- Research
- Open Access
- Published:
Some new fixed point theorems for the Meir-Keeler contractions on partial Hausdorff metric spaces
Journal of Inequalities and Applications volume 2015, Article number: 279 (2015)
Abstract
The purpose of this paper is to study fixed point theorems for a multi-valued mapping concerning with three classes of Meir-Keeler contractions with respect to the partial Hausdorff metric \(\mathcal{H}\) in complete partial metric spaces. Our results generalize and improve many recent fixed point theorems for the partial Hausdorff metric in the literature.
1 Introduction and preliminaries
Throughout this paper, by \(\mathbb{R}^{+}\), we denote the set of all nonnegative real numbers, while \(\mathbb{N}\) is the set of all natural numbers. Fixed point theory is one of the most crucial tools in nonlinear functional analysis and has application in distinct branches of mathematic. In 1922, Banach [1] introduced the most impressed fixed point result, and he concluded that each contraction has a unique fixed point in the complete metric space. Since then, this pioneer work has been generalized and extended in different abstract spaces. One of the interesting generalization of Banach fixed point theorem was given by Matthews [2] in 1994. In this paper, the author introduced the following notion of partial metric spaces and proved the Banach fixed point theorem in the context of complete partial metric space. We recall some basic definitions and fundamental results of partial metric spaces from the literature.
Definition 1
[2]
A partial metric on a nonempty set X is a function \(p:X\times X\rightarrow\mathbb{R^{+}}\) such that for all \(x,y,z\in X\)
- (p1):
-
\(x=y\) if and only if \(p(x,x)=p(x,y)=p(y,y)\);
- (p2):
-
\(p(x,x)\leq p(x,y)\);
- (p3):
-
\(p(x,y)=p(y,x)\);
- (p4):
-
\(p(x,y)\leq p(x,z)+p(z,y)-p(z,z)\).
A partial metric space is a pair \((X,p)\) such that X is a nonempty set and p is a partial metric on X.
Remark 1
[2]
It is clear that, if \(p(x,y)=0\), then from (p1) and (p2), we have \(x=y\). But, if \(x=y\), then the expression \(p(x,y)\) may not be 0.
Each partial metric p on X generates a \(\mathcal{T}_{0}\) topology \(\tau_{p}\) on X which has as a base the family of open p-balls \(\{ B_{p}(x,\gamma):x\in X, \gamma> 0\}\), where \(B_{p}(x,\gamma)=\{y\in X: p(x,y)< p(x,x)+\gamma\}\) for all \(x\in X\) and \(\gamma> 0\). If p is a partial metric on X, then the function \(d_{p}:X\times X\rightarrow \mathbb{R^{+}}\) given by
is a metric on X.
Definition 2
[2]
Let \((X,p)\) be a partial metric space. Then
-
(1)
a sequence \(\{x_{n}\}\) in a partial metric space \((X,p)\) converges to \(x\in X\) if and only if \(p(x,x)=\lim_{n\rightarrow\infty }p(x,x_{n})\);
-
(2)
a sequence \(\{x_{n}\}\) in a partial metric space \((X,p)\) is called a Cauchy sequence if and only if \(\lim_{m,n\rightarrow\infty }p(x_{m},x_{n})\) exists (and is finite);
-
(3)
a partial metric space \((X,p)\) is said to be complete if every Cauchy sequence \(\{x_{n}\}\) in X converges, with respect to \(\tau _{p}\), to a point \(x\in X\) such that \(p(x,x)=\lim_{m,n\rightarrow\infty }p(x_{m},x_{n})\);
-
(4)
a subset A of a partial metric space \((X,p)\) is closed if whenever \(\{x_{n}\}\) is a sequence in A such that \(\{x_{n}\}\) converges to some \(x\in X\), then \(x\in A\).
Remark 2
The limit in a partial metric space is not unique.
Lemma 1
-
(1)
\(\{x_{n}\}\) is a Cauchy sequence in a partial metric space \((X,p)\) if and only if it is a Cauchy sequence in the metric space \((X,d_{p})\);
-
(2)
a partial metric space \((X,p)\) is complete if and only if the metric space \((X,d_{p})\) is complete. Furthermore, \(\lim_{n\rightarrow \infty}d_{p}(x_{n},x)=0\) if and only if \(p(x,x)=\lim_{n\rightarrow\infty }p(x_{n},x)=\lim_{n\rightarrow\infty}p(x_{n},x_{m})\).
Very recently Haghi et al. [4] proved that some fixed point results in partial metric space results are equivalent to results in the context of usual metric space. Recently, fixed point theory has developed rapidly on partial metric spaces; see e.g. [3, 5–12] and the references therein.
Let \((X,d)\) be a metric space and \(CB(X)\) denote the collection of all nonempty, closed and bounded subsets of X. For \(A,B\in CB(X)\), we define
where \(d(x,B):=\inf\{d(x,b): b\in B\}\), and it is well known that \(\mathcal{H}\) is called the Hausdorff metric induced the metric d. A multi-valued mapping \(T:X\rightarrow CB(X)\) is called a contraction if
for all \(x,y\in X\) and \(k\in[0,1)\). The study of fixed points for multi-valued contractions using the Hausdorff metric was introduced in Nadler [13].
Theorem 1
[13]
Let \((X,d)\) be a complete metric space and \(T:X\rightarrow CB(X)\) be a multi-valued contraction. Then there exists \(x\in X\) such that \(x\in Tx\).
Very recently, Aydi et al. [14] established the notion of partial Hausdorff metric \(\mathcal{H}_{p}\) induced by the partial metric p. Let \((X,p)\) be a partial metric space and \(CB^{p}(X)\) be the collection of all nonempty, closed and bounded subset of the partial metric space \((X,p)\). Note that closedness is taken from \((X,\tau_{p})\) and boundedness is given as follows: A is a bounded subset in \((X,p)\) if there exist \(x_{0}\in X\) and \(M\in\mathbb{R}\) such that for all \(a\in A\), we have \(a\in B_{p}(x_{0},M)\), that is, \(p(x_{0},a)< p(a,a)+M\). For \(A,B\in CB^{p}(X)\) and \(x\in X\), they define
It is immediate to see that if \(p(x,A)=0\), then \(d_{p}(x,A)=0\) where \(d_{p}(x,A)=\inf\{d_{p}(x,a):a\in A\}\).
Remark 3
[14]
Let \((X,p)\) be a partial metric space and A a nonempty subset of X. Then
Aydi et al. [14] also introduced the following properties of mappings \(\delta_{p}:CB^{p}(X)\times CB^{p}(X)\rightarrow \mathbb{R}\) and \(\mathcal{H}_{p}:CB^{p}(X)\times CB^{p}(X)\rightarrow\mathbb{R}\).
Proposition 1
[14]
Let \((X,p)\) be a partial metric space. For \(A,B\in CB^{p}(X)\), the following properties hold:
-
(1)
\(\delta_{p}(A,A)=\sup\{p(a,a):a \in A\}\);
-
(2)
\(\delta_{p}(A,A)\leq\delta_{p}(A,B)\);
-
(3)
\(\delta_{p}(A,B)=0\) implies that \(A\subset B\);
-
(4)
\(\delta_{p}(A,B)\leq\delta_{p}(A,C)+\delta_{p}(C,B)-\inf_{c\in C}p(c,c)\).
Proposition 2
[14]
Let \((X,p)\) be a partial metric space. For \(A,B\in CB^{p}(X)\), the following properties hold:
-
(1)
\(\mathcal{H}_{p}(A,A)\leq\mathcal{H}_{p}(A,B)\);
-
(2)
\(\mathcal{H}_{p}(A,B)=\mathcal{H}_{p}(B,A)\);
-
(3)
\(\mathcal{H}_{p}(A,B)\leq\mathcal{H}_{p}(A,C)+\mathcal {H}_{p}(C,B)-\inf_{c\in C}p(c,c)\);
-
(4)
\(\mathcal{H}_{p}(A,B)=0\) implies that \(A= B\).
And, Aydi et al. [14] proved the following important result.
Lemma 2
Let \((X,p)\) be a partial metric space, \(A,B\in CB^{p}(X)\) and \(h>1\). For any \(a\in A\), there exists \(b=b(a)\in B\) such that
In this study, we also recall the notion of Meir-Keeler-type function (see [15]). A function \(\xi:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}\) is said to be a Meir-Keeler-type function, if ξ satisfies the following condition:
Remark 4
It is clear that if ξ is a Meir-Keeler-type function, then we have
We first introduce the notion of stronger Meir-Keeler-type function, as follows:
Definition 3
A function \(\psi:\mathbb{R}^{+}\rightarrow[0,1)\) is said to be a stronger Meir-Keeler-type function, if ψ satisfies the following condition:
In 1972, Reich introduced the following important function.
Definition 4
[16]
A function \(\psi:\mathbb{R}^{+}\rightarrow[0,1)\) is said to be a Reich function (\(\mathcal{R}\)-function, for short) if
Remark 5
It is clear that, if the function \(\psi:\mathbb{R}^{+}\rightarrow[0,1)\) is a Reich function (\(\mathcal{R}\)-function), then ψ is also a stronger Meir-Keeler-type function.
We next introduce the notion of weaker Meir-Keeler function, as follows:
Definition 5
A function \(\varphi:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}\) is said to be a weaker Meir-Keeler-type function, if φ satisfies the following condition:
The purpose of this paper is to study fixed point theorems for a multi-valued mapping concerning three classes of Meir-Keeler contractions with respect to the partial Hausdorff metric \(\mathcal{H}\) in complete partial metric spaces. Our results generalize and improve many recent fixed point theorems for the partial Hausdorff metric in the literature.
2 Fixed point theorem (I)
In the sequel, we denote by Φ the class of functions \(\phi:\mathbb {R^{+}}^{4}\rightarrow\mathbb{R^{+}}\) satisfying the following conditions:
-
(1)
ϕ is an increasing and continuous function in each coordinate;
-
(2)
for \(t\in\mathbb{R^{+}}\backslash\{0\}\), \(\phi(t,t,t,t)\leq t\) and \(\phi(t_{1},t_{2},t_{3},t_{4})=0\) iff \(t_{1}=t_{2}=t_{3}=t_{4}=0\).
We now introduce the notion of \((\psi,\phi)\)-Meir-Keeler contraction on partial Hausdorff metric spaces.
Definition 6
Let \((X,p)\) be a partial metric space, \(\psi:\mathbb{R}^{+}\rightarrow [0,1)\) and \(\phi\in\Phi\). We call \(T:X\rightarrow CB^{p}(X)\) a \((\psi ,\phi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\), if the following conditions hold:
- (c1):
-
ψ is a stronger Meir-Keeler-type function;
- (c2):
-
for all \(x,y\in X\), we have
$$\mathcal{H}_{p}(Tx,Ty)\leq\psi\bigl(p(x,y)\bigr) \phi \biggl(p(x,y),p(x,Tx),p(y,Ty),\frac{p(x,Ty)+p(y,Tx)}{2} \biggr). $$
We state and prove the main fixed point result for the \((\psi,\phi )\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\).
Theorem 2
Let \((X,p)\) be a complete partial metric space. Suppose \(T:X\rightarrow CB^{p}(X)\) is a \((\psi,\phi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\). Then T has a fixed point in X, that is, there exists \(x^{*}\in X\) such that \(x^{*}\in Tx^{*}\).
Proof
Let \(x_{0}\in X\) be given and let \(x_{1}\in Tx_{0}\). Since \(T:X\rightarrow CB^{p}(X)\) is a \((\psi,\phi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\), we have
Put \(p(x_{0},x_{1})=\eta_{0}>0\). Since ψ is a stronger Meir-Keeler-type function, there exists \(\gamma_{\eta_{0}}\in(0,1)\) such that
From Lemma 2 with \(h=\frac{1}{\sqrt{\gamma_{\eta_{0}}}}>1\), there exists \(x_{2}\in Tx_{1}\) such that
Using (2.3) and (2.4), we obtain
If \(p(x_{0},x_{1})\leq p(x_{1},x_{2})\), then by the definition of the function ϕ, we have
which implies a contradiction, and hence \(p(x_{0},x_{1})> p(x_{1},x_{2})\). Therefore, we have
Put \(p(x_{1},x_{2})=\eta_{1}>0\). Since ψ is a stronger Meir-Keeler-type function, there exists \(\gamma_{\eta_{1}}\in(0,1)\) such that
From Lemma 2 with \(h=\frac{1}{\sqrt{\gamma_{\eta_{1}}}}>1\), we have
Since \(T:X\rightarrow CB^{p}(X)\) is a \((\psi,\phi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal {H}_{p}\), we have
Using (2.8) and (2.9), we obtain
If \(p(x_{1},x_{2})\leq p(x_{2},x_{3})\), then
which implies a contradiction, and hence \(p(x_{1},x_{2})> p(x_{2},x_{3})\). Therefore
Continuing this process, we can obtain a sequence \(\{x_{n}\}\) of X recursively as follows:
Put \(p(x_{n},x_{n+1})=\eta_{n}>0\). Since ψ is a stronger Meir-Keeler-type function, there exists \(\gamma_{\eta_{n}}\in(0,1)\) such that
Since \(T:X\rightarrow CB^{p}(X)\) is a \((\psi,\phi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal {H}_{p}\), we have for all \(n\in\mathbb{N}\cup\{0\}\)
From Lemma 2 with \(h=\frac{1}{\sqrt{\gamma_{\eta_{n}}}}>1\), we have
Using (2.12) and (2.13), we obtain
If \(p(x_{n},x_{n+1})\leq p(x_{n+1},x_{n+2})\), then
which implies a contradiction, and hence \(p(x_{0},x_{1})> p(x_{1},x_{2})\). Therefore, we have
By the mathematical induction, we obtain
Put
Using (2.15) and (2.16), we obtain
Let \(n\rightarrow\infty\) in (2.17). Then
By the property (p2) of a partial metric and using (2.18), we have
Using (2.17) and the property (p4) of a partial metric, for any \(m\in\mathbb{N}\), we have
Using (2.19) and (2.20), we get
By the definition of \(d_{p}\), we see that, for any \(m\in\mathbb{N}\),
This shows that \(\{x_{n}\}\) is a Cauchy sequence in \((X,d_{p})\). Since \((X,p)\) is complete, from Lemma 1, \((X,d_{p})\) is a complete metric space. Therefore, \(\{x_{n}\}\) converges to some \(x^{*}\in X\) with respect to the metric \(d_{p}\), and we also have
Since \(T:X\rightarrow CB^{p}(X)\) is a \((\psi,\phi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal {H}_{p}\), we have
By the definition of the mapping ψ and using (2.22), we get
Now \(x_{n+1}\in Tx_{n}\) shows
Using (2.23), we get
a contradiction. So, we have
Therefore, from (2.22), \(p(x^{*},x^{*})=0\), we obtain
which implies \(x^{*}\in Tx^{*}\) by Remark 3. □
Using the Reich function and stronger Meir-Keeler function, we establish the following notion of \((\psi,\phi)\)-Reich’s contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\).
Definition 7
Let \((X,p)\) be a partial metric space, \(\psi:\mathbb{R}^{+}\rightarrow [0,1)\), and \(\phi\in\Phi\). We call \(T:X\rightarrow CB^{p}(X)\) a \((\psi ,\phi)\)-Reich’s contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\) if the following conditions hold:
-
(1)
ψ is a Reich function (\(\mathcal{R}\)-function);
-
(2)
for all \(x,y\in X\), we have
$$\mathcal{H}_{p}(Tx,Ty)\leq\psi\bigl(p(x,y)\bigr) \phi \biggl(p(x,y),p(x,Tx),p(y,Ty),\frac{p(x,Ty)+p(y,Tx)}{2} \biggr). $$
Apply above Remark 5, Definition 7, and Theorem 2, we are easy to get the following theorem.
Theorem 3
Let \((X,p)\) be a complete partial metric space. Suppose \(T:X\rightarrow CB^{p}(X)\) is a \((\psi,\phi)\)-Reich’s contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\). Then T has a fixed point in X, that is, there exists \(x^{*}\in X\) such that \(x^{*}\in Tx^{*}\).
3 Fixed point theorem (II)
In this section, we let Ξ be the class of all non-decreasing function \(\varphi:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}\) satisfying the following conditions:
-
(1)
φ is a weaker Meir-Keeler-type function;
-
(2)
for all \(t\in(0,\infty)\), \(\{\varphi^{n}(t)\}_{n\in\mathbb {N}}\) is decreasing;
-
(3)
\(\varphi(t)>0\) for \(t>0\) and \(\varphi(0)=0\),
-
(4)
for \(t>0\), if \(\lim_{n\rightarrow\infty}\varphi^{n}(t)=0\), then \(\lim_{n\rightarrow\infty}\sum_{i=n}^{m}\varphi^{i}(t)=0\), where \(m>n\);
-
(5)
for \(t_{n}\in\mathbb{R}^{+}\), if \(\lim_{n\rightarrow\infty }t_{n}=0\), then \(\lim_{n\rightarrow\infty}\varphi(t_{n})=0\).
We recall the notion of α-admissible function that was introduced in [17].
Definition 8
[17]
Let \(f:X\rightarrow X\) be a self-mapping of a set X and \(\alpha :X\times X\rightarrow\mathbb{R}^{+}\). Then f is called a α-admissible if
In [18], the authors introduced the following notion of strictly α-admissible.
Definition 9
Let \((X,p)\) be a partial metric space, \(T:X\rightarrow CB^{p}(X)\) and \(\alpha:X\times X\rightarrow\mathbb{R}^{+}\diagdown\{0\}\). We say that T is strictly α-admissible if
We now introduce the notion of \((\alpha,\varphi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal {H}_{p}\), as follows:
Definition 10
Let \((X,p)\) be a partial metric space, \(\varphi\in\Xi\), and \(\alpha :X\times X\rightarrow\mathbb{R}^{+}\diagdown\{0\}\). We call \(T:X\rightarrow CB^{p}(X)\) a \((\alpha,\varphi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\) if the following conditions hold:
- (c1):
-
T is strictly α-admissible;
- (c2):
-
for each \(x,y\in X\),
$$\alpha(x,y)\mathcal{H}_{p}(Tx,Ty)\leq\varphi\bigl(p(x,y)\bigr). $$
We now state and prove our main result for the \((\alpha,\varphi )\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\).
Theorem 4
Let \((X,p)\) be a complete partial metric space. Suppose \(T:X\rightarrow CB^{p}(X)\) is a \((\alpha,\varphi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\). Suppose also that
-
(i)
there exists \(x_{0}\in X\) such that \(\alpha(x_{0},y)>1\) for all \(y\in Tx_{0}\);
-
(ii)
if \(\{x_{n}\}\) is a sequence in X such that \(\alpha (x_{n},x_{n+1})\geq1\) for all n and \(x_{n} \rightarrow x\in X\) as \(n\rightarrow\infty\), then \(\alpha(x_{n},x)\geq1\) for all n.
Then T has a fixed point in X (that is, there exists \(x^{*}\in X\) such that \(x^{*}\in Tx^{*}\)).
Proof
Let \(x_{1}\in Tx_{0}\). Since \(T:X\rightarrow CB^{p}(X)\) is a \((\alpha,\varphi )\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\), we have
Put \(\alpha(x_{0},x_{1})=h_{0}>1\). From Lemma 2 with \(h=h_{0}\), there exists \(x_{2}\in Tx_{1}\) such that
Using (3.1) and (3.2), we obtain
Continuing this process, we can obtain a sequence \(\{x_{n}\}\) of X recursively as follows:
Since T is strictly α-admissible, we deduce that \(\alpha (x_{1},x_{2})=h_{1}>1\). Continuing this process, we have
And, since \(T:X\rightarrow CB^{p}(X)\) is a \((\alpha,\varphi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal {H}_{p}\), we have
From Lemma 2 with \(h_{n}\), we have
Using (3.5) and (3.6), we obtain
Therefore, we conclude that
By the condition (\(\varphi_{2}\)), \(\{\varphi^{n}(p(x_{0},x_{1}))\}_{n\in\mathbb {N}}\) is decreasing, it must converges to some \(\eta\geq0\). We claim that \(\eta= 0\). On the contrary, assume that \(\eta> 0\). Then by the definition of the weaker Meir-Keeler-type function, there exists \(\delta> 0\) such that for \(x_{0},x_{1}\in X\) with \(\eta\leq p(x_{0},x_{1})< \delta+\eta\), there exists \(n_{0}\in\mathbb{N}\) such that \(\varphi ^{n_{0}}(p(x_{0},x_{1}))<\eta\). Since \(\lim_{n\rightarrow\infty}\varphi ^{n}(p(x_{0},x_{1}))=\eta\), there exists \(m_{0}\in\mathbb{N}\) such that \(\eta \leq\varphi^{m}(p(x_{0},x_{1}))< \delta+\eta\), for all \(m\geq m_{0}\). Thus, we conclude that \(\varphi^{m_{0}+n_{0}}(p(x_{0},x_{1}))< \eta\). So we get a contradiction. So \(\lim_{n\rightarrow\infty}\varphi^{n}(p(x_{0},x_{1}))=0\), and so
By the property (p2) of a partial metric and using (3.9), we have
We will prove that the sequence \(\{x_{n}\}\) is a Cauchy sequence. Using (3.8), we have
Letting \(n\rightarrow\infty\), then, by using the condition (\(\varphi _{4}\)), we have
By the definition of \(d_{p}\), we see that, for any \(m\in\mathbb{N}\),
This shows that \(\{x_{n}\}\) is a Cauchy sequence in \((X,d_{p})\). Since \((X,p)\) is complete, from Lemma 1, \((X,d_{p})\) is a complete metric space. Therefore, \(\{x_{n}\}\) converges to some \(x^{*}\in X\) with respect to the metric \(d_{p}\), and we also have
Since \(T:X\rightarrow CB^{p}(X)\) is a \((\alpha,\varphi)\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal {H}_{p}\), we have
By the definition of the mapping α, we have \(\alpha(x_{n},x^{*})>0\). By the condition (\(\varphi_{5}\)) and using (3.13), we get
Now \(x_{n+1}\in Tx_{n}\) shows
Using (3.14), we get
Therefore, from (3.13), \(p(x^{*},x^{*})=0\), we obtain
which implies \(x^{*}\in Tx^{*}\) by Remark 3. □
4 Fixed point theorem (III)
In this section, we consider the family
such that:
-
(1)
\(\xi_{1}(t),\xi_{2}(t),\xi_{3}(t)\leq\xi_{4}(t)\) for all \(t>0\);
-
(2)
\(\xi_{1}(t)\), \(\xi_{2}(t)\), \(\xi_{3}(t)\), \(\xi_{4}(t)\) are continuous;
-
(3)
\(\xi_{1}(t_{1})=\xi_{2}(t_{2})=\xi_{3}(t_{3})=\xi_{4}(t_{4})=0\) if and only if \(t_{1}=t_{2}=t_{3}=t_{4}=0\);
-
(4)
\(\xi_{4}\) is a Meir-Keeler-type function;
-
(5)
\(\xi_{4}(t_{1}+t_{2})\leq\xi_{4}(t_{1})+\xi_{4}(t_{2})\) for all \(t_{1},t_{2}>0\).
We now introduce the notion of \((\alpha,\phi,\xi_{1},\xi_{2},\xi_{3},\xi _{4})\)-Meir-Keeler contraction on partial Hausdorff metric spaces.
Definition 11
Let \((X,p)\) be a partial metric space, \(\phi\in\Phi\), \((\xi_{1},\xi_{2},\xi _{3},\xi_{4})\in\Omega\), and \(\alpha:X\times X\rightarrow\mathbb {R}^{+}\diagdown\{0\}\). We call \(T:X\rightarrow CB^{p}(X)\) a \((\alpha,\phi ,\xi_{1},\xi_{2},\xi_{3},\xi_{4})\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\) if the following conditions hold:
-
(1)
T is strictly α-admissible;
-
(2)
for all \(x,y\in X\), we have
$$\alpha(x,y)\mathcal{H}_{p}(Tx,Ty)\leq\phi \biggl(\xi_{1} \bigl(p(x,y)\bigr),\xi _{2}\bigl(p(x,Tx)\bigr),\xi_{3} \bigl(p(y,Ty)\bigr),\frac{\xi_{4}(p(x,Ty)+p(y,Tx))}{2} \biggr). $$
We now state and prove our main result for the \((\alpha,\phi,\xi_{1},\xi _{2},\xi_{3},\xi_{4})\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\).
Theorem 5
Let \((X,p)\) be a complete partial metric space. Suppose \(T:X\rightarrow CB^{p}(X)\) is a \((\alpha,\phi,\xi_{1},\xi_{2},\xi_{3},\xi_{4})\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal {H}_{p}\). Suppose also that
-
(i)
there exists \(x_{0}\in X\) such that \(\alpha(x_{0},y)>1\) for all \(y\in Tx_{0}\);
-
(ii)
if \(\{x_{n}\}\) is a sequence in X such that \(\alpha (x_{n},x_{n+1})\geq1\) for all n and \(x_{n} \rightarrow x\in X\) as \(n\rightarrow\infty\), then \(\alpha(x_{n},x)\geq1\) for all n.
Then T has a fixed point in X (that is, there exists \(x^{*}\in X\) such that \(x^{*}\in Tx^{*}\)).
Proof
Let \(x_{1}\in Tx_{0}\). Since \(T:X\rightarrow CB^{p}(X)\) is a \((\alpha,\phi,\xi _{1},\xi_{2},\xi_{3},\xi_{4})\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\), we have
By the condition (i), we have \(\alpha(x_{0},x_{1})>1\). Put \(\alpha(x_{0},x_{1})=h_{0}\). Note \(h_{0}>1\). From Lemma 2 with \(h=\sqrt{h_{0}}\), there exists \(x_{2}\in Tx_{1}\) such that
Using (4.1) and (4.2), we have
Now, if \(\xi_{4}(p(x_{0},x_{1}))\leq\xi_{4}(p(x_{1},x_{2}))\), then by using (4.3) and since \(\phi\in\Phi\), \((\xi_{1},\xi_{2},\xi_{3},\xi_{4})\in\Omega \), we have
By Remark 4, we also have
which implies a contradiction. Therefore, we have
Since \(T:X\rightarrow CB^{p}(X)\) is a \((\alpha,\phi,\xi_{1},\xi_{2},\xi_{3},\xi _{4})\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\), we have
Since T is strictly α-admissible, we have \(\alpha(x_{1},x_{2})>1\). Put \(\alpha(x_{1},x_{2})=h_{1}\). Note \(h_{1}>1\). From Lemma 2 with \(h=\sqrt{h_{1}}\), there exists \(x_{3}\in Tx_{2}\) such that
Using (4.4) and (4.5), we have
Now, if \(\xi_{4}(p(x_{1},x_{2}))\leq\xi_{4}(p(x_{2},x_{3}))\), then by using (4.6) and since \(\phi\in\Phi\), \((\xi_{1},\xi_{2},\xi_{3},\xi_{4})\in\Omega \), we have
By Remark 4,we also have
which implies a contradiction. Therefore, we have
Continuing this process, we can obtain a sequence \(\{x_{n}\}\) of X recursively as follows:
Since \(T:X\rightarrow CB^{p}(X)\) is a \((\alpha,\phi,\xi_{1},\xi_{2},\xi_{3},\xi _{4})\)-Meir-Keeler contraction with respect to the partial Hausdorff metric \(\mathcal{H}_{p}\), we have
Since T is strictly α-admissible, we have \(\alpha (x_{n},x_{n+1})>1\) for all \(n\in\mathbb{N}\). Put \(\alpha(x_{n},x_{n+1})=h_{n}\). From Lemma 2 with \(h=\sqrt{h_{n}}\), there exists \(x_{n+2}\in Tx_{n+1}\) such that
Using (4.7) and (4.8), we have
Now, if \(\xi_{4}(p(x_{n},x_{n+1}))\leq\xi_{4}(p(x_{n+1},x_{n+2}))\), then by using (4.9) and since \(\phi\in\Phi\), \((\xi_{1},\xi_{2}, \xi_{3},\xi _{4})\in\Omega\), we have
By Remark 4,we also have
which implies a contradiction. Therefore, we have
Since \(h_{n}>1\) for all \(n\in\mathbb{N}\cup\{0\}\), we get
Put
Using (4.10) and (4.11), we obtain
Let \(n\rightarrow\infty\) in (4.12). Then
By the property (p2) of a partial metric and using (4.13), we have
Using (4.12) and the property (p4) of a partial metric, for any \(m\in\mathbb{N}\), we have
Using (4.14) and (4.15), we get
By the definition of \(d_{p}\), we see that, for any \(m\in\mathbb{N}\),
This shows that \(\{x_{n}\}\) is a Cauchy sequence in \((X,d_{p})\). Since \((X,p)\) is complete, from Lemma 1, \((X,d_{p})\) is a complete metric space. Therefore, \(\{x_{n}\}\) converges to some \(x^{*}\in X\) with respect to the metric \(d_{p}\), and we also have
By the definition of the mapping α, we have \(\alpha(x_{n},x^{*})>0\). By using (4.17) together with the properties of the auxiliary functions ϕ, \(\xi_{1}\), \(\xi_{2}\), \(\xi_{3}\), \(\xi_{4}\), and the condition (ii), we get
Let \(n\rightarrow\infty\) in (4.18). By Remark 4,
Now \(x_{n+1}\in Tx_{n}\) shows
Using (4.18), (4.19), and (4.20), we get
a contradiction. So, we have
Therefore, from (4.17), \(p(x^{*},x^{*})=0\), we obtain
which implies \(x^{*}\in Tx^{*}\) by Remark 3. □
References
Banach, S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 3, 133-181 (1922)
Matthews, SG: Partial metric topology. In: Proc. 8th Summer of Conference on General Topology and Applications. Ann. New York Acad. Sci., vol. 728, pp. 183-197 (1994)
Oltra, S, Valero, O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 36, 17-26 (2004)
Haghi, RH, Rezapour, S, Shahzad, N: Be careful on partial metric fixed point results. Topol. Appl. 160(3), 450-454 (2013)
Abdeljawad, T: Fixed points for generalized weakly contractive mappings in partial metric spaces. Math. Comput. Model. 54, 2923-2927 (2011)
Agarwal, RP, Alghamdi, MA, Shahzad, N: Fixed point theory for cyclic generalized contractions in partial metric spaces. Fixed Point Theory Appl. 2012, Article ID 40 (2012)
Altun, I, Erduran, A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011, Article ID 508730 (2011)
Aydi, H: Fixed point results for weakly contractive mappings in ordered partial metric spaces. J. Adv. Math. Stud. 4(2), 1-12 (2011)
Chi, KP, Karapınar, E, Thanh, TD: A generalized contraction principle in partial metric spaces. Math. Comput. Model. 55, 1673-1681 (2012)
Karapınar, E: Weak ϕ-contraction on partial metric spaces. J. Comput. Anal. Appl. 14(2), 206-210 (2012)
Karapınar, E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011, Article ID 4 (2011)
Karapınar, E, Erhan, IM: Fixed point theorem for cyclic maps on partial metric spaces. Appl. Math. Inf. Sci. 6, 239-244 (2012)
Nadler, SB: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
Aydi, H, Abbas, M, Vetro, C: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 159, 3234-3242 (2012)
Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969)
Reich, S: Fixed points of contractive functions. Boll. Unione Mat. Ital. (4) 5, 26-42 (1972)
Samet, B, Vetro, C, Vetro, P: Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 75, 2154-2165 (2012)
Chen, C-M, Karapınar, E: Fixed point results for the α-Meir-Keeler contraction on partial Hausdorff metric spaces. J. Inequal. Appl. 2013, Article ID 410 (2013)
Acknowledgements
This research was supported by the Ministry of Science and Technology of the Republic of China.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Jen, KC., Chen, CM. & Peng, LC. Some new fixed point theorems for the Meir-Keeler contractions on partial Hausdorff metric spaces. J Inequal Appl 2015, 279 (2015). https://doi.org/10.1186/s13660-015-0803-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-015-0803-4
MSC
- 47H10
- 54C60
- 54H25
- 55M20
Keywords
- fixed point
- Meir-Keeler contraction
- partial Hausdorff metric space