Skip to main content

\(L_{p}\)-Dual geominimal surface area and general \(L_{p}\)-centroid bodies

Abstract

In this article, we consider the Shephard type problems and obtain the affirmative and negative parts of the version of \(L_{p}\)-dual geominimal surface area for general \(L_{p}\)-centroid bodies. Combining with the \(L_{p}\)-dual geominimal surface area we also give a negative form of the Shephard type problems for \(L_{p}\)-centroid bodies.

1 Introduction and main results

Let \(\mathcal{K}^{n}\) denote the set of convex bodies (compact, convex subsets with nonempty interiors) in Euclidean space \(\mathbb{R}^{n}\). For the set of convex bodies containing the origin in their interiors and the set of origin-symmetric convex bodies in \(\mathbb{R}^{n}\), we write \(\mathcal{K}^{n}_{o}\) and \(\mathcal{K}^{n}_{c}\), respectively. \(S^{n}_{o}\) and \(S^{n}_{c}\), respectively, denote the set of star bodies (about the origin) and the set of origin-symmetric star bodies in \(\mathbb{R}^{n}\). Let \(S^{n-1}\) denote the unit sphere in \(\mathbb{R}^{n}\), and let \(V(K)\) denote the n-dimensional volume of a body K. For the standard unit ball B in \(\mathbb{R}^{n}\), we use \(\omega_{n} = V(B)\) to denote its volume.

The notion of geominimal surface area was discovered by Petty (see [1]). For \(K\in\mathcal{K}^{n}\), the geominimal surface area, \(G(K)\), of K is defined by

$$\omega_{n}^{\frac{1}{n}}G(K)= \inf\bigl\{ nV_{1}(K,Q)V \bigl(Q^{\ast}\bigr)^{\frac{1}{n}}: Q\in\mathcal{K}^{n}\bigr\} . $$

Here \(Q^{\ast}\) denotes the polar of body Q and \(V_{1}(M, N)\) denotes the mixed volume of \(M, N\in\mathcal{K}^{n}\) (see [2]).

The geominimal surface area serves as a bridge connecting a number of areas of geometry: affine differential geometry, relative geometry, and Minkowskian geometry. Hence it receives a lot of attention (see, e.g., [3, 4]). Lutwak in [5] showed that there were natural extensions of geominimal surface areas in the Brunn-Minkowski-Firey theory. It motivates extensions of some known inequalities for geominimal surface areas to \(L_{p}\)-geominimal surface areas. The inequalities for \(L_{p}\)-geominimal surface areas are stronger than their classical counterparts (see [6–10]).

Based on \(L_{p}\)-mixed volume, Lutwak [5] introduced the notion of \(L_{p}\)-geominimal surface area. For \(K\in\mathcal{K}^{n}_{o}\), \(p\geq1\), the \(L_{p}\)-geominimal surface area, \(G_{p}(K)\), of K is defined by

$$\omega_{n}^{\frac{p}{n}}G_{p}(K)= \inf\bigl\{ nV_{p}(K,Q)V\bigl(Q^{\ast}\bigr)^{\frac{p}{n}}: Q\in \mathcal{K}^{n}_{o}\bigr\} . $$

Here \(V_{p}(M, N)\) denotes the \(L_{p}\)-mixed volume of \(M, N\in\mathcal{K}^{n}_{o}\) (see [5, 11]). Obviously, if \(p=1\), \(G_{p}(K)\) is just the geominimal surface area \(G(K)\).

Recently, Wang and Qi [12] introduced a concept of \(L_{p}\)-dual geominimal surface area, which is a dual concept for \(L_{p}\)-geominimal surface area and belongs to the dual \(L_{p}\)-Brunn-Minkowski theory for star bodies also developed by Lutwak (see [13, 14]). For \(K\in S_{o}^{n}\), and \(p\geq1\), the \(L_{p}\)-dual geominimal surface area, \(\widetilde{G}_{-p}(K)\), of K is defined by

$$ \omega_{n}^{-\frac{p}{n}}\widetilde{G}_{-p}(K)= \inf\bigl\{ n \widetilde{V}_{-p}(K,Q)V\bigl(Q^{\ast}\bigr)^{-\frac{p}{n}}: Q\in \mathcal{K}_{c}^{n}\bigr\} . $$
(1.1)

Here, \(\widetilde{V}_{-p}(M,N)\) denotes the \(L_{p}\)-dual mixed volume of \(M, N\in S_{o}^{n}\) (see [5]).

Centroid bodies are a classical notion from geometry which have attracted increased attention in recent years (see [13, 15–22]). In particular, Lutwak and Zhang [18] introduced the notion of \(L_{p}\)-centroid bodies. For each compact star-shaped (about the origin) K in \(\mathbb{R}^{n}\) and real number \(p\geq1\), the \(L_{p}\)-centroid body, \(\Gamma_{p} K\), of K is an origin-symmetric convex body whose support function is defined by

$$\begin{aligned} h^{p}_{\Gamma_{p} K}(u)&=\frac{1}{c_{n, p}V(K)}\int _{K}|u\cdot x|^{p} \,dx \\ &=\frac{1}{c_{n, p}(n+p)V(K)}\int_{S^{n-1}}|u\cdot v|^{p} \rho_{K}^{n+p}(v)\,dS(v) \end{aligned}$$
(1.2)

for all \(u\in S^{n-1}\), where

$$ c_{n, p}=\omega_{n+p}/\omega_{2}\omega_{n} \omega_{p-1}, \quad\mbox{and}\quad \omega _{n}= \pi^{\frac{n}{2}}/\Gamma\biggl(1+\frac{n}{2}\biggr). $$
(1.3)

More recently, Feng et al. [23] defined a new notion of general \(L_{p}\)-centriod bodies, which generalized the concept of \(L_{p}\)-centroid bodies. For \(K\in S_{o}^{n}\), \(p\geq1\), and \(\tau\in[-1, 1]\), the general \(L_{p}\)-centroid body, \(\Gamma_{p}^{\tau}K\), of K is a convex body whose support function is defined by

$$\begin{aligned} h^{p}_{\Gamma_{p}^{\tau}K}(u)&=\frac{1}{c_{n, p}(\tau)V(K)}\int _{K}\varphi _{\tau}(u\cdot x)^{p} \,dx \\ & =\frac{1}{c_{n, p}(\tau)(n+p)V(K)}\int_{S^{n-1}}\varphi_{\tau}(u\cdot v)^{p}\rho_{K}^{n+p}(v)\,dv, \end{aligned}$$
(1.4)

where

$$c_{n, p}(\tau)=\frac{1}{2}c_{n, p}\bigl[(1+ \tau)^{p}+(1-\tau)^{p}\bigr], $$

and \(\varphi_{\tau}: \mathbb{R}\rightarrow[0, \infty)\) is a function defined by \(\varphi_{\tau}(t)=|t|+\tau t\). We note that general \(L_{p}\)-centroid bodies are an essential part of the rapidly evolving asymmetric \(L_{p}\)-Brunn-Minkowski theory (see [20, 24–32]).

The normalization is chosen such that \(\Gamma_{p}^{\tau}B=B\) for every \(\tau\in[-1, 1]\), and \(\Gamma_{p}^{0} K=\Gamma_{p} K\). Let \(\varphi_{+}(u\cdot x)=\max\{u\cdot x, 0\}\) (\(\tau=1\)) in (1.4), then a special case of the definition of \(\Gamma_{p}^{\tau}K\) is \(\Gamma_{p}^{+} K\), i.e.,

$$\begin{aligned} h^{p}_{\Gamma_{p}^{+} K}(u)&=\frac{1}{c_{n, p}V(K)}\int _{K}\varphi_{+}(u\cdot x)^{p} \,dx \\ &=\frac{1}{c_{n, p}(n+p)V(K)}\int_{S^{n-1}}\varphi_{+}(u\cdot v)^{p}\rho_{K}^{n+p}(v)\,dv. \end{aligned}$$
(1.5)

Besides, we also define

$$ \Gamma_{p}^{-}K=\Gamma_{p}^{+}(-K). $$
(1.6)

From the definition of \(\Gamma^{\pm}_{p} K\) and (1.4), we see that if \(K\in S_{o}^{n}\), \(p\geq1\), and \(\tau\in[-1, 1]\), then

$$ \Gamma_{p}^{\tau}K=f_{1}(\tau)\cdot \Gamma_{p}^{+} K+_{p}f_{2}(\tau)\cdot \Gamma_{p}^{-} K, $$
(1.7)

where ‘\(+_{p}\)’ denotes the Firey \(L_{p}\)-combination of convex bodies, and

$$ f_{1}(\tau)=\frac{(1+\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}, \qquad f_{2}(\tau )= \frac{(1-\tau)^{p}}{(1+\tau)^{p}+(1-\tau)^{p}}. $$
(1.8)

If \(\tau=\pm1\) in (1.7) and using (1.8), then

$$\Gamma_{p}^{+1} K=\Gamma_{p}^{+} K, \qquad \Gamma_{p}^{-1} K=\Gamma_{p}^{-} K. $$

In [16] Grinberg and Zhang discussed an investigation of Shephard type problems for \(L_{p}\)-centriod bodies. Namely, let K and L be two origin-symmetric star bodies such that

$$\Gamma_{p} K\subset\Gamma_{p} L. $$

They proved that if the space \((\mathbb{R}^{n}, \|\cdot\|_{L})\) embeds in \(L_{p}\), then we necessarily have

$$V(K)\leq V(L). $$

On the other hand, if \((\mathbb{R}^{n}, \|\cdot\|_{K})\) does not embed in \(L_{p}\), then there is a body L so that \(\Gamma_{p} K\subset\Gamma_{p} L\), but \(V(K)\leq V(L)\).

In this article, we first investigate the Shephard type problems for general \(L_{p}\)-centroid bodies and give the affirmative and negative parts of the version of \(L_{p}\)-dual geominimal surface area.

Theorem 1.1

For \(K \in\mathcal{K}_{o}^{n}\), \(L\in\mathcal{K}_{c}^{n}\), and \(p\geq1\), if \(\Gamma_{p}^{+} K=\Gamma_{p}^{+} L\) and \(\Gamma_{p}^{-} K=\Gamma_{p}^{-} L\), then

$$ \widetilde{G}_{-p}(K)\leq\widetilde{G}_{-p}(L), $$
(1.9)

with equality if and only if \(K=L\).

Theorem 1.2

For \(L \in S_{o}^{n}\), \(p\geq1\) and \(\tau\in (-1, 1)\), if L is not origin-symmetric, then there exists \(K\in S_{o}^{n}\), such that

$$\Gamma_{p}^{+} K\subset\Gamma_{p}^{\tau}L,\qquad \Gamma_{p}^{-} K\subset\Gamma _{p}^{-\tau} L. $$

But

$$\widetilde{G}_{-p}(K)>\widetilde{G}_{-p}(L). $$

Further, taking together the \(L_{p}\)-dual geominimal surface area with \(L_{p}\)-centroid bodies we establish the following Shephard type problem.

Theorem 1.3

For \(L \in S_{o}^{n}\) and \(1\leq p< n\), if L is not origin-symmetric star body, then there exists \(K\in S_{o}^{n}\), such that

$$\Gamma_{p}K\subset\Gamma_{p} L. $$

But

$$\widetilde{G}_{-p}(K)>\widetilde{G}_{-p}(L). $$

The proofs of Theorems 1.1-1.3 will be given in Section 3.

2 Preliminaries

2.1 Support functions, radial functions, and polars of convex bodies

The support function, \(h_{K} = h(K,\cdot):\mathbb{R}^{n}\rightarrow(-\infty ,\infty)\), of \(K\in\mathcal{K}^{n}\) is defined by (see [33, 34])

$$ h(K,x)=\max\{x \cdot y: y\in K\},\quad x\in\mathbb{R}^{n}, $$
(2.1)

where \(x\cdot y\) denotes the standard inner product of x and y.

If K is a compact star-shaped (about the origin) set in \(\mathbb {R}^{n}\), then its radial function, \(\rho_{K}=\rho(K,\cdot):\mathbb{R}^{n}\setminus\{0\}\rightarrow[0,\infty )\), is defined by (see [33, 34])

$$ \rho(K,u)=\max\{\lambda\geq0: \lambda\cdot u\in K\},\quad u\in S^{n-1}. $$
(2.2)

If \(\rho_{K}\) is continuous and positive, then K will be called a star body. Two star bodies K, L are said to be dilates (of one another) if \(\rho_{K}(u)\diagup\rho_{L}(u)\) is independent of \(u\in S^{n-1}\).

If \(K\in\mathcal{K}_{o}^{n}\), the polar body, \(K^{\ast}\), of K is defined by (see [33, 34])

$$ K^{\ast}=\bigl\{ x\in\mathbb{R}^{n}: x\cdot y\leq1,y\in K\bigr\} . $$
(2.3)

For \(K, L\in\mathcal{K}_{o}^{n}\), \(p\geq1\), and \(\lambda, \mu\geq0\) (not both zero), the Firey \(L_{p}\)-combination, \(\lambda\cdot K +_{p}\mu\cdot L\), of K and L is defined by (see [35])

$$ h(\lambda\cdot K +_{p}\mu\cdot L, \cdot)^{p}=\lambda h(K, \cdot)^{p}+\mu h(L, \cdot)^{p}, $$
(2.4)

where ‘ ⋅ ’ in \(\lambda\cdot K\) denotes the Firey scalar multiplication. Obviously, the \(L_{p}\)-Firey and the usual scalar multiplications are related by \(\lambda\cdot K=\lambda^{\frac{1}{p}}K\).

For \({K, L}\in S_{o}^{n}\), \(p\geq1\), and \({\lambda, \mu} \geq0\) (not both zero), the \(L_{p}\)-harmonic radial combination, \(\lambda\star K +_{-p} \mu\star L\in S_{o}^{n}\), of K and L is defined by (see [5])

$$ \rho(\lambda\star K +_{-p}\mu\star L, \cdot)^{-p} = \lambda \rho(K, \cdot )^{-p} +\mu \rho(L, \cdot)^{-p}, $$
(2.5)

where \(\lambda\star K\) denotes the \(L_{p}\)-harmonic radial scalar multiplication. Here, we have \(\lambda\star K=\lambda^{-\frac{1}{p}}K\).

2.2 \(L_{p}\)-Dual mixed volume

Using \(L_{p}\)-harmonic radial combination, Lutwak [5] introduced the notion of \(L_{p}\)-dual mixed volume. For \({K, L}\in S_{o}^{n}\), \(p \geq1\), and \(\varepsilon> 0\), the \(L_{p}\)-dual mixed volume, \(\widetilde{V}_{-p}(K, L)\), of K and L is defined by

$$\frac{n}{-p}\widetilde{V}_{-p}(K, L)=\lim_{\varepsilon\rightarrow 0^{+}} \frac{V(K+_{-p}\varepsilon\star L)-V(K)}{\varepsilon}. $$

The definition above and de l’Hospital’s rule yield the following integral representation of \(L_{p}\)-dual mixed volume (see [5]):

$$ \widetilde{V}_{-p}(K, L)=\frac{1}{n}\int_{S^{n-1}} \rho_{K}^{n+p}(u)\rho _{L}^{-p}(u)\,du, $$
(2.6)

where the integration is with respect to spherical Lebesgue measure on \(S^{n-1}\).

From (2.6), it follows immediately that, for each \(K\in S_{o}^{n}\) and \(p\geq1\),

$$ \widetilde{V}_{-p}(K, K)=V(K)=\frac{1}{n}\int _{S^{n-1}}\rho _{K}^{n}(u)\,du. $$
(2.7)

Minkowski’s inequality for a \(L_{p}\)-dual mixed volume can be stated as follows (see [5]).

Theorem 2.A

If \({K, L}\in S_{o}^{n}\), \(p \geq1\), then

$$ \widetilde{V}_{-p}(K, L)\geq V(K)^{\frac{n+p}{n}}V(L)^{-\frac{p}{n}}, $$
(2.8)

with equality if and only if K and L are dilates.

2.3 General \(L_{p}\)-harmonic Blaschke bodies

For \(K\in S_{o}^{n}\), \(p\geq1\), and \(\tau\in[-1, 1]\), the general \(L_{p}\)-harmonic Blaschke body, \(\widehat{{\nabla}}_{p}^{\tau}K\), of K is defined by (see [36])

$$ \frac{\rho(\widehat{\nabla}_{p}^{\tau}K, \cdot)^{n+p}}{V(\widehat{\nabla }_{p}^{\tau}K)}=f_{1}(\tau)\frac{\rho(K, \cdot)^{n+p}}{V(K)}+f_{2}( \tau)\frac {\rho(-K, \cdot)^{n+p}}{V(-K)}. $$
(2.9)

Operators of this type and related maps compatible with linear transformations appear essentially in the theory of valuations in connection with isoperimetric and analytic inequalities (see [37–43]).

Theorem 2.B

[36]

If \(K \in S_{o}^{n}\), \(p\geq1\), and \(\tau\in(-1, 1)\), then

$$ \widetilde{G}_{-p}\bigl(\widehat{\nabla}_{p}^{\tau}K\bigr)\geq\widetilde {G}_{-p}(K), $$
(2.10)

with equality if and only if K is origin-symmetric.

3 Proofs of main results

In this section, we complete the proofs of Theorems 1.1-1.3. The proof of Theorem 1.1 requires the following lemma.

Lemma 3.1

If \(K, L \in S_{o}^{n}\) and \(p\geq1\), if \(\Gamma_{p}^{+} K=\Gamma_{p}^{+} L\) and \(\Gamma_{p}^{-} K=\Gamma_{p}^{-} L\), then for any \(Q\in S_{c}^{n}\)

$$ \frac{\widetilde{V}_{-p}(K, Q)}{V(K)}=\frac{\widetilde{V}_{-p}(L, Q)}{V(K)}. $$
(3.1)

Proof

Since \(\Gamma_{p}^{+} K=\Gamma_{p}^{+} L\) and \(\Gamma_{p}^{-} K=\Gamma_{p}^{-} L\), it easily follows that for any \(u\in S^{n-1}\)

$$h^{p}_{\Gamma_{p}^{+} K}(u)+h^{p}_{\Gamma_{p}^{-} K}(u)=h^{p}_{\Gamma_{p}^{+} L}(u)+h^{p}_{\Gamma_{p}^{-} L}(u). $$

Together (1.5) with (1.6), we get

$$\int_{S^{n-1}}\varphi_{+}(u\cdot v)^{p} \biggl[ \frac{\rho _{K}^{n+p}(v)}{V(K)}+\frac{\rho_{-K}^{n+p}(v)}{V(-K)} -\frac{\rho_{L}^{n+p}(v)}{V(L)}-\frac{\rho_{-L}^{n+p}(v)}{V(-L)} \biggr]\,dv=0. $$

Let

$$\mu(v)=\frac{\rho_{K}^{n+p}(v)}{V(K)}+\frac{\rho_{-K}^{n+p}(v)}{V(-K)} -\frac{\rho_{L}^{n+p}(v)}{V(L)}- \frac{\rho_{-L}^{n+p}(v)}{V(-L)}, $$

then have

$$ \int_{S^{n-1}}\varphi_{+}(u\cdot v)^{p} \mu(v)\,dv=0. $$
(3.2)

Notice that \(\rho_{-K}(v)=\rho_{K}(-v)\) for all \(v\in S^{n-1}\), thus we know that \(\mu(v)\) is a finite even Borel measure. Together with (3.2), then \(\mu(v)=0\), i.e.,

$$\frac{\rho_{K}^{n+p}(v)}{V(K)}+\frac{\rho_{K}^{n+p}(-v)}{V(-K)}= \frac{\rho_{L}^{n+p}(v)}{V(L)}+\frac{\rho_{L}^{n+p}(-v)}{V(L)}. $$

For any \(Q\in S_{c}^{n}\), then use \(\rho_{Q}(v)=\rho_{-Q}(v)=\rho_{Q}(-v)\) to get

$$\frac{\rho_{K}^{n+p}(v)\rho_{Q}^{-p}(v)}{V(K)}+\frac{\rho_{K}^{n+p} (-v)\rho_{Q}^{-p}(-v)}{V(K)}= \frac{\rho_{L}^{n+p}(v)\rho_{Q}^{-p}(v)}{V(L)}+\frac{\rho_{L}^{n+p} (-v)\rho_{Q}^{-p}(-v)}{V(L)}. $$

From (2.6), this yields for any \(Q\in S_{c}^{n}\)

$$\frac{\widetilde{V}_{-p}(K, Q)}{V(K)}=\frac{\widetilde{V}_{-p}(L, Q)}{V(L)}. $$

 □

Proof of Theorem 1.1

Together with definition (1.1), we know

$$ \frac{\omega_{n}^{-\frac{p}{n}}\widetilde{G}_{-p}(K)}{V(K)}= \inf \biggl\{ n\frac{\widetilde{V}_{-p}(K,Q)}{V(K)}V\bigl(Q^{\ast}\bigr)^{-\frac{p}{n}}: Q\in\mathcal{K}_{c}^{n} \biggr\} . $$
(3.3)

Since \(\Gamma_{p}^{+} K=\Gamma_{p}^{+} L\) and \(\Gamma_{p}^{-} K=\Gamma_{p}^{-} L\), from (3.1), we get, for any \(Q\in\mathcal{K}_{c}^{n}\),

$$ \frac{\widetilde{V}_{-p}(K, Q)}{V(K)}=\frac{\widetilde{V}_{-p}(L, Q)}{V(L)}. $$
(3.4)

Hence, from (3.3) and (3.4), we can get

$$\frac{\widetilde{G}_{-p}(K)}{V(K)}=\frac{\widetilde{G}_{-p}(L)}{V(L)}, $$

i.e.,

$$ \frac{\widetilde{G}_{-p}(K)}{\widetilde{G}_{-p}(L)}=\frac {V(K)}{V(L)}. $$
(3.5)

Taking \(Q=L\) in (3.4) and associating this with (2.8), since \(L\in\mathcal{K}_{c}^{n}\), we obtain

$$V(K)=\widetilde{V}_{-p}(K, L)\geq V(K)^{\frac{n+p}{n}}V(L)^{-\frac{p}{n}}, $$

i.e.,

$$ V(K)\leq V(L). $$
(3.6)

Combining (3.5) with (3.6), we get (1.9).

According to the equality condition of (3.6), we see that equality holds in (1.9) if and only if \(K=L\). □

Lemma 3.2

[44]

If \(K \in S_{o}^{n}\), \(p\geq1\), \(\tau \in(-1, 1)\), then

$$ \Gamma_{p}^{+}\bigl(\widehat{{\nabla}}^{\tau}_{p}K \bigr)=\Gamma_{p}^{\tau}K $$
(3.7)

and

$$ \Gamma_{p}^{-}\bigl(\widehat{{\nabla}}^{\tau}_{p}K \bigr)=\Gamma_{p}^{-\tau} K. $$
(3.8)

Proof of Theorem 1.2

Since L is not origin-symmetric and \(\tau \in(-1, 1)\), it follows from Theorem 2.B that \(\widetilde {G}_{-p}(\widehat{\nabla}_{p}^{\tau}L)> \widetilde{G}_{-p}(L)\). Choose \(\varepsilon>0\), such that \(K=(1-\varepsilon)\widehat{\nabla}_{p}^{\tau}L\) satisfies

$$\widetilde{G}_{-p}(K)=\widetilde{G}_{-p}\bigl((1- \varepsilon)\widehat{\nabla }_{p}^{\tau}L\bigr)> \widetilde{G}_{-p}(L). $$

By (3.7) and (3.8), we, respectively, have

$$\Gamma_{p}^{+} K=\Gamma_{p}^{+}\bigl[(1-\varepsilon)\widehat{ \nabla}_{p}^{\tau}L\bigr]=(1-\varepsilon)\Gamma_{p}^{+} \bigl( \widehat{\nabla}_{p}^{\tau}L\bigr)=(1-\varepsilon ) \Gamma_{p}^{\tau}L \subset\Gamma_{p}^{\tau}L $$

and

$$\Gamma_{p}^{-} K=\Gamma_{p}^{-}\bigl[(1-\varepsilon)\widehat{ \nabla}_{p}^{\tau}L\bigr]=(1-\varepsilon)\Gamma_{p}^{-} \bigl(\widehat{\nabla}_{p}^{\tau}L\bigr)=(1-\varepsilon ) \Gamma_{p}^{-\tau} L \subset\Gamma_{p}^{-\tau} L. $$

 □

Lemma 3.3

[44]

If \(K \in S_{o}^{n}\), \(p\geq1\), and \(\tau\in[-1, 1]\), then

$$ \Gamma_{p}\bigl(\widehat{{\nabla}}^{\tau}_{p}K \bigr)=\Gamma_{p}K. $$
(3.9)

Proof of Theorem 1.3

Since L is not origin-symmetric, Theorem 2.B has \(\widetilde{G}_{-p}(\widehat{\nabla}_{p}^{\tau}L)> \widetilde {G}_{-p}(L)\) for \(\tau\in(-1, 1)\). Take \(\varepsilon>0\), and let \(K=(1-\varepsilon)\widehat{\nabla}_{p}^{\tau}L\) such that

$$\widetilde{G}_{-p}(K)=\widetilde{G}_{-p}\bigl((1- \varepsilon)\widehat{\nabla }_{p}^{\tau}L\bigr)> \widetilde{G}_{-p}(L). $$

It follows from (3.9) that

$$\Gamma_{p} K=\Gamma_{p}\bigl[(1-\varepsilon)\widehat{ \nabla}_{p}^{\tau}L\bigr]=(1-\varepsilon)\Gamma_{p} \bigl(\widehat{\nabla}_{p}^{\tau}L\bigr)=(1-\varepsilon ) \Gamma_{p} L \subset\Gamma_{p} L. $$

 □

References

  1. Petty, CM: Geominimal surface area. Geom. Dedic. 3(1), 77-97 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lutwak, E: Volume of mixed bodies. Trans. Am. Math. Soc. 294(2), 487-500 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Petty, CM: Affine isoperimetric problems. In: Discrete Geometry and Convexity. Ann. New York Acad. Sci., vol. 440, pp. 113-127 (1985)

    Google Scholar 

  4. Schneider, R: Affine surface area and convex bodies of elliptic type. Period. Math. Hung. 69(2), 120-125 (2014)

    Article  MATH  Google Scholar 

  5. Lutwak, E: The Brunn-Minkowski-Firey theory II: affine and geominimal surface areas. Adv. Math. 118(2), 244-294 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Lutwak, E: Extended affine surface area. Adv. Math. 85, 39-68 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ye, D: \(L_{p}\)-Geominimal surface areas and their inequalities. Int. Math. Res. Not. 2015(9), 2465-2498 (2015)

    Google Scholar 

  8. Ye, D, Zhu, B, Zhou, J: The mixed \(L_{p}\)-geominimal surface areas for multiple convex bodies. Indiana Univ. Math. J. 64(5), 1513-1552 (2015)

    Article  Google Scholar 

  9. Zhu, B, Li, N, Zhou, J: Isoperimetric inequalities for \(L_{p}\)-geominimal surface area. Glasg. Math. J. 53, 717-726 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Zhu, B, Zhou, J, Xu, W: \(L_{p}\)-Mixed geominimal surface area. J. Math. Anal. Appl. 422, 1247-1263 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lutwak, E: The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem. J. Differ. Geom. 38(1), 131-150 (1993)

    MATH  MathSciNet  Google Scholar 

  12. Wang, WD, Qi, C: \(L_{p}\)-Dual geominimal surface area. J. Inequal. Appl. 2011, 6 (2011)

    Article  Google Scholar 

  13. Lutwak, E: Centroid bodies and dual mixed volumes. Proc. Lond. Math. Soc. 60, 365-391 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lutwak, E: Dual mixed volumes. Pac. J. Math. 58, 531-538 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. Campi, S, Gronchi, P: The \(L^{p}\)-Busemann-Petty centriod inequality. Adv. Math. 167, 128-141 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Grinberg, E, Zhang, GY: Convolutions, transforms and convex bodies. Proc. Lond. Math. Soc. 78(3), 77-115 (1999)

    Article  MathSciNet  Google Scholar 

  17. Lutwak, E: On some affine isoperimetric inequalities. J. Differ. Geom. 23, 1-13 (1986)

    MATH  MathSciNet  Google Scholar 

  18. Lutwak, E, Zhang, GY: Blaschke-Santaló inequalities. J. Differ. Geom. 47(1), 1-16 (1997)

    MATH  MathSciNet  Google Scholar 

  19. Lutwak, E, Yang, D, Zhang, GY: \(L_{p}\)-Affine isoperimetric inequalities. J. Differ. Geom. 56(1), 111-132 (2000)

    MATH  MathSciNet  Google Scholar 

  20. Lutwak, E, Yang, D, Zhang, GY: The Cramer-Rao inequality for star bodies. Duke Math. J. 112(1), 59-81 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Petty, CM: Centroid surfaces. Pac. J. Math. 11(3), 1535-1547 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, WD, Lu, FH, Leng, GS: A type of monotonicity on the \(L_{p}\)-centroid body and \(L_{p}\)-projection body. Math. Inequal. Appl. 8(4), 735-742 (2005)

    MATH  MathSciNet  Google Scholar 

  23. Feng, YB, Wang, WD, Lu, FH: Some inequalities on general \(L_{p}\)-centroid bodies. Math. Inequal. Appl. 18(1), 39-49 (2015)

    MATH  MathSciNet  Google Scholar 

  24. Feng, YB, Wang, WD: General mixed chord-integrals of star bodies. Rocky Mountain J. Math. (in press)

  25. Wang, WD, Feng, YB: A general \(L_{p}\)-version of Petty’s affine projection inequality. Taiwan. J. Math. 17, 517-528 (2013)

    MATH  Google Scholar 

  26. Haberl, C, Schuster, FE: Asymmetric affine \(L_{p}\)-Sobolev inequalities. J. Funct. Anal. 257, 641-658 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Haberl, C, Schuster, FE, Xiao, J: An asymmetric affine Pólya-Szegö principle. Math. Ann. 352, 517-542 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Haberl, C, Ludwig, M: A characterization of \(L_{p}\)-intersection bodies. Int. Math. Res. Not. 2006, 10548 (2006)

    MathSciNet  Google Scholar 

  29. Parapatits, L: \(\operatorname{SL}(n)\)-Covariant \(L_{p}\)-Minkowski valuations. J. Lond. Math. Soc. 89(2), 397-414 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Parapatits, L: \(\operatorname{SL}(n)\)-Contravariant \(L_{p}\)-Minkowski valuations. Trans. Am. Math. Soc. 366, 1195-1211 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schuster, FE, Weberndorfer, M: Volume inequalities for asymmetric Wulff shapes. J. Differ. Geom. 92, 263-283 (2012)

    MATH  MathSciNet  Google Scholar 

  32. Weberndorfer, M: Shadow systems of asymmetric \(L_{p}\)-zonotopes. Adv. Math. 240, 613-635 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  33. Gardner, RJ: Geometric Tomography, 2nd edn. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  34. Schneider, R: Convex Bodies: The Brunn-Minkowski Theory, 2nd edn. Cambridge University Press, New York (2014)

    Google Scholar 

  35. Firey, WJ: Mean cross-section measures of harmonic means of convex bodies. Pac. J. Math. 11, 1263-1266 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  36. Feng, YB, Wang, WD: General \(L_{p}\)-harmonic Blaschke bodies. J. Indian Math. Soc. 124(1), 109-119 (2014)

    MATH  Google Scholar 

  37. Wang, WD, Ma, TY: Asymmetric \(L_{p}\)-difference bodies. Proc. Am. Math. Soc. 142, 2517-2527 (2014)

    Article  MATH  Google Scholar 

  38. Abardia, J: Difference bodies in complex vector spaces. J. Funct. Anal. 263(11), 3588-3603 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Alesker, S, Bernig, A, Schuster, FE: Harmonic analysis of translation invariant valuations. Geom. Funct. Anal. 21(3), 751-773 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Schuster, FE: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1-30 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schuster, FE: Volume inequalities and additive maps of convex bodies. Mathematika 53, 211-234 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. Schuster, FE: Valuations and Busemann-Petty type problems. Adv. Math. 219, 344-368 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wannerer, T: \(\operatorname{GL}(n)\) Equivariant Minkowski valuations. Indiana Univ. Math. J. 60, 1655-1672 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Pei, YN, Wang, WD: Shephard type problems for general \(L_{p}\)-centroid bodies. J. Inequal. Appl. 2015, 287 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Grant No. 11561020 and No. 11371224) and the Young Foundation of Hexi University (Grant No. QN2014-12). The referees of this paper proposed many very valuable comments and suggestions to improve the accuracy and readability of the original manuscript. We would like to express our most sincere thanks to the anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibin Feng.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors completed the writing of this paper and read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Feng, Y. \(L_{p}\)-Dual geominimal surface area and general \(L_{p}\)-centroid bodies. J Inequal Appl 2015, 358 (2015). https://doi.org/10.1186/s13660-015-0888-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0888-9

MSC

Keywords