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Abstract
In this article, we consider the Shephard type problems and obtain the affirmative
and negative parts of the version of Lp-dual geominimal surface area for general
Lp-centroid bodies. Combining with the Lp-dual geominimal surface area we also give
a negative form of the Shephard type problems for Lp-centroid bodies.
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1 Introduction and main results
Let Kn denote the set of convex bodies (compact, convex subsets with nonempty interiors)
in Euclidean space Rn. For the set of convex bodies containing the origin in their interiors
and the set of origin-symmetric convex bodies in R

n, we write Kn
o and Kn

c , respectively. Sn
o

and Sn
c , respectively, denote the set of star bodies (about the origin) and the set of origin-

symmetric star bodies inR
n. Let Sn– denote the unit sphere inR

n, and let V (K) denote the
n-dimensional volume of a body K . For the standard unit ball B in R

n, we use ωn = V (B)
to denote its volume.

The notion of geominimal surface area was discovered by Petty (see []). For K ∈ Kn,
the geominimal surface area, G(K), of K is defined by

ω

n
n G(K) = inf

{
nV(K , Q)V

(
Q∗) 

n : Q ∈Kn}.

Here Q∗ denotes the polar of body Q and V(M, N) denotes the mixed volume of M, N ∈
Kn (see []).

The geominimal surface area serves as a bridge connecting a number of areas of geom-
etry: affine differential geometry, relative geometry, and Minkowskian geometry. Hence it
receives a lot of attention (see, e.g., [, ]). Lutwak in [] showed that there were natural ex-
tensions of geominimal surface areas in the Brunn-Minkowski-Firey theory. It motivates
extensions of some known inequalities for geominimal surface areas to Lp-geominimal
surface areas. The inequalities for Lp-geominimal surface areas are stronger than their
classical counterparts (see [–]).
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Based on Lp-mixed volume, Lutwak [] introduced the notion of Lp-geominimal surface
area. For K ∈Kn

o , p ≥ , the Lp-geominimal surface area, Gp(K), of K is defined by

ω
p
n
n Gp(K) = inf

{
nVp(K , Q)V

(
Q∗) p

n : Q ∈Kn
o
}

.

Here Vp(M, N) denotes the Lp-mixed volume of M, N ∈Kn
o (see [, ]). Obviously, if p = ,

Gp(K) is just the geominimal surface area G(K).
Recently, Wang and Qi [] introduced a concept of Lp-dual geominimal surface area,

which is a dual concept for Lp-geominimal surface area and belongs to the dual Lp-Brunn-
Minkowski theory for star bodies also developed by Lutwak (see [, ]). For K ∈ Sn

o , and
p ≥ , the Lp-dual geominimal surface area, G̃–p(K), of K is defined by

ω
– p

n
n G̃–p(K) = inf

{
nṼ–p(K , Q)V

(
Q∗)– p

n : Q ∈Kn
c
}

. (.)

Here, Ṽ–p(M, N) denotes the Lp-dual mixed volume of M, N ∈ Sn
o (see []).

Centroid bodies are a classical notion from geometry which have attracted increased
attention in recent years (see [, –]). In particular, Lutwak and Zhang [] introduced
the notion of Lp-centroid bodies. For each compact star-shaped (about the origin) K in
R

n and real number p ≥ , the Lp-centroid body, �pK , of K is an origin-symmetric convex
body whose support function is defined by

hp
�pK (u) =


cn,pV (K)

∫

K
|u · x|p dx

=


cn,p(n + p)V (K)

∫

Sn–
|u · v|pρn+p

K (v) dS(v) (.)

for all u ∈ Sn–, where

cn,p = ωn+p/ωωnωp–, and ωn = π
n
 /�

(
 +

n


)
. (.)

More recently, Feng et al. [] defined a new notion of general Lp-centriod bodies, which
generalized the concept of Lp-centroid bodies. For K ∈ Sn

o , p ≥ , and τ ∈ [–, ], the gen-
eral Lp-centroid body, �τ

p K , of K is a convex body whose support function is defined by

hp
�τ

p K (u) =


cn,p(τ )V (K)

∫

K
ϕτ (u · x)p dx

=


cn,p(τ )(n + p)V (K)

∫

Sn–
ϕτ (u · v)pρ

n+p
K (v) dv, (.)

where

cn,p(τ ) =



cn,p
[
( + τ )p + ( – τ )p],

and ϕτ : R → [,∞) is a function defined by ϕτ (t) = |t| + τ t. We note that general
Lp-centroid bodies are an essential part of the rapidly evolving asymmetric Lp-Brunn-
Minkowski theory (see [, –]).
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The normalization is chosen such that �τ
p B = B for every τ ∈ [–, ], and �

p K = �pK . Let
ϕ+(u · x) = max{u · x, } (τ = ) in (.), then a special case of the definition of �τ

p K is �+
p K ,

i.e.,

hp
�+

p K (u) =


cn,pV (K)

∫

K
ϕ+(u · x)p dx

=


cn,p(n + p)V (K)

∫

Sn–
ϕ+(u · v)pρ

n+p
K (v) dv. (.)

Besides, we also define

�–
p K = �+

p (–K). (.)

From the definition of �±
p K and (.), we see that if K ∈ Sn

o , p ≥ , and τ ∈ [–, ], then

�τ
p K = f(τ ) · �+

p K +p f(τ ) · �–
p K , (.)

where ‘+p’ denotes the Firey Lp-combination of convex bodies, and

f(τ ) =
( + τ )p

( + τ )p + ( – τ )p , f(τ ) =
( – τ )p

( + τ )p + ( – τ )p . (.)

If τ = ± in (.) and using (.), then

�+
p K = �+

p K , �–
p K = �–

p K .

In [] Grinberg and Zhang discussed an investigation of Shephard type problems for
Lp-centriod bodies. Namely, let K and L be two origin-symmetric star bodies such that

�pK ⊂ �pL.

They proved that if the space (Rn,‖ · ‖L) embeds in Lp, then we necessarily have

V (K) ≤ V (L).

On the other hand, if (Rn,‖ · ‖K ) does not embed in Lp, then there is a body L so that
�pK ⊂ �pL, but V (K) ≤ V (L).

In this article, we first investigate the Shephard type problems for general Lp-centroid
bodies and give the affirmative and negative parts of the version of Lp-dual geominimal
surface area.

Theorem . For K ∈Kn
o , L ∈Kn

c , and p ≥ , if �+
p K = �+

p L and �–
p K = �–

p L, then

G̃–p(K) ≤ G̃–p(L), (.)

with equality if and only if K = L.
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Theorem . For L ∈ Sn
o , p ≥  and τ ∈ (–, ), if L is not origin-symmetric, then there

exists K ∈ Sn
o , such that

�+
p K ⊂ �τ

p L, �–
p K ⊂ �–τ

p L.

But

G̃–p(K) > G̃–p(L).

Further, taking together the Lp-dual geominimal surface area with Lp-centroid bodies we
establish the following Shephard type problem.

Theorem . For L ∈ Sn
o and  ≤ p < n, if L is not origin-symmetric star body, then there

exists K ∈ Sn
o , such that

�pK ⊂ �pL.

But

G̃–p(K) > G̃–p(L).

The proofs of Theorems .-. will be given in Section .

2 Preliminaries
2.1 Support functions, radial functions, and polars of convex bodies
The support function, hK = h(K , ·) : Rn → (–∞,∞), of K ∈Kn is defined by (see [, ])

h(K , x) = max{x · y : y ∈ K}, x ∈R
n, (.)

where x · y denotes the standard inner product of x and y.
If K is a compact star-shaped (about the origin) set in R

n, then its radial function, ρK =
ρ(K , ·) : Rn \ {} → [,∞), is defined by (see [, ])

ρ(K , u) = max{λ ≥  : λ · u ∈ K}, u ∈ Sn–. (.)

If ρK is continuous and positive, then K will be called a star body. Two star bodies K , L
are said to be dilates (of one another) if ρK (u)�ρL(u) is independent of u ∈ Sn–.

If K ∈Kn
o , the polar body, K∗, of K is defined by (see [, ])

K∗ =
{

x ∈R
n : x · y ≤ , y ∈ K

}
. (.)

For K , L ∈Kn
o , p ≥ , and λ,μ ≥  (not both zero), the Firey Lp-combination, λ ·K +p μ ·L,

of K and L is defined by (see [])

h(λ · K +p μ · L, ·)p = λh(K , ·)p + μh(L, ·)p, (.)
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where ‘ · ’ in λ · K denotes the Firey scalar multiplication. Obviously, the Lp-Firey and the
usual scalar multiplications are related by λ · K = λ


p K .

For K , L ∈ Sn
o , p ≥ , and λ,μ ≥  (not both zero), the Lp-harmonic radial combination,

λ 	 K +–p μ 	 L ∈ Sn
o , of K and L is defined by (see [])

ρ(λ 	 K +–p μ 	 L, ·)–p = λρ(K , ·)–p + μρ(L, ·)–p, (.)

where λ 	 K denotes the Lp-harmonic radial scalar multiplication. Here, we have λ 	 K =
λ

– 
p K .

2.2 Lp-Dual mixed volume
Using Lp-harmonic radial combination, Lutwak [] introduced the notion of Lp-dual
mixed volume. For K , L ∈ Sn

o , p ≥ , and ε > , the Lp-dual mixed volume, Ṽ–p(K , L), of
K and L is defined by

n
–p

Ṽ–p(K , L) = lim
ε→+

V (K +–p ε 	 L) – V (K)
ε

.

The definition above and de l’Hospital’s rule yield the following integral representation
of Lp-dual mixed volume (see []):

Ṽ–p(K , L) =

n

∫

Sn–
ρ

n+p
K (u)ρ–p

L (u) du, (.)

where the integration is with respect to spherical Lebesgue measure on Sn–.
From (.), it follows immediately that, for each K ∈ Sn

o and p ≥ ,

Ṽ–p(K , K) = V (K) =

n

∫

Sn–
ρn

K (u) du. (.)

Minkowski’s inequality for a Lp-dual mixed volume can be stated as follows (see []).

Theorem .A If K , L ∈ Sn
o , p ≥ , then

Ṽ–p(K , L) ≥ V (K)
n+p

n V (L)– p
n , (.)

with equality if and only if K and L are dilates.

2.3 General Lp-harmonic Blaschke bodies
For K ∈ Sn

o , p ≥ , and τ ∈ [–, ], the general Lp-harmonic Blaschke body, ∇̂τ
p K , of K is

defined by (see [])

ρ(∇̂τ
p K , ·)n+p

V (∇̂τ
p K)

= f(τ )
ρ(K , ·)n+p

V (K)
+ f(τ )

ρ(–K , ·)n+p

V (–K)
. (.)

Operators of this type and related maps compatible with linear transformations appear
essentially in the theory of valuations in connection with isoperimetric and analytic in-
equalities (see [–]).
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Theorem .B [] If K ∈ Sn
o , p ≥ , and τ ∈ (–, ), then

G̃–p
(∇̂τ

p K
) ≥ G̃–p(K), (.)

with equality if and only if K is origin-symmetric.

3 Proofs of main results
In this section, we complete the proofs of Theorems .-.. The proof of Theorem .
requires the following lemma.

Lemma . If K , L ∈ Sn
o and p ≥ , if �+

p K = �+
p L and �–

p K = �–
p L, then for any Q ∈ Sn

c

Ṽ–p(K , Q)
V (K)

=
Ṽ–p(L, Q)

V (K)
. (.)

Proof Since �+
p K = �+

p L and �–
p K = �–

p L, it easily follows that for any u ∈ Sn–

hp
�+

p K (u) + hp
�–

p K (u) = hp
�+

p L(u) + hp
�–

p L(u).

Together (.) with (.), we get

∫

Sn–
ϕ+(u · v)p

[
ρ

n+p
K (v)
V (K)

+
ρ

n+p
–K (v)

V (–K)
–

ρ
n+p
L (v)
V (L)

–
ρ

n+p
–L (v)

V (–L)

]
dv = .

Let

μ(v) =
ρ

n+p
K (v)
V (K)

+
ρ

n+p
–K (v)

V (–K)
–

ρ
n+p
L (v)
V (L)

–
ρ

n+p
–L (v)

V (–L)
,

then have
∫

Sn–
ϕ+(u · v)pμ(v) dv = . (.)

Notice that ρ–K (v) = ρK (–v) for all v ∈ Sn–, thus we know that μ(v) is a finite even Borel
measure. Together with (.), then μ(v) = , i.e.,

ρ
n+p
K (v)
V (K)

+
ρ

n+p
K (–v)
V (–K)

=
ρ

n+p
L (v)
V (L)

+
ρ

n+p
L (–v)
V (L)

.

For any Q ∈ Sn
c , then use ρQ(v) = ρ–Q(v) = ρQ(–v) to get

ρ
n+p
K (v)ρ–p

Q (v)
V (K)

+
ρ

n+p
K (–v)ρ–p

Q (–v)
V (K)

=
ρ

n+p
L (v)ρ–p

Q (v)
V (L)

+
ρ

n+p
L (–v)ρ–p

Q (–v)
V (L)

.

From (.), this yields for any Q ∈ Sn
c

Ṽ–p(K , Q)
V (K)

=
Ṽ–p(L, Q)

V (L)
. �
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Proof of Theorem . Together with definition (.), we know

ω
– p

n
n G̃–p(K)

V (K)
= inf

{
n

Ṽ–p(K , Q)
V (K)

V
(
Q∗)– p

n : Q ∈Kn
c

}
. (.)

Since �+
p K = �+

p L and �–
p K = �–

p L, from (.), we get, for any Q ∈Kn
c ,

Ṽ–p(K , Q)
V (K)

=
Ṽ–p(L, Q)

V (L)
. (.)

Hence, from (.) and (.), we can get

G̃–p(K)
V (K)

=
G̃–p(L)
V (L)

,

i.e.,

G̃–p(K)
G̃–p(L)

=
V (K)
V (L)

. (.)

Taking Q = L in (.) and associating this with (.), since L ∈Kn
c , we obtain

V (K) = Ṽ–p(K , L) ≥ V (K)
n+p

n V (L)– p
n ,

i.e.,

V (K) ≤ V (L). (.)

Combining (.) with (.), we get (.).
According to the equality condition of (.), we see that equality holds in (.) if and

only if K = L. �

Lemma . [] If K ∈ Sn
o , p ≥ , τ ∈ (–, ), then

�+
p
(∇̂τ

p K
)

= �τ
p K (.)

and

�–
p
(∇̂τ

p K
)

= �–τ
p K . (.)

Proof of Theorem . Since L is not origin-symmetric and τ ∈ (–, ), it follows from The-
orem .B that G̃–p(∇̂τ

p L) > G̃–p(L). Choose ε > , such that K = ( – ε)∇̂τ
p L satisfies

G̃–p(K) = G̃–p
(
( – ε)∇̂τ

p L
)

> G̃–p(L).

By (.) and (.), we, respectively, have

�+
p K = �+

p
[
( – ε)∇̂τ

p L
]

= ( – ε)�+
p
(∇̂τ

p L
)

= ( – ε)�τ
p L ⊂ �τ

p L
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and

�–
p K = �–

p
[
( – ε)∇̂τ

p L
]

= ( – ε)�–
p
(∇̂τ

p L
)

= ( – ε)�–τ
p L ⊂ �–τ

p L. �

Lemma . [] If K ∈ Sn
o , p ≥ , and τ ∈ [–, ], then

�p
(∇̂τ

p K
)

= �pK . (.)

Proof of Theorem . Since L is not origin-symmetric, Theorem .B has G̃–p(∇̂τ
p L) >

G̃–p(L) for τ ∈ (–, ). Take ε > , and let K = ( – ε)∇̂τ
p L such that

G̃–p(K) = G̃–p
(
( – ε)∇̂τ

p L
)

> G̃–p(L).

It follows from (.) that

�pK = �p
[
( – ε)∇̂τ

p L
]

= ( – ε)�p
(∇̂τ

p L
)

= ( – ε)�pL ⊂ �pL. �
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