lq,ψ , ‖a‖p,φ ,‖b‖q,ψ > , it follows that

∞∑

m=

∞∑

n=

kλ(m, n)ambn < k(λ)‖a‖p,φ‖b‖q,ψ , ()

where the constant factor k(λ) is still the best possible.
Clearly, for λ = , k(x, y) = 

x+y , λ = 
q , λ = 

p , inequality () reduces to (), whereas ()
reduces to (). For  < λ,λ ≤ , λ + λ = λ, we set

kλ(x, y) =


(x + y)λ
(
(x, y) ∈ R

+
)
.
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Then by () it follows that

∞∑

m=

∞∑

n=

ambn

(m + n)λ
< B(λ,λ)‖a‖p,φ‖b‖q,ψ , ()

where the constant B(λ,λ) is the best possible. Some other results including multidi-
mensional Hilbert-type inequalities are provided in [–].

In this paper, by means of weight coefficients and techniques of real analysis, a new
Hardy-Hilbert-type inequality with multiparameters and the best possible constant factor
is given, which is with the kernel

kλ(x, y) =
(min{x, y})α

(max{x, y})λ+α

similar to (). The equivalent forms, the operator expression with the norm, the reverse
and some particular inequalities with the best possible constant factors are also consid-
ered.

2 An example and some lemmas
In the following, we make appointment that μi,υj >  (i, j ∈ N), Um and Vn are defined
by (), p �= , , 

p + 
q = , am, bn ≥  (m, n ∈ N),

‖a‖p,�λ
=

( ∞∑

m=

�λ(m)ap
m

) 
p

, ‖b‖q,	λ
=

( ∞∑

n=

	λ(n)bq
n

) 
q

,

where

�λ(m) :=
Up(–λ)–

m

μ
p–
m

, 	λ(n) :=
V q(–λ)–

n

υ
q–
n

(m, n ∈ N).

We also set

�̃λ(m) :=
(
 – θ (λ, m)

)Up(–λ)–
m

μ
p–
m

, 	̃λ(n) :=
(
 – ϑ(λ, n)

)V q(–λ)–
n

υ
q–
n

(m, n ∈ N).

Note For  < p <  or p < , we still use the formal symbols ‖a‖p,�λ
, ‖b‖q,	λ

, ‖a‖p,�̃λ
, and

‖b‖q,	̃λ
.

Example  For –α < λ,λ ≤  – α, λ + λ = λ, we set

kλ(x, y) =
(min{x, y})α

(max{x, y})λ+α

(
(x, y) ∈ R

+
)
.

We find

k(λ) =
∫ ∞


kλ(t, )tλ– dt =

∫ ∞



(min{t, })α
(max{t, })λ+α

tλ– dt

=
∫ 


tλ+α– dt +

∫ ∞




tλ+α

tλ– dt

=


λ + α
+


λ + α

=
λ + α

(λ + α)(λ + α)
∈ R+. ()
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Since

kλ(x, y)


y–λ
=

{
yα+λ–

xλ+α ,  < y < x,
xα

y+λ+α , y ≥ x,

for λ ≤  – α (λ > –α), kλ(x, y) 
y–λ is decreasing for y >  and strictly decreasing for y

large enough. Since

kλ(x, y)


x–λ
=

{
xα+λ–

yλ+α ,  < x < y,
yα

x+λ+α , x ≥ y,

for λ ≤  – α (λ > –α), kλ(x, y) 
x–λ is decreasing for x >  and strictly decreasing for x

large enough.
In other words, for –α < λ,λ ≤  – α, kλ(x, y) 

y–λ (kλ(x, y) 
x–λ ) is decreasing for y > 

(x > ) and strictly decreasing for y(x) large enough, satisfying k(λ) ∈ R+.

Lemma  If g(t) (> ) is decreasing in R+, strictly decreasing in [n,∞) (n ∈ N), and sat-
isfying

∫ ∞
 g(t) dt ∈ R+, then we have

∫ ∞


g(t) dt <

∞∑

n=

g(n) <
∫ ∞


g(t) dt. ()

Proof Since

∫ n+

n
g(t) dt ≤ g(n) ≤

∫ n

n–
g(t) dt (n = , . . . , n),

∫ n+

n+
g(t) dt < g(n + ) <

∫ n+

n

g(t) dt,

it follows that

 <
∫ n+


g(t) dt <

n+∑

n=

g(n) <
n+∑

n=

∫ n

n–
g(t) dt =

∫ n+


g(t) dt < ∞.

In the same way, we have

 <
∫ ∞

n+
g(t) dt ≤

∞∑

n=n+

g(n) ≤
∫ ∞

n+
g(t) dt < ∞.

Adding these two inequalities, we have (). �

Lemma  Let –α < λ,λ ≤  – α, λ + λ = λ, and k(λ) be as in (). Define the following
weight coefficients:

ω(λ, m) :=
∞∑

n=

(min{Um, Vn})α
(max{Um, Vn})λ+α

Uλ
m υn

V –λ
n

, m ∈ N, ()
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 (λ, n) :=
∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

V λ
n μm

U–λ
m

, n ∈ N. ()

Then, we have the following inequalities:

ω(λ, m) < k(λ) (–α < λ ≤  – α,λ > –α; m ∈ N), ()

 (λ, n) < k(λ) (–α < λ ≤  – α,λ > –α; n ∈ N). ()

Proof We set μ(t) := μm, t ∈ (m – , m] (m ∈ N); υ(t) := υn, t ∈ (n – , n] (n ∈ N), and

U(x) :=
∫ x


μ(t) dt (x ≥ ), V (y) :=

∫ y


υ(t) dt (y ≥ ). ()

Then by () it follows that U(m) = Um, V (n) = Vn (m, n ∈ N). For x ∈ (m – , m), U ′(x) =
μ(x) = μm (m ∈ N); for y ∈ (n – , n), V ′(y) = υ(y) = υn (n ∈ N). Since V (y) is strictly in-
creasing in (n – , n], –α < λ ≤  – α, λ > –α, in view of Example  and Lemma , we
find

ω(λ, m) =
∞∑

n=

∫ n

n–

(min{Um, Vn})α
(max{Um, Vn})λ+α

Uλ
m

V –λ
n

V ′(y) dy

<
∞∑

n=

∫ n

n–

(min{Um, V (y)})α
(max{Um, V (y)})λ+α

Uλ
m

V –λ (y)
V ′(y) dy.

Setting t = V (y)
Um

, we obtain V ′(y) dy = Um dt and

ω(λ, m) <
∞∑

n=

∫ V (n)
Um

V (n–)
Um

(min{, t})α
(max{, t})λ+α

tλ– dt

=
∫ V (∞)

Um



(min{, t})α
(max{, t})λ+α

tλ– dt

≤
∫ ∞



(min{, t})α
(max{, t})λ+α

tλ– dt = k(λ). ()

Hence, we have (). In the same way, we have (). �

Lemma  Let –α < λ,λ ≤  – α, λ + λ = λ, λ + λ = λ, k(λ) be as in (), m, n ∈ N,
μm ≥ μm+ (m ∈ {m, m + , . . .}), υn ≥ υn+ (n ∈ {n, n + , . . .}), U(∞) = V (∞) = ∞. Then

(i) for m, n ∈ N, we have

k(λ)
(
 – θ (λ, m)

)
< ω(λ, m) (–α < λ ≤  – α,λ > –α), ()

k(λ)
(
 – ϑ(λ, n)

)
<  (λ, n) (–α < λ ≤  – α,λ > –α), ()

where, θ (λ, m) = O( 
Uλ+α

m
) ∈ (, ), ϑ(λ, n) = O( 

Vλ+α
n

) ∈ (, );
(ii) for any a > , we have

∞∑

m=

μm

U+a
m

=

a

(


Ua
m

+ aO()
)

, ()
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∞∑

n=

υn

V +a
n

=

a

(


V a
n

+ aÕ()
)

. ()

Proof Since υn ≥ υn+ (n ≥ n), –α < λ ≤  – α, λ > –α, and V (∞) = ∞, by Lemma  we
have

ω(λ, m) ≥
∞∑

n=n

(min{Um, Vn})α
(max{Um, Vn})λ+α

Uλ
m

V –λ
n

υn+

=
∞∑

n=n

∫ n+

n

(min{Um, Vn})α
(max{Um, Vn})λ+α

Uλ
m

V –λ
n

V ′(y) dy

>
∞∑

n=n

∫ n+

n

(min{Um, V (y)})α
(max{Um, V (y)})λ+α

Uλ
m

V –λ (y)
V ′(y) dy

=
∞∑

n=n

∫ V (n+)
Um

V (n)
Um

(min{, t})α
(max{, t})λ+α

tλ– dt

=
∫ ∞

V (n)
Um

(min{, t})α
(max{, t})λ+α

tλ– dt = k(λ)
(
 – θ (λ, m)

)
,

where

θ (λ, m) :=


k(λ)

∫ V (n)
Um



(min{, t})α
(max{, t})λ+α

tλ– dt ∈ (, ). ()

For Um > V (n), we obtain

 < θ (λ, m) =


k(λ)

∫ V (n)
Um


tλ+α– dt

=


(λ + α)k(λ)

(
Vn

Um

)λ+α

,

and then θ (λ, m) = O( 
Uλ+α

m
). Hence, we have ().

In the same way, since μm ≥ μm+ (m ≥ m), –α < λ ≤  – α, λ > –α, and U(∞) = ∞,
we have

 (λ, n) ≥
∞∑

m=m

(min{Um, Vn})α
(max{Um, Vn})λ+α

V λ
n μm+

U–λ
m

=
∞∑

m=m

∫ m+

m

(min{Um, Vn})α
(max{Um, Vn})λ+α

V λ
n U ′(x)
U–λ

m
dx

>
∞∑

m=m

∫ m+

m

(min{U(x), Vn})α
(max{U(x), Vn})λ+α

V λ
n U ′(x)

U–λ (x)
dx

t=U(x)/Vn=
∞∑

m=m

∫ U(m+)
Vn

U(m)
Vn

(min{t, })α
(max{t, })λ+α

tλ– dt

=
∫ ∞

U(m)
Vn

(min{t, })α
(max{t, })λ+α

tλ– dt = k(λ)
(
 – ϑ(λ, n)

)
,
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where

ϑ(λ, n) :=


k(λ)

∫ U(m)
Vn



(min{t, })α
(max{t, })λ+α

tλ– dt ∈ (, ). ()

For Vn > U(m), we obtain

ϑ(λ, n) =


k(λ)

∫ U(m)
Vn


tλ+α– dt =


(λ + α)k(λ)

(
U(m)

Vn

)λ+α

.

Hence, we have ().
For a > , we find

∞∑

m=

μm

U+a
m

=
m∑

m=

μm

U+a
m

+
∞∑

m=m+

μm

U+a
m

=
m∑

m=

μm

U+a
m

+
∞∑

m=m+

∫ m

m–

U ′(x)
U+a

m
dx

<
m∑

m=

μm

U+a
m

+
∞∑

m=m+

∫ m

m–

U ′(x)
U+a(x)

dx

=
m∑

m=

μm

U+a
m

+
∫ ∞

m

dU(x)
U+a(x)

=
m∑

m=

μm

U+a
m

+


aUa
m

=

a

(


Ua
m

+ a
m∑

m=

μm

U+a
m

)

,

∞∑

m=

μm

U+a
m

≥
∞∑

m=m

μm+

U+a
m

=
∞∑

m=m

∫ m+

m

U ′(x)
U+a

m
dx

>
∞∑

m=m

∫ m+

m

U ′(x) dx
U+a(x)

=
∫ ∞

m

dU(x)
U+a(x)

=


aUa
m

.

Hence, we have (). In the same way, have (). �

3 Equivalent inequalities and operator expressions
Theorem  If –α < λ,λ ≤  – α, λ + λ = λ, k(λ) is as in (), then for p > ,  <
‖a‖p,�λ

,‖b‖q,	λ
< ∞, we have the following equivalent inequalities:

I :=
∞∑

n=

∞∑

m=

(min{Um, Vn})αambn

(max{Um, Vn})λ+α
< k(λ)‖a‖p,�λ

‖b‖q,	λ
, ()

J :=

{ ∞∑

n=

υn

V –pλ
n

[ ∞∑

m=

(min{Um, Vn})αam

(max{Um, Vn})λ+α

]p} 
p

< k(λ)‖a‖p,�λ
. ()

Proof By Hölder’s inequality with weight (see []) we have

[ ∞∑

m=

(min{Um, Vn})αam

(max{Um, Vn})λ+α

]p

=

[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

(
U

–λ
q

m am

V
–λ

p
n μ


q
m

)(
V

–λ
p

n μ

q
m

U
–λ

q
m

)]p
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≤
∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

(
U (–λ)p/q

m

V –λ
n μ

p/q
m

ap
m

)

×
[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

V (–λ)(q–)
n μm

U–λ
m

]p–

=
V –pλ

n

( (λ, n))–pυn

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

U (–λ)(p–)
m υn

V –λ
n μ

p–
m

ap
m. ()

In view of (), we find

J ≤ (
k(λ)

) 
q

[ ∞∑

n=

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

U (–λ)(p–)
m υn

V –λ
n μ

p–
m

ap
m

] 
p

=
(
k(λ)

) 
q

[ ∞∑

m=

∞∑

n=

(min{Um, Vn})α
(max{Um, Vn})λ+α

U (–λ)(p–)
m υn

V –λ
n μ

p–
m

ap
m

] 
p

=
(
k(λ)

) 
q

[ ∞∑

m=

ω(λ, m)
Up(–λ)–

m

μ
p–
m

ap
m

] 
p

. ()

Then by () we have ().
By Hölder’s inequality we have

I =
∞∑

n=

[
υ


p

n

V

p –λ

n

∞∑

m=

(min{Um, Vn})αam

(max{Um, Vn})λ+α

](
V


p –λ

n

υ

p

n

bn

)

≤ J‖b‖q,	λ
. ()

Then by () we have ().
On the other hand, assuming that () is valid, we set

bn :=
υn

V –pλ
n

[ ∞∑

m=

(min{Um, Vn})αam

(max{Um, Vn})λ+α

]p–

, n ∈ N.

Then we find Jp = ‖b‖q
q,	λ

. If J = , then () is trivially valid; if J = ∞, then by () and
() it is impossible. Suppose that  < J < ∞. By () it follows that

‖b‖q
q,	λ

= Jp = I < k(λ)‖a‖p,�λ
‖b‖q,	λ

, ()

‖b‖q–
q,	λ

= J < ks(λ)‖a‖p,�λ
, ()

and then () follows, which is equivalent to (). �

Theorem  With the assumptions of Theorem , if m, n ∈ N, μm ≥ μm+ (m ∈ {m, m +
, . . .}), υn ≥ υn+ (n ∈ {n, n + , . . .}), U(∞) = V (∞) = ∞, then the constant factor k(λ) in
() and () is the best possible.
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Proof For ε ∈ (, p(λ + α)), we set λ̃ = λ – ε
p (∈ (–α,  – α)), λ̃ = λ + ε

p (> –α), and
ã = {̃am}∞m=, b̃ = {̃bn}∞n=,

ãm := U λ̃–
m μm = U

λ– ε
p –

m μm, b̃n = V λ̃–ε–
n υn = V

λ– ε
q –

n υn. ()

Then by (), (), and () we have

‖̃a‖p,�λ
‖̃b‖q,	λ

=

( ∞∑

m=

μm

U+ε
m

) 
p
( ∞∑

n=

υn

V +ε
n

) 
q

=

ε

(


Uε
m

+ εO()
) 

p
(


V ε

n

+ εÕ()
) 

q
,

Ĩ :=
∞∑

n=

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

ãmb̃n

=
∞∑

n=

[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

V λ̃
n μm

U–̃λ
m

]
υn

V ε+
n

=
∞∑

n=

 (̃λ, n)
υn

V ε+
n

≥ k(̃λ)
∞∑

n=

(
 – ϑ (̃λ, n)

) υn

V ε+
n

= k(̃λ)

( ∞∑

n=

υn

V ε+
n

–
∞∑

n=

O
(

υn

V
ε
q +λ+α+

n

))

=

ε

k(̃λ)
[


V ε

n

+ ε
(
Õ() – O()

)
]

.

If there exists a positive constant K ≤ k(λ) such that () is valid when replacing k(λ)
to K , then, in particular, we have ε̃I < εK ‖̃a‖p,�λ

‖̃b‖q,	λ
, namely,

k(̃λ)
[


V ε

n

+ ε
(
Õ() – O()

)
]

< K
(


Uε

m

+ εO()
) 

p
(


V ε

n

+ εÕ()
) 

q
.

It follows that k(λ) ≤ K (ε → +). Hence, K = k(λ) is the best possible constant factor of
().

The constant factor k(λ) in () is still the best possible. Otherwise, we would reach a
contradiction by () that the constant factor in () is not the best possible. �

For p > , we find 	
–p
λ (n) = υn

V –pλ
n

and define the following normed spaces:

lp,�λ
:=

{
a = {am}∞m=;‖a‖p,�λ

< ∞}
,

lq,	λ
:=

{
b = {bn}∞n=;‖b‖q,	λ

< ∞}
,

lp,	–p
λ

:=
{

c = {cn}∞n=;‖c‖p,	–p
λ

< ∞}
.

Assuming that a = {am}∞m= ∈ lp,�λ
and setting

c = {cn}∞n=, cn :=
∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

am, n ∈ N,
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we can rewrite () as

‖c‖p,	–p
λ

< k(λ)‖a‖p,�λ
< ∞,

namely, c ∈ lp,	–p
λ

.

Definition  Define a Hardy-Hilbert-type operator T : lp,�λ
→ lp,	–p

λ

as follows: For any
a = {am}∞m= ∈ lp,�λ

, there exists a unique representation Ta = c ∈ lp,	–p
λ

. Define the formal
inner product of Ta and b = {bn}∞n= ∈ lq,	λ

as follows:

(Ta, b) :=
∞∑

n=

[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

am

]

bn. ()

Then we can rewrite () and () as follows:

(Ta, b) < k(λ)‖a‖p,�λ
‖b‖q,	λ

, ()

‖Ta‖p,	–p
λ

< k(λ)‖a‖p,�λ
. ()

Define the norm of the operator T as follows:

‖T‖ := sup
a( �=θ )∈lp,�λ

‖Ta‖p,	–p
λ

‖a‖p,�λ

.

Then by () we find ‖T‖ ≤ k(λ). Since by Theorem  the constant factor in () is the
best possible, we have

‖T‖ = k(λ) =
λ + α

(λ + α)(λ + α)
.

4 Some equivalent reverse inequalities
Theorem  If –α < λ,λ ≤  – α, λ + λ = λ, k(λ) is as in (), m, n ∈ N, μm ≥ μm+

(m ∈ {m, m + , . . .}), υn ≥ υn+ (n ∈ {n, n + , . . .}), U(∞) = V (∞) = ∞, then for  <
p < ,  < ‖a‖p,�λ

,‖b‖q,	λ
< ∞, we have the following equivalent inequalities with the best

possible constant factor k(λ):

I =
∞∑

n=

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

ambn > k(λ)‖a‖p,�̃λ
‖b‖q,	λ

, ()

J =

{ ∞∑

n=

υn

V –pλ
n

[ ∞∑

m=

(min{Um, Vn})αam

(max{Um, Vn})λ+α

]p} 
p

> k(λ)‖a‖p,�̃λ
. ()

Proof By the reverse Hölder’s inequality and (), we have the reverses of (), (), and
(). Then by () we have (). By () and the reverse of () we have ().

On the other hand, assuming that () is valid, we set bn as in Theorem . Then we find
Jp = ‖b‖q

q,	λ
. If J = ∞, then () is trivially valid; if J = , then by reverse of () and () it
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is impossible. Suppose that  < J < ∞. By () it follows that

‖b‖q
q,	λ

= Jp = I > ks(λ)‖a‖p,�̃λ
‖b‖q,	λ

, ()

‖b‖q–
q,	λ

= J > ks(λ)‖a‖p,�̃λ
, ()

and then () follows, which is equivalent to ().
For ε ∈ (, p(λ + α)), we set λ̃, λ̃, ãm, and b̃n as (). Then by (), (), and () we

find

‖a‖p,�̃λ
‖b‖q,	λ

=

[ ∞∑

m=

(
 – θ (λ, m)

) μm

U+ε
m

] 
p
( ∞∑

n=

υn

V +ε
n

) 
q

=

( ∞∑

m=

μm

U+ε
m

–
∞∑

m=

O
(

μm

U+λ+α+ε
m

)) 
p
( ∞∑

n=

υn

V +ε
n

) 
q

=

ε

[


Uε
m

+ ε
(
O() – O()

)
] 

p
(


V ε

n

+ εÕ()
) 

q
,

Ĩ =
∞∑

n=

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

ãmb̃n

=
∞∑

n=

[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

V λ̃
n μm

U–̃λ
m

]
υn

V ε+
n

=
∞∑

n=

 (̃λ, n)
υn

V ε+
n

≤ k(̃λ)
∞∑

n=

υn

V ε+
n

=

ε

k(̃λ)
(


V ε

n

+ εÕ()
)

.

If there exists a constant K ≥ k(λ) such that () is valid when replacing k(λ) to K ,
then, in particular, we have ε̃I > εK ‖̃a‖p,�̃λ

‖̃b‖q,	λ
, namely,

k(̃λ)
(


V ε

n

+ εÕ()
)

> K
[


Uε

m

+ ε
(
O() – O()

)
] 

p
(


V ε

n

+ εÕ()
) 

q
.

It follows that k(λ) ≥ K (ε → +). Hence, K = k(λ) is the best possible constant factor of
().

The constant factor k(λ) in () is still the best possible. Otherwise, we would reach a
contradiction by the reverse of () that the constant factor in () is not the best possi-
ble. �

Theorem  With the assumptions of Theorem , if p < , then we have the following equiv-
alent inequalities with the best possible constant factor k(λ):

I =
∞∑

n=

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

ambn > k(λ)‖a‖p,�λ
‖b‖q,	̃λ

, ()
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J :=

{ ∞∑

n=

V pλ–
n υn

( – ϑ(λ, n))p–

[ ∞∑

m=

(min{Um, Vn})αam

(max{Um, Vn})λ+α

]p} 
p

> k(λ)‖a‖p,�λ
. ()

Proof By the reverse Hölder inequality with weight, since p < , by () we have

[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

am

]p

=

[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

(
U (–λ)/q

m

V (–λ)/p
n μ

/q
m

am

)(
V (–λ)/p

n μ
/q
m

U (–λ)/q
m

)]p

≤
∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

U (–λ)p/q
m

V –λ
n μ

p/q
m

ap
m

×
[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

V (–λ)(q–)
n μm

U–λ
m

]p–

=
V –pλ

n

( (λ, n))–p

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

U (–λ)(p–)
m

V –λ
n μ

p–
m

ap
m

≤ (k(λ))p–V –pλ
n

( – ϑ(λ, n))–pυn

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

U (–λ)(p–)
m υn

V –λ
n μ

p–
m

ap
m,

J ≥ (
k(λ)

) 
q

{ ∞∑

n=

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

U (–λ)(p–)
m υn

V –λ
n μ

p–
m

ap
m

} 
p

=
(
k(λ)

) 
q

{ ∞∑

m=

∞∑

n=

(min{Um, Vn})α
(max{Um, Vn})λ+α

am
U (–λ)(p–)

m υn

V –λ
n μ

p–
m

ap
m

} 
p

=
(
k(λ)

) 
q

{ ∞∑

m=

ω(λ, m)
Up(–λ)–

m

μ
p–
m

ap
m

} 
p

. ()

Then by () we have ().
By the reverse Hölder inequality we have

I =
∞∑

n=

V
λ– 

p
n υ

/p
n

( – ϑ(λ, n))/q

[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

am

]

×
[
(
 – ϑ(λ, n)

) 
q V


p –λ

n

υ
/p
n

bn

]

≥ J‖b‖q,	̃λ
. ()

Then by () we have ().
On the other hand, assuming that () is valid, we set bn as follows:

bn :=
V pλ–

n υn

( – ϑ(λ, n))p–

[ ∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

am

]p–

, n ∈ N.
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Then we find Jp
 = ‖b‖q

q,	̃λ
. If J = ∞, then () is trivially valid; if J = , then by () and

() it is impossible. Suppose that  < J < ∞. By () it follows that

‖b‖q
q,	̃λ

= Jp
 = I > ks(λ)‖a‖p,�λ

‖b‖q,	̃λ
,

‖b‖q–
q,	̃λ

= J > ks(λ)‖a‖p,�λ
,

and then () follows, which is equivalent to ().
For ε ∈ (, q(λ + α)), we set λ̃ = λ + ε

q (> –α), λ̃ = λ – ε
q (∈ (–α,  – α)), and

ãm := U λ̃––ε
m μm = U

λ– ε
p –

m μm, b̃n = V λ̃–
n υn = V

λ– ε
q –

n υn.

Then by (), (), and () we have

‖̃a‖p,�λ
‖̃b‖q,	̃λ

=

( ∞∑

m=

μm

U+ε
m

) 
p
[ ∞∑

n=

(
 – ϑ(λ, n)

) υn

V +ε
n

] 
q

=

( ∞∑

m=

μm

U+ε
m

) 
p
( ∞∑

n=

υn

V +ε
n

–
∞∑

n=

O
(

υn

V +λ+α+ε
n

)) 
q

=

ε

(


Uε
m

+ εO()
) 

p
[


V ε

n

+ ε
(
Õ() – O()

)
] 

q
,

Ĩ =
∞∑

n=

∞∑

m=

(min{Um, Vn})α
(max{Um, Vn})λ+α

ãmb̃n

=
∞∑

m=

[ ∞∑

n=

(min{Um, Vn})α
(max{Um, Vn})λ+α

U λ̃
m υn

V –̃λ
n

]
μm

U+ε
m

=
∞∑

m=

ω(̃λ, m)
μm

U+ε
m

≤ k(̃λ)
∞∑

n=

μm

U+ε
m

=

ε

k(̃λ)
(


Uε

m

+ εO()
)

.

If there exists a constant K ≥ k(λ) such that () is valid when replacing k(λ) to K ,
then, in particular, we have ε̃I > εK ‖̃a‖p,�λ

‖̃b‖q,	̃λ
, namely,

k(̃λ)
(


Uε

m

+ εO()
)

> K
(


Uε

m

+ εO()
) 

p
[


V ε

n

+ ε
(
Õ() – O()

)
] 

q
.

It follows that k(λ) ≥ K (ε → +). Hence, K = k(λ) is the best possible constant factor of
().

The constant factor k(λ) in () is still the best possible. Otherwise, we would reach a
contradiction by () that the constant factor in () is not the best possible. �
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Remark  (i) For α =  and  < λ,λ ≤  in () and (), we have the following equivalent
inequalities:

∞∑

n=

∞∑

m=

ambn

(max{Um, Vn})λ <
λ

λλ
‖a‖p,�λ

‖b‖q,	λ
, ()

{ ∞∑

n=

υn

V –pλ
n

[ ∞∑

m=

am

(max{Um, Vn})λ
]p} 

p

<
λ

λλ
‖a‖p,�λ

; ()

(ii) for α = –λ and – ≤ λ,λ <  in () and (), we have the following equivalent
inequalities:

∞∑

n=

∞∑

m=

ambn

(min{Um, Vn})λ <
(–λ)
λλ

‖a‖p,�λ
‖b‖q,	λ

, ()

{ ∞∑

n=

υn

V –pλ
n

[ ∞∑

m=

am

(min{Um, Vn})λ
]p} 

p

<
(–λ)
λλ

‖a‖p,�λ
; ()

(iii) for λ = , |λ| < α ( < α ≤ 
 ); |λ| <  – α ( 

 < α ≤ ), λ = –λ in () and (), we
have the following equivalent inequalities:

∞∑

n=

∞∑

m=

(
min{Um, Vn}
max{Um, Vn}

)α

ambn <
α

α – λ

‖a‖p,�λ

‖b‖q,	λ
, ()

{ ∞∑

n=

υn

V +pλ
n

[ ∞∑

m=

(
min{Um, Vn}
max{Um, Vn}

)α

am

]p} 
p

<
α

α – λ

‖a‖p,�λ

. ()

In view of Theorem , the constant factors in these inequalities with the particular ker-
nels are all the best possible.
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