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1 Introduction

00 1
Ifp>1, - + =1f(x),g() =0,f e L?(R,), g € L1(R,), |fll, = (fo fP(x)dx)? >0, Iglly >0,
then we have the following Hardy- Hllbert integral inequality [1]:

G i
dxdy < ———— , 1
/ / 2ty Y Gnlp) I lplgllg 1)
where, the constant factor m is the best possible Assuming that a,,,b, > 0, a =

{am)o, € 0P, b={b)2, €19, |lall, = oy ,,,)P >0, |bll; > 0, we have the following

Hardy-Hilbert inequality with the same best possible constant factor 7 /p [1]:

ZZ < /)nanpnbnq )

Inequalities (1) and (2) are important in analysis and its applications [1-5].
prLi,Ul' >0(,jeN={L2,...}),

u, = i Wi V, = 2": v; (mneN), (3)
i=1 j=1
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then we have the following inequality (see Theorem 321 of [1]):

00 00 1/q_1/p
Wm Un ambn
a5l (4)
;Z; Uy +V, s(/) P

Replacing ;Li,/,qzzm and v,l,/p b, by a,, and b, in (4), respectively, we have the following equiv-

117 x bq %
JEs)
n=1 Yn

For p; = vj =1 (i,j € N), both (4) and (5) reduce to (2). We call (4) and (5) Hardy-Hilbert-

type inequalities.

alent form of (4):

Note The authors of [1] did not prove that (4) is valid with the best possible constant
factor.

In 1998, by introducing an independent parameter A € (0,1] Yang [6] gave an extension
of (1) with the kernel )A for p = g = 2. Following the results of [6], Yang [5] gave some
best extensions of (1) and (2) as follows.

Ifr, ke R A+ A=A, ki (x,y) is a nonnegative homogeneous function of degree —X
with k() = [;7 ko (&, )17 dt € R, ¢(x) = 220707, () = 57072271 £(x), 6(y) > 0,

felysR,)= {fuf||p¢-</ bl \de)lm},

g€ LgyRy), Ifllpg: lIgllgy > O, then

/0 /0 ko (o9 (©)g0) dxcly < K T Il ©)

where the constant factor k(1;) is the best possible. Moreover, if k; (x,y) is finite and
k (o6, y)x™1 7L (K, (, )y*271) is decreasing with respect to x > 0 (y > 0), then for a,,, b, > 0,

. )
ac€lyy= {ﬂ; llallpe = (qu(n)lu,,lp) < oo},

n=1

={bu};2 € lyyy lallpgs 1Dl gy > 0, it follows that

N ki, m)amby < k(a)llalpg 15l gy (7)

m=1 n=1

where the constant factor k()q) is still the best possible
Clearly, for A =1, ky(x,) = x+y , A= Ag = L inequality (6) reduces to (1), whereas (7)
reduces to (2). For 0 < A1, Ay <1, A1 + kg = A, we set

k;. (%, y) = ((x,y) € R?).

1
(x +y)*
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Then by (7) it follows that

00 00 anb,
22(7,4 <B()‘-lr)\'Z)“a“p,dJ||b||q’1/f’ (8)

where the constant B(1, ;) is the best possible. Some other results including multidi-
mensional Hilbert-type inequalities are provided in [7-24].

In this paper, by means of weight coefficients and techniques of real analysis, a new
Hardy-Hilbert-type inequality with multiparameters and the best possible constant factor
is given, which is with the kernel

(min{x, y})*

0 Gmaxt gy

similar to (4). The equivalent forms, the operator expression with the norm, the reverse
and some particular inequalities with the best possible constant factors are also consid-
ered.

2 An example and some lemmas
In the following, we make appointment that u;, v; > 0 (i,j € N), U,, and V,, are defined
by 3, p#0,L, 5 + ;=1 @b, =0 (mneN),

1 1

00 P 00 q

lallp., = (Z dn(m)a';) o bl = (Z ‘Ifx(l’l)bz> :
m=1 n=1

where
up(l—ll)—l Vq(l—?»z)—l
@, (m) = mifl, W, (1) = —= = (m,n € N).
p q
Hm Un
We also set
p(1-11)-1 q(1-h2)-1
= m e n
P (m) = (1-002,m)——5—,  Wi(m):=(1-00,n))——5— (mneN).
Wm Un

Note For 0 <p <1orp <0, we still use the formal symbols ||al|p,e,, 16ll4w,, ll2l,3,, and

161,35, -
Example1 For —o <X, Ay <1-—o, A1 + Ay = A, we set

(min{x, y})*

D)= Gty

((x,7) €R2).

We find

~ o0 el g °  (min{z,1})* o1
k()q)—/o ki (¢, 1)t dt—/o 7(max{t,1})’\+°‘t dt

1 00 1
= / el gy / — Mg
0 1 tk+a

1 1 A+ 20
= + = €eR,.
M+a d+a (A +a)(iy+a)
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Since

+ig—-1

1 e
k}\(x,}’)lf)\2 =1 Y
y o Y =X,

O<y<w,

for Ay <1-a (A1 > —a), k. (x,y) yl%z is decreasing for y > 0 and strictly decreasing for y

large enough. Since

1
k)\, (x) j’) ﬂ = yot

yltho+a?

a+hy-1
xyw, 0<x<y,
X =Y,

for \ <1-a (Ay > —a), k,\(x,y)xl_#Al is decreasing for x > 0 and strictly decreasing for x
large enough.
In other words, for —@ < A, Ay <1-a, k; (x,y)%h (k;. (x’y)ﬁ) is decreasing for y > 0

(x> 0) and strictly decreasing for y(x) large enough, satisfying k(1) € R,.

Lemma 1 Ifg(t) (> 0) is decreasing in R, strictly decreasing in [ng,00) (ng € N), and sat-
isfying [, g(t) dt € R,, then we have

([gwm<;kw<ﬂgmm. 10)

Proof Since

n+1l n
/ g(t)dt < g(n) < / gOdt (n=1,...,n0),
n n-1

no+2 no+1
/ gitydt <g(ng +1) < / g(t)de,

0+1 no

it follows that
no+1 no+1

no+2 n no+1
0</1 g(t)de < ;g(nk;fn_lg(t)dt:/() g(t)dt < cc.

In the same way, we have

0</o° gydr< g(n)f/oo g(t)dt < co.

0+2 n=np+2 0+1
Adding these two inequalities, we have (10). d

Lemma 2 Let —o < A, Ay <1—«, A1 + Ay = A, and k(A1) be as in (9). Define the following
weight coefficients:

[ee]

(min{U,, Vo )*  Upi v,
@02 = Y Gl Vo i

m €N, (11)

n=1
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(in{Uy, ViD* Vi o

Al , N. 12

ZD'( 1 Vl) Z (max{L[m,Vn})““ U:”—M ne ( )
Then, we have the following inequalities:

w(hy,m) <k(h) (—ax<iy<l-—a,A >-a;meN), 13)

w(A,n) <k(h) (—ax<i <1-oa,Ay>-a;neN). (14)

Proof We set ju(t) := p, t € (m—1,m] (m € N); v(£) := vy, t € (n—1,n] (n € N), and

x y
U(x) = / ut)ydt (x=>0), V(y):= / v(t)dt (y>0). (15)
0 0

Then by (3) it follows that U(m) = U,,, V(n) = V,, (m,n € N). For x € (m — 1,m), U'(x) =
wx) = wm (m eN); fory € (n —1,n), V'(y) = v(y) = v, (n € N). Since V(y) is strictly in-
creasing in (n — 1,n], —a < Ay <1-a, A; > —a, in view of Example 1 and Lemma 1, we
find

oo

w(}‘-Z’ m) =

n=1

n s o A
/ (min{ll,,, V,})* U, V() dy

1 (max{U,y, V, )y

. > / (min{l,,, V)N  Upt Vi) d
L |,y (max{U, VO Vida) @
Setting ¢ = —m, we obtain V'(y)dy = U,, dt and
)
(min{1, £})
ks, m 2/ Vi) (max({1, t})”"‘llF Lt
%:) (min{1,£})* ,
= — "7t
o (max{L g}
(min{1, £})* hoe1
P a— =k(M). 1
<./0 (maX{Lt})“‘*t i =k (16)
Hence, we have (13). In the same way, we have (14). O

Lemma 3 Let —a < A, Ay <1 —o, A + Ay = A, AL + Ay = A, k(A1) be as in (9), mg,ng €N,
Mom = st (m € {mo, mo+1,...}), Uy > Ups1 (n € {no, no +1,...}), U(c0) = V(00) = 00. Then

(i) for m,n € N, we have

k(A) (1 =02, m)) < w(ho,m) (—a <hy <10, 4y > —a), 17)

k() (1-9(,n) <o (h,n) (-a<r <1-a,iy>-a), (18)

where, 6 (Ay,m) = O( Azm) €(0,1), ¥(r1,n) = O( Aw) €(0,1);

(ii) for any a > 0, we ‘have

> i %(UI + aO(l)), (19)
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v, 11
S o= —( " aO(l)), o0
V1+a a\Vva
n=1 " no
Proof Since vy > Upy1 (1> 1g), ot < Ay <1—a, Ay > —a, and V(00) = 00, by Lemma 1 we
have
o0 . "
(min{U,,, V,,})* U}
Ao m n+
Xy };} (max{U,,, V, )+ i Un+l
00 " »
u,, v.hr u,
Z/ (min{lU,,,, V;,}) Viordy
n=ngy max{L[m, V }))”'O‘ Vl %)
00 "l “
(min{U, VO U
g Zf - (y A 1-A 0’) dy
n=ng (max{U,,, V(y)H > V1-*2(y)
[e'e} n+1) (mln{l t})
= Z / ——— gy
n=ng (max{L, ¢})*+
©  (min{1, t})* -
- dt = k(A\)(1 = 0(re, m)),
/no ) (max({l,t ))»+ot (a)( (o, m))
where
(min{1, £})* pa-1
0(As, = 214t € (0,1). ’l
)= )»1)./ (max{1, t})Mor €(0,1) (21)
For U,, > V(ny), we obtain
Ving)
0< 9()\2,}'}’[) " t)»2+a—1 dt

k(1) 0

B 1 (ﬁ Aoy+a
(g + k() \ U ’

and then O(\y, m) = O(ﬁ). Hence, we have (17).

In the same way, since [ty > 1 (M > mp), —¢ <A <1 -, y > —«, and U(00) = o0,

we have
o0 . A
(mln{um:vn})a Vnzl/«mﬂ
U)’()\l,l’l) = Z At 1-A
oo (max{U,,, Vi,}) u, ™
_ fj L (min{U, Vi) ViU @)
G e max{U, Vil gt
g i /””“ (min{U(x), V,)* Va*l'®)
m o (max{U(x), V,}) e U (x)

=1

S

U(m+1)

UV, / Va (min{,1})*
us

m A+a
oo V_n) (max{z,1})

/'°° (min{z,1})*

M (max{z, 1))+

Mg

17 dt = k(M) (1 - 9 (A, m),
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where

(min{¢,1})%

k()q) W 17 dt € (0,1). (22)

ﬁ()\hn)

For V,, > U(my), we obtain

m())
Vi Pare-l 1 U(mg) \*
(A1, ) = k() / = (A +a)k(r1) ( Va ) .

Hence, we have (18).

For a > 0, we find

[o¢] mgo
Mom
Z U1+a = Z u1+a + Z U1+a
m=1 M m=mg+1
N U
- Z L1+ + Z u1+a
m=1 M m=mg+1
mo 7
u'(x)
<Z ulm Z /_ L[Ha(x)
m=1 m=mqp+1
NS M [T AU o 1 11 SN
- Z L1+ + U+4(x) - Z U1+a + alle  — ; Ue +6lZ Uite |’
m=1 M mo m=1 M mo mo m=1 M
& & & m+l g/
Shmey by [T e
a — a
m=1 L[m m=my um m=mq V" um
i LU () dx > dU(x) 1
> Ut (y) = Ut (x) T Ul
m=mgy ¥ " 0 mo
Hence, we have (19). In the same way, have (20). O

3 Equivalent inequalities and operator expressions
Theorem 4 If -« < Aj,Ap <1 -, A& + Ay = A, k(X) is as in (9), then for p > 1, 0 <
llallp,o,, 1bllgw, < oo, we have the following equivalent inequalities:

A = (min{Uy, V) @by
nZ ; (max{U,,, V,})+ <k@i)llallpe, 1Dllgw;, (23)
) >, (min{U,,, V,})*a Sk
/= i; anipkz [mz_; (maX{Um: Vn})}wa } } ) k()‘l)”“”%%' (24)

Proof By Holder’s inequality with weight (see [25]) we have

> (min{Uy, V) ||
> e

m=1

1-) 1-Ao

(min{U,, V,.))* [ Un" an\(V," ,%1 »
[ (4|

Vi ? M u,*
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o0 (min{U,,, V,,})* U(l—)»l)P/q )
Z (max{U,, V)Mo \ vl pla “m

m=1

(min{ly,, V) VA7, 1
Z (max{L[m, Vi })hre L[,l,,_}Ll

Vi o (min{l, Vi) Uy Ny, 025)

" (@ (o, )P0y = (max{Uyy, Vi)' vttt o

In view of (14), we find

_ 1
S & minfly, Va)* Uy ey, 17
< (k)2 m n o p
/= ( ( 1)) ;Z; (max{U,,, V,})** V,%_kz,uf,,_l “m
1
[ oo oo . o (1—)»1)(19—1) r
1 (min{U,,, V,})* Uy, Uy
= (k(r))? ab,
( 1 ) _;; (max{L[m, V, })Ma V,i M,U«fnl :|
T -t e
= (k(r1))7 w(hg,m)———ab, | . (26)
i
L m=1 m
Then by (13) we have (24).
By Holder’s inequality we have
© [ 0l & (minlU, Vo) vy
I = |: ?n}h Z (mln{ mr n}) )z;::|< n . bn>
el Vyf;_ C— (max{um: Vn}) Uf
<JIbllgw,- (27)
Then by (24) we have (23).

On the other hand, assuming that (23) is valid, we set

-1

by [ 50 minln, Vi) N

n = , N .
ViR | £ (max(Uy, Vi)

Then we find J? = ”b”Z:‘l’/\‘ If ] = 0, then (24) is trivially valid; if / = oo, then by (26) and
(13) it is impossible. Suppose that 0 < J < co. By (23) it follows that

||17||q\;,A =] =1 <k(M)lallpe, 16llgw, (28)
”b”q w, = =J< ks()hl)”ﬂ”p,cbp (29)
and then (24) follows, which is equivalent to (23). O

Theorem 5 With the assumptions of Theorem 4, if mg, ng € N, Ly, > 1 (m € {mg, mg +
1L...}), vy > vg (m € {no, o +1,...}), U(00) = V(00) = 00, then the constant factor k(A,) in
(23) and (24) is the best possible.
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Proof For ¢ € (0,p(M + @)), we set M= A — 1% (€ (—o,1 — @), Ay = Ay + 1% (> —a), and
a= {Zim}fno:y b= {bn};ﬁp

= A-£-1 ~ by Ap-£-1
G = U = U * oy bu= V2N, =V, (30)
Then by (19), (20), and (18) we have
1 1
N < N (S, |1
~ m n
1@, 1810, = (Z u) (Z v)
m=1 M n=1 "
1 1
p

o (min{l,, Vi) L~
Z Z X by,
el m (max{U,,, V,})**

=1

M

2 [ min{Uy Vil)® Vit | v
n=1 Lm=1 (max{U, Vy })Ma 1 h Vit

= Zw(xly
n=1 n= 1
= k(}h (Z V};Hl Z O( —+A1+a+1 ))

= %k@l)[vig +e(0Q) - 0(1))].

no

}’l)) V£+1

If there exists a positive constant K < k(A;) such that (23) is valid when replacing k(A;)
to K, then, in particular, we have el <K a1 5,0, IIZIIq,\pA, namely,

k(L)[VLE +£(0Q) - 0(1))] <1<<UL8 + 80(1))p (VL + 85(1)) "

no mo no

It follows that k(A1) < K (¢ — 0*). Hence, K = k() is the best possible constant factor of

(23).
The constant factor k(11) in (24) is still the best possible. Otherwise, we would reach a
contradiction by (27) that the constant factor in (23) is not the best possible. O

For p > 1, we find llli_p (n) = Vl’fgh and define the following normed spaces:

by, ={a={amly; lallpe, <oo},
lyw, = { ={bu}2i; 1Bl gu; < oo}

lP\I/)le —{C—{Cn}n i ”C” 1p<OO}

Assuming that a = {a,,}5,_; € [0, and setting

[e¢]

Z (min{l,,, V,,.})¥

—_— 0 (oo (1T Whta
Cc= {CH}VI:l’ max{Um; V }))LHX

ay,, HNEN,

m=1
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we can rewrite (24) as
IICllp,\y;—p <k()lallpe, < oo,
namely, c € lp'q]i—p.

Definition 1 Define a Hardy-Hilbert-type operator T':/, o, — lp y1-» as follows: For any
TR

a={am}y,; € lyo,,there exists a unique representation 7z = c € lp y1-»- Define the formal
T

inner product of Tz and b = {b,}32, € I, v, as follows:

| (min{U, Vi)
(Tﬂ, b) = Z|:Z mﬂm]bn. (31)

n=1 Lm=1

Then we can rewrite (23) and (24) as follows:

(Ta, b) < k(2)l|allp0, 1D]lgw, (32)

ITall, y1-» < k(G)lallp,o, - (33)
Define the norm of the operator T as follows:

ITall, y1-»
2T
ITl:= sup ————
a(#0)elye, 14lpe;

Then by (31) we find || T'|| < k(A1). Since by Theorem 5 the constant factor in (31) is the

best possible, we have

A+ 20

TNl = k(A1) = s a0ara)

4 Some equivalent reverse inequalities

Theorem 6 If —o < A,y <1—a, Ay + Ay = &, k(A1) is as in (9), mg,ng € N, > i1
(m € {mo,mp +1,...}), vy > vy (n € {np,np +1,...}), U(oo) = V(00) = 00, then for 0 <
p<1,0<|alpe, 1bllgw, <00, we have the following equivalent inequalities with the best

possible constant factor k(A1):

K (min{Uy, Vi)
I= — o Ambn > k(M) llall, g, 116110, » (34)
00 o0 . p 1
Up (mln{um; Vn})aam ?
/= {Z o [Z (max{l , W] } > k() lal 5, (35)
n=1 n m=1 mr» Vn

Proof By the reverse Holder’s inequality and (14), we have the reverses of (25), (26), and
(27). Then by (17) we have (35). By (35) and the reverse of (27) we have (34).

On the other hand, assuming that (34) is valid, we set b, as in Theorem 4. Then we find
JP = ”b”;%' If ] = 0o, then (35) is trivially valid; if J = 0, then by reverse of (26) and (17) it
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is impossible. Suppose that 0 < J < co. By (34) it follows that

”b”q\y =) =1>kM)llall,z, 1bllgw, (36)

1517 M =] > k()lall,s, (37)

and then (35) follows, which is equivalent to (34).
For & € (0, p(A1 + @)), we set A1, Aa, dm, and b, as (30). Then by (19), (20), and (14) we

find
1 1
oo P [o¢] Un q
el 3, 16l gu, = [Z (1=00k,m um} (Z —Vm)
m=1 n=1 "
1 1
(00 s io: o )p (io: T )q
(St Sols)
1+¢ 1+Ay+a+e l+¢
m=1 u”” m=1 U, ? n=1 V”’
[ 1 Pl 1 g
7 ~
= - oQ1) - 0,11 — +e0(1 ,
L +etom-om) | (7 + <o)
o (min{Uy, Vi)Y
7= R Gb
ZZ (max{l,, V,})*+ by

n=1 m=1

(min{U, V, 1) V%m] Uy

~ (max{Uy, Voo b | Vil

o Up o = Uy
= Z @ (1, 1) Ve+l < k(r1) Z Vet
n el 'n

n=1

l—l

3 "MSE

1 ~ 1 ~
= gk()\.l)<v—;o + 80(1))
If there exists a constant K > k();) such that (34) is valid when replacing k(1;) to K,

then, in particular, we have el > eK lZ|l 53, 1llgv,, namely,

k(i’g(vis + 86(1)> > K[u% +e(0(1) - ol(l))r (VL N 55(1)) g

no mo no
It follows that k(1;) > K (¢ — 0*). Hence, K = k(};) is the best possible constant factor of
(34).
The constant factor k(1) in (35) is still the best possible. Otherwise, we would reach a

contradiction by the reverse of (27) that the constant factor in (34) is not the best possi-
ble. O

Theorem 7 With the assumptions of Theorem 6, if p < 0, then we have the following equiv-
alent inequalities with the best possible constant factor k(11):

o (min{l,,, V,))®
I= sz mbn > k() lallp0, 151l,3, (38)

n=1 m=1
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1
i vy, Z (min{Uy,, Vi })am || "
1- ﬁ(klxn))p -1 (max{U,, V,})*
> k(A llllp,@, -
Proof By the reverse Holder inequality with weight, since p < 0, by (18) we have
00 . p
) (min{Uy, VD)
2 (max{U,,, V)"
S (min{ly, Vihe (U vi 2P\ T
; max{um,v ))wra( 1- Az)/pul/q )( ur(nl—)q)/q )

oo

(min{U,, Va))* Uy 7
Z (max{U, V)~ yi-2 pla D

(min{Ll, V))* V20, 17
Z(max{um,vy,}w U

m=1

v (min{L, Va})* Uy

= (o (A1, m))1-P ot (max{U,,, V,})*+ kazuﬁ{l @y,

k(AL P i (min{ll,,, V,)* Uy Ny

n_p
= W= 00, P0, 2= (max(Up, Vadyre yi2, bt

1
S & (min{ll,, Vb ubyve My, |
Y

Q-

Ji > (k(r1))

max (U, Val e Vil

, - « (1-21)(p-1) ’
= (k(,\l))é lz Z ((mm{Um, Viu}) @ U, Up af;}

max{U,, V,})*+* Va2t

m

L[ Up(lfll)*l 1%
= (k(r))* !Z (g, m) 22— a?
m=1

p1 Om
Km

Then by (13) we have (39).

By the reverse Holder inequality we have

k
.- i o 3o _minl Vo))
(1- znlnl/q e ( "

- max{U,,, V,})*+

1_
2

1V,
| =0 00m)t b, ] = Aol (@)

n

Then by (39) we have (38).

On the other hand, assuming that (38) is valid, we set b,, as follows:

-1
e V[ inithy Vil 1
" A= 0 G | 2= max(Uy, Ve | N
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Then we find J = ||b||Z 4, If J; = oo, then (39) is trivially valid; if /; = 0, then by (40) and
(13) it is impossible. Suppose that 0 < J; < 0o. By (38) it follows that

IIbIIq;I; =i =1>k)llalpe, 18143,

Ilbllq~ =J1 > k(A)lallp,e,

and then (39) follows, which is equivalent to (38).
For ¢ € (0,g(Ay + @)), we set Ay = A + £ (>-a), Ty = Ao — £ (e (-a,1-a)),and

~ M-£-1 ~ ~ r—£-1
~ _ipa-l-s,  _ ? -l _ q
A = U oy = Uy Woms b,=V,2 v, =V, Uy

Then by (19), (20), and (13) we have

1
% ’
~ ~ Mm
il 151, = (Z um) [
1 1
P&, o0 U, q
<Z Vi+e - ZO(VHMHH&))

n

1
1 1
iz

:l< ! +sO(1)) [1 +s(5(1)—ol(1))r,

(min{l,,, V,})* ~
(max{Uy, V,})*+e

mYn
=1

C (min{U, Va)* Uit Uy | o
— (max{U,, Vo) i | UL

If there exists a constant K > k(X;) such that (38) is valid when replacing k(1;) to K,

then, in particular, we have el > eK|allpo, I2l,,3, , namely,

k(L)(Ulg (1)) > 1<(UL€ + 80(1))p [VL +£(0Q) - 01(1))] ‘

It follows that k(%;) > K (¢ — 0*). Hence, K = k(};) is the best possible constant factor of
(38).

The constant factor k(1) in (39) is still the best possible. Otherwise, we would reach a
contradiction by (41) that the constant factor in (38) is not the best possible. O
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Remark1 (i) Fora =0and 0 < A1, A5 <1in(23) and (24), we have the following equivalent

inequalities:
ii %l 1] (42)
L £t max{LIm,V}) S e Pl
= v > a i é A
n m
<—||a ; 43
;v,:m ;(max{um,vn})k Ais 1l 43

(ii) for & = =& and -1 < 41,43 < 0 in (23) and (24), we have the following equivalent

inequalities:
Z Z (mln{L[ v, })k ”””Pﬁbx 1114w, » (44)
n=1 m m»
1
Uy A (_)\’)
' 45
; Vy}—lf}»z ; (min{U,,, V,,})* < —)Ll)MZ llallp,o, (45)

(iii) for A = 0O, |A1|<a(0<a< ;A <1- oz( <a <1), Ay =—A;1 in (23) and (24), we

have the following equivalent 1nequa11tles.

min{U,,, V,,} 20
by < —— b , 46
;;(max{um,vg b < =zl Pls, (46)
o0 00 o )4 1%
Uy min{U,,, V,,} 20
a <———lla . 47
2y ;(max{um,vn} | <zl (47)

In view of Theorem 5, the constant factors in these inequalities with the particular ker-

nels are all the best possible.
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