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Abstract
The purpose of this paper is to study fixed point theorems for a multi-valued
mapping concerning with three classes of Meir-Keeler contractions with respect to
the partial Hausdorff metricH in complete partial metric spaces. Our results
generalize and improve many recent fixed point theorems for the partial Hausdorff
metric in the literature.
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1 Introduction and preliminaries
Throughout this paper, by R

+, we denote the set of all nonnegative real numbers, while
N is the set of all natural numbers. Fixed point theory is one of the most crucial tools
in nonlinear functional analysis and has application in distinct branches of mathematic.
In , Banach [] introduced the most impressed fixed point result, and he concluded
that each contraction has a unique fixed point in the complete metric space. Since then,
this pioneer work has been generalized and extended in different abstract spaces. One of
the interesting generalization of Banach fixed point theorem was given by Matthews [] in
. In this paper, the author introduced the following notion of partial metric spaces and
proved the Banach fixed point theorem in the context of complete partial metric space.
We recall some basic definitions and fundamental results of partial metric spaces from the
literature.

Definition  [] A partial metric on a nonempty set X is a function p : X × X →R
+ such

that for all x, y, z ∈ X

(p) x = y if and only if p(x, x) = p(x, y) = p(y, y);
(p) p(x, x) ≤ p(x, y);
(p) p(x, y) = p(y, x);
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric
on X.
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Remark  [] It is clear that, if p(x, y) = , then from (p) and (p), we have x = y. But, if
x = y, then the expression p(x, y) may not be .

Each partial metric p on X generates a T topology τp on X which has as a base the family
of open p-balls {Bp(x,γ ) : x ∈ X,γ > }, where Bp(x,γ ) = {y ∈ X : p(x, y) < p(x, x) + γ } for all
x ∈ X and γ > . If p is a partial metric on X, then the function dp : X × X →R

+ given by

dp(x, y) = p(x, y) – p(x, x) – p(y, y)

is a metric on X.

Definition  [] Let (X, p) be a partial metric space. Then
() a sequence {xn} in a partial metric space (X, p) converges to x ∈ X if and only if

p(x, x) = limn→∞ p(x, xn);
() a sequence {xn} in a partial metric space (X, p) is called a Cauchy sequence if and

only if limm,n→∞ p(xm, xn) exists (and is finite);
() a partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that p(x, x) = limm,n→∞ p(xm, xn);
() a subset A of a partial metric space (X, p) is closed if whenever {xn} is a sequence in

A such that {xn} converges to some x ∈ X , then x ∈ A.

Remark  The limit in a partial metric space is not unique.

Lemma  [, ]
() {xn} is a Cauchy sequence in a partial metric space (X, p) if and only if it is a Cauchy

sequence in the metric space (X, dp);
() a partial metric space (X, p) is complete if and only if the metric space (X, dp) is

complete. Furthermore, limn→∞ dp(xn, x) =  if and only if
p(x, x) = limn→∞ p(xn, x) = limn→∞ p(xn, xm).

Very recently Haghi et al. [] proved that some fixed point results in partial metric space
results are equivalent to results in the context of usual metric space. Recently, fixed point
theory has developed rapidly on partial metric spaces; see e.g. [, –] and the references
therein.

Let (X, d) be a metric space and CB(X) denote the collection of all nonempty, closed and
bounded subsets of X. For A, B ∈ CB(X), we define

H(A, B) := max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

,

where d(x, B) := inf{d(x, b) : b ∈ B}, and it is well known that H is called the Hausdorff met-
ric induced the metric d. A multi-valued mapping T : X → CB(X) is called a contraction
if

H(Tx, Ty) ≤ kd(x, y),

for all x, y ∈ X and k ∈ [, ). The study of fixed points for multi-valued contractions using
the Hausdorff metric was introduced in Nadler [].
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Theorem  [] Let (X, d) be a complete metric space and T : X → CB(X) be a multi-
valued contraction. Then there exists x ∈ X such that x ∈ Tx.

Very recently, Aydi et al. [] established the notion of partial Hausdorff metric Hp

induced by the partial metric p. Let (X, p) be a partial metric space and CBp(X) be the
collection of all nonempty, closed and bounded subset of the partial metric space (X, p).
Note that closedness is taken from (X, τp) and boundedness is given as follows: A is a
bounded subset in (X, p) if there exist x ∈ X and M ∈ R such that for all a ∈ A, we have
a ∈ Bp(x, M), that is, p(x, a) < p(a, a) + M. For A, B ∈ CBp(X) and x ∈ X, they define

p(x, A) := inf
{

p(x, a) : a ∈ A
}

,

δp(A, B) := sup
{

p(a, B) : a ∈ A
}

,

δp(B, A) := sup
{

p(b, A) : b ∈ B
}

,

Hp(A, B) = max
{
δp(A, B), δp(B, A)

}
.

It is immediate to see that if p(x, A) = , then dp(x, A) =  where dp(x, A) = inf{dp(x, a) : a ∈
A}.

Remark  [] Let (X, p) be a partial metric space and A a nonempty subset of X. Then

a ∈ A if and only if p(a, A) = p(a, a).

Aydi et al. [] also introduced the following properties of mappings δp : CBp(X) ×
CBp(X) →R and Hp : CBp(X) × CBp(X) →R.

Proposition  [] Let (X, p) be a partial metric space. For A, B ∈ CBp(X), the following
properties hold:

() δp(A, A) = sup{p(a, a) : a ∈ A};
() δp(A, A) ≤ δp(A, B);
() δp(A, B) =  implies that A ⊂ B;
() δp(A, B) ≤ δp(A, C) + δp(C, B) – infc∈C p(c, c).

Proposition  [] Let (X, p) be a partial metric space. For A, B ∈ CBp(X), the following
properties hold:

() Hp(A, A) ≤Hp(A, B);
() Hp(A, B) = Hp(B, A);
() Hp(A, B) ≤Hp(A, C) + Hp(C, B) – infc∈C p(c, c);
() Hp(A, B) =  implies that A = B.

And, Aydi et al. [] proved the following important result.

Lemma  Let (X, p) be a partial metric space, A, B ∈ CBp(X) and h > . For any a ∈ A,
there exists b = b(a) ∈ B such that

p(a, b) ≤ hHp(A, B).
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In this study, we also recall the notion of Meir-Keeler-type function (see []). A function
ξ : R+ →R

+ is said to be a Meir-Keeler-type function, if ξ satisfies the following condition:

∀η >  ∃δ >  ∀t ∈ R
+ (

η ≤ t < η + δ ⇒ ξ (t) < η
)
.

Remark  It is clear that if ξ is a Meir-Keeler-type function, then we have

ξ (t) < t, for all t ∈R
+.

We first introduce the notion of stronger Meir-Keeler-type function, as follows:

Definition  A function ψ : R+ → [, ) is said to be a stronger Meir-Keeler-type func-
tion, if ψ satisfies the following condition:

∀η >  ∃δ >  ∃γη ∈ (, ) ∀t ∈R
+ (

η ≤ t < η + δ ⇒ ψ(t) < γη

)
.

In , Reich introduced the following important function.

Definition  [] A function ψ : R+ → [, ) is said to be a Reich function (R-function,
for short) if

lim sup
s→t+

ψ(s) < , for all t ∈ R
+.

Remark  It is clear that, if the function ψ : R+ → [, ) is a Reich function (R-function),
then ψ is also a stronger Meir-Keeler-type function.

We next introduce the notion of weaker Meir-Keeler function, as follows:

Definition  A function ϕ : R+ → R
+ is said to be a weaker Meir-Keeler-type function, if

ϕ satisfies the following condition:

∀η >  ∃δ >  ∀t ∈ R
+ (

η ≤ t < η + δ ⇒ ∃n ∈N,ϕn (t) < η
)
.

The purpose of this paper is to study fixed point theorems for a multi-valued mapping
concerning three classes of Meir-Keeler contractions with respect to the partial Hausdorff
metric H in complete partial metric spaces. Our results generalize and improve many
recent fixed point theorems for the partial Hausdorff metric in the literature.

2 Fixed point theorem (I)
In the sequel, we denote by 	 the class of functions φ : R+ →R

+ satisfying the following
conditions:

() φ is an increasing and continuous function in each coordinate;
() for t ∈R

+\{}, φ(t, t, t, t) ≤ t and φ(t, t, t, t) =  iff t = t = t = t = .
We now introduce the notion of (ψ ,φ)-Meir-Keeler contraction on partial Hausdorff

metric spaces.
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Definition  Let (X, p) be a partial metric space, ψ : R+ → [, ) and φ ∈ 	. We call
T : X → CBp(X) a (ψ ,φ)-Meir-Keeler contraction with respect to the partial Hausdorff
metric Hp, if the following conditions hold:

(c) ψ is a stronger Meir-Keeler-type function;
(c) for all x, y ∈ X , we have

Hp(Tx, Ty) ≤ ψ
(
p(x, y)

)
φ

(
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)


)
.

We state and prove the main fixed point result for the (ψ ,φ)-Meir-Keeler contraction
with respect to the partial Hausdorff metric Hp.

Theorem  Let (X, p) be a complete partial metric space. Suppose T : X → CBp(X) is a
(ψ ,φ)-Meir-Keeler contraction with respect to the partial Hausdorff metric Hp. Then T
has a fixed point in X, that is, there exists x∗ ∈ X such that x∗ ∈ Tx∗.

Proof Let x ∈ X be given and let x ∈ Tx. Since T : X → CBp(X) is a (ψ ,φ)-Meir-Keeler
contraction with respect to the partial Hausdorff metric Hp, we have

Hp(Tx, Tx)

≤ ψ
(
p(x, x)

)
φ

(
p(x, x), p(x, Tx), p(x, Tx),

p(x, Tx) + p(x, Tx)


)
. (.)

Put p(x, x) = η > . Since ψ is a stronger Meir-Keeler-type function, there exists γη ∈
(, ) such that

ψ
(
p(x, x)

)
< γη . (.)

From (.) and (.), we have

Hp(Tx, Tx) < γη · φ
(

p(x, x), p(x, Tx), p(x, Tx),
p(x, Tx) + p(x, Tx)



)
. (.)

From Lemma  with h = √
γη

> , there exists x ∈ Tx such that

p(x, x) ≤ √
γη

Hp(Tx, Tx). (.)

Using (.) and (.), we obtain

p(x, x) < √
γη · φ

(
p(x, x), p(x, Tx), p(x, Tx),

p(x, Tx) + p(x, Tx)


)

≤ √
γη · φ

(
p(x, x), p(x, x), p(x, x),

p(x, x) + p(x, x)


)

≤ √
γη · φ

(
p(x, x), p(x, x), p(x, x),

p(x, x) + p(x, x)


)
. (.)
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If p(x, x) ≤ p(x, x), then by the definition of the function φ, we have

p(x, x) < √
γη · φ

(
p(x, x), p(x, x), p(x, x),

p(x, x) + p(x, x)


)

≤ √
γη · φ(

p(x, x), p(x, x), p(x, x), p(x, x)
)

≤ √
γη · (x, x),

which implies a contradiction, and hence p(x, x) > p(x, x). Therefore, we have

p(x, x) < √
γη · φ

(
p(x, x), p(x, x), p(x, x),

p(x, x) + p(x, x)


)

≤ √
γη · φ(

p(x, x), p(x, x), p(x, x), p(x, x)
)

≤ √
γη · p(x, x). (.)

Put p(x, x) = η > . Since ψ is a stronger Meir-Keeler-type function, there exists γη ∈
(, ) such that

ψ
(
p(x, x)

)
< γη . (.)

From Lemma  with h = √
γη

> , we have

p(x, x) ≤ √
γη

Hp(Tx, Tx). (.)

Since T : X → CBp(X) is a (ψ ,φ)-Meir-Keeler contraction with respect to the partial Haus-
dorff metric Hp, we have

Hp(Tx, Tx)

≤ ψ
(
p(x, x)

)
φ

(
p(x, x), p(x, Tx), p(x, Tx),

p(x, Tx) + p(x, Tx)


)

< γη · φ
(

p(x, x), p(x, x), p(x, x),
p(x, x) + p(x, x)



)

≤ γη · φ
(

p(x, x), p(x, x), p(x, x),
p(x, x) + p(x, x)



)
. (.)

Using (.) and (.), we obtain

p(x, x) < √
γη · φ

(
p(x, x), p(x, x), p(x, x),

p(x, x) + p(x, x)


)
.

If p(x, x) ≤ p(x, x), then

p(x, x) < √
γη · φ

(
p(x, x), p(x, x), p(x, x),

p(x, x) + p(x, x)


)

≤ √
γη · φ(

p(x, x), p(x, ), p(x, x), p(x, x)
)

≤ √
γη · p(x, x),
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which implies a contradiction, and hence p(x, x) > p(x, x). Therefore

p(x, x) ≤ √
γη

√
γη · p(x, x). (.)

Continuing this process, we can obtain a sequence {xn} of X recursively as follows:

xn ∈ Txn–, for all n ∈N.

Put p(xn, xn+) = ηn > . Since ψ is a stronger Meir-Keeler-type function, there exists γηn ∈
(, ) such that

(xn, xn+) < γηn . (.)

Since T : X → CBp(X) is a (ψ ,φ)-Meir-Keeler contraction with respect to the partial Haus-
dorff metric Hp, we have for all n ∈ N∪ {}

Hp(Txn, Txn+)

≤ ψ
(
p(xn, xn+)

)
φ

(
p(xn, xn+), p(xn, Txn), p(xn+, Txn+),



[
p(xn, Txn+) + p(xn+, Txn)

])

< γηnφ

(
p(xn, xn+), p(xn, Txn), p(xn+, Txn+),



[
p(xn, Txn+) + p(xn+, Txn)

])

< γηnφ

(
p(xn, xn+), p(xn, xn+), p(xn+, xn+),



[
p(xn, xn+) + p(xn+, xn+)

])
. (.)

From Lemma  with h = √
γηn

> , we have

p(xn+, xn+) ≤ √
γηn

Hp(Txn, Txn+), n ∈ N∪ {}. (.)

Using (.) and (.), we obtain

p(xn+, xn+)

< √
γηnφ

(
p(xn, xn+), p(xn, xn+), p(xn+, xn+),



[
p(xn, xn+) + p(xn+, xn+)

])
.

If p(xn, xn+) ≤ p(xn+, xn+), then

p(xn+, xn+) < √
γηnφ

(
p(xn+, xn+), p(xn+, xn+), p(xn+, xn+), p(xn+, xn+)

)

≤ √
γηn p(xn+, xn+),

which implies a contradiction, and hence p(x, x) > p(x, x). Therefore, we have

p(xn+, xn+) ≤ √
γηn p(xn, xn+). (.)
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By the mathematical induction, we obtain

p(xn+, xn+) ≤ √
γηn p(xn, xn+)

≤ √
γηn

√
γηn– p(xn–, xn)

≤ · · ·
≤ √

γηn
√

γηn– · · ·√γη p(x, x). (.)

Put

k = max
{√

γηn : n ∈N∪ {}}. (.)

Using (.) and (.), we obtain

p(xn+, xn+) ≤ (k)n+p(x, x), for all n ∈N∪ {}. (.)

Let n → ∞ in (.). Then

lim
n→∞ p(xn, xn+) = . (.)

By the property (p) of a partial metric and using (.), we have

lim
n→∞ p(xn, xn) = . (.)

Using (.) and the property (p) of a partial metric, for any m ∈ N, we have

p(xn, xn+m) ≤
m∑

i=

p(xn+i–, xn+i) –
m–∑
i=

p(xn+i, xn+i)

≤
m∑

i=

(k)n+i–p(x, x) –
m–∑
i=

p(xn+i, xn+i)

≤ (k)n

( – k)
p(x, x) –

m–∑
i=

p(xn+i, xn+i). (.)

Using (.) and (.), we get

lim
n→∞ p(xn, xn+m) = .

By the definition of dp, we see that, for any m ∈N,

lim
n→∞ dp(xn, xn+m) ≤ lim

n→∞ p(xn, xn+m) = . (.)

This shows that {xn} is a Cauchy sequence in (X, dp). Since (X, p) is complete, from
Lemma , (X, dp) is a complete metric space. Therefore, {xn} converges to some x∗ ∈ X
with respect to the metric dp, and we also have

p
(
x∗, x∗) = lim

n→∞ p
(
xn, x∗) = lim

n→∞ p(xn, xm) = . (.)
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Since T : X → CBp(X) is a (ψ ,φ)-Meir-Keeler contraction with respect to the partial Haus-
dorff metric Hp, we have

Hp
(
Txn, Tx∗)

≤ ψ
(
p
(
xn, x∗))φ

(
p
(
xn, x∗), p(xn, Txn), p

(
x∗, Tx∗),

p(xn, Tx∗) + p(x∗, Txn)


)

≤ ψ
(
p
(
xn, x∗))φ

(
p
(
xn, x∗), p(xn, xn+), p

(
x∗, Tx∗),

p(xn, Tx∗) + p(x∗, xn+)


)
.

By the definition of the mapping ψ and using (.), we get

lim
n→∞Hp

(
Txn, Tx∗) < φ

(
, , p

(
x∗, Tx∗),




p
(
x∗, Tx∗)

)

≤ p
(
x∗, Tx∗). (.)

Now xn+ ∈ Txn shows

p
(
xn+, Tx∗) ≤ δp

(
Txn, Tx∗) ≤Hp

(
Txn, Tx∗).

Using (.), we get

p
(
x∗, Tx∗) = lim

n→∞ p
(
xn+, Tx∗) < p

(
x∗, Tx∗),

a contradiction. So, we have

p
(
x∗, Tx∗) = .

Therefore, from (.), p(x∗, x∗) = , we obtain

p
(
x∗, x∗) = p

(
x∗, Tx∗),

which implies x∗ ∈ Tx∗ by Remark . �

Using the Reich function and stronger Meir-Keeler function, we establish the following
notion of (ψ ,φ)-Reich’s contraction with respect to the partial Hausdorff metric Hp.

Definition  Let (X, p) be a partial metric space, ψ : R+ → [, ), and φ ∈ 	. We call
T : X → CBp(X) a (ψ ,φ)-Reich’s contraction with respect to the partial Hausdorff metric
Hp if the following conditions hold:

() ψ is a Reich function (R-function);
() for all x, y ∈ X , we have

Hp(Tx, Ty) ≤ ψ
(
p(x, y)

)
φ

(
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)


)
.

Apply above Remark , Definition , and Theorem , we are easy to get the following
theorem.
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Theorem  Let (X, p) be a complete partial metric space. Suppose T : X → CBp(X) is a
(ψ ,φ)-Reich’s contraction with respect to the partial Hausdorff metric Hp. Then T has a
fixed point in X, that is, there exists x∗ ∈ X such that x∗ ∈ Tx∗.

3 Fixed point theorem (II)
In this section, we let � be the class of all non-decreasing function ϕ : R+ →R

+ satisfying
the following conditions:

() ϕ is a weaker Meir-Keeler-type function;
() for all t ∈ (,∞), {ϕn(t)}n∈N is decreasing;
() ϕ(t) >  for t >  and ϕ() = ,
() for t > , if limn→∞ ϕn(t) = , then limn→∞

∑m
i=n ϕi(t) = , where m > n;

() for tn ∈R
+, if limn→∞ tn = , then limn→∞ ϕ(tn) = .

We recall the notion of α-admissible function that was introduced in [].

Definition  [] Let f : X → X be a self-mapping of a set X and α : X × X →R
+. Then f

is called a α-admissible if

x, y ∈ X, α(x, y) ≥  �⇒ α(fx, fy) ≥ .

In [], the authors introduced the following notion of strictly α-admissible.

Definition  Let (X, p) be a partial metric space, T : X → CBp(X) and α : X × X →
R

+
�{}. We say that T is strictly α-admissible if

α(x, y) >  implies α(y, z) > , x ∈ X, y ∈ Tx, z ∈ Ty.

We now introduce the notion of (α,ϕ)-Meir-Keeler contraction with respect to the par-
tial Hausdorff metric Hp, as follows:

Definition  Let (X, p) be a partial metric space, ϕ ∈ �, and α : X × X → R
+
�{}. We

call T : X → CBp(X) a (α,ϕ)-Meir-Keeler contraction with respect to the partial Hausdorff
metric Hp if the following conditions hold:

(c) T is strictly α-admissible;
(c) for each x, y ∈ X ,

α(x, y)Hp(Tx, Ty) ≤ ϕ
(
p(x, y)

)
.

We now state and prove our main result for the (α,ϕ)-Meir-Keeler contraction with
respect to the partial Hausdorff metric Hp.

Theorem  Let (X, p) be a complete partial metric space. Suppose T : X → CBp(X) is a
(α,ϕ)-Meir-Keeler contraction with respect to the partial Hausdorff metric Hp. Suppose
also that

(i) there exists x ∈ X such that α(x, y) >  for all y ∈ Tx;
(ii) if {xn} is a sequence in X such that α(xn, xn+) ≥  for all n and xn → x ∈ X as

n → ∞, then α(xn, x) ≥  for all n.
Then T has a fixed point in X (that is, there exists x∗ ∈ X such that x∗ ∈ Tx∗).
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Proof Let x ∈ Tx. Since T : X → CBp(X) is a (α,ϕ)-Meir-Keeler contraction with respect
to the partial Hausdorff metric Hp, we have

α(x, x)Hp(Tx, Tx) ≤ ϕ
(
p(x, x)

)
. (.)

Put α(x, x) = h > . From Lemma  with h = h, there exists x ∈ Tx such that

p(x, x) ≤ hHp(Tx, Tx). (.)

Using (.) and (.), we obtain

p(x, x) ≤ ϕ
(
p(x, x)

)
. (.)

Continuing this process, we can obtain a sequence {xn} of X recursively as follows:

xn ∈ Txn–, for all n ∈N.

Since T is strictly α-admissible, we deduce that α(x, x) = h > . Continuing this process,
we have

α(xn, xn+) = hn > , for all n ∈N∪ {}. (.)

And, since T : X → CBp(X) is a (α,ϕ)-Meir-Keeler contraction with respect to the partial
Hausdorff metric Hp, we have

α(xn, xn+)Hp(Txn, Txn+) ≤ ϕ
(
p(xn, xn+)

)
, for all n ∈N∪ {}. (.)

From Lemma  with hn, we have

p(xn+, xn+) ≤ hnHp(Txn, Txn+), for all n ∈N∪ {}. (.)

Using (.) and (.), we obtain

p(xn+, xn+) ≤ ϕ
(
p(xn, xn+)

)
, for all n ∈N∪ {}. (.)

Therefore, we conclude that

p(xn+, xn+) ≤ ϕ
(
p(xn, xn+)

)

≤ ϕ(p(xn–, xn)
)

≤ · · ·
≤ ϕn+(p(x, x)

)
. (.)

By the condition (ϕ), {ϕn(p(x, x))}n∈N is decreasing, it must converges to some η ≥ . We
claim that η = . On the contrary, assume that η > . Then by the definition of the weaker
Meir-Keeler-type function, there exists δ >  such that for x, x ∈ X with η ≤ p(x, x) <
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δ + η, there exists n ∈N such that ϕn (p(x, x)) < η. Since limn→∞ ϕn(p(x, x)) = η, there
exists m ∈ N such that η ≤ ϕm(p(x, x)) < δ + η, for all m ≥ m. Thus, we conclude that
ϕm+n (p(x, x)) < η. So we get a contradiction. So limn→∞ ϕn(p(x, x)) = , and so

lim
n→∞ p(xn, xn+) = . (.)

By the property (p) of a partial metric and using (.), we have

lim
n→∞ p(xn, xn) = . (.)

We will prove that the sequence {xn} is a Cauchy sequence. Using (.), we have

p(xn, xn+m) = p(xn, xn+) + p(xn+, xn+m) – p(xn+, xn+)

≤ p(xn, xn+) + p(xn+, xn+) + p(xn+, xn+m)

– p(xn+, xn+) – p(xn+, xn+)

≤
k∑

i=

p(xn+i–, xn+i) –
k–∑
i=

p(xn+i, xn+i)

≤
m∑

i=

ϕn+i–p(x, x) –
m–∑
i=

p(xn+i, xn+i)

≤
m∑

i=

ϕn+i–p(x, x).

Letting n → ∞, then, by using the condition (ϕ), we have

lim
n→∞ p(xn, xn+m) = . (.)

By the definition of dp, we see that, for any m ∈N,

lim
n→∞ dp(xn, xn+m) ≤ lim

n→∞ p(xn, xn+m) = . (.)

This shows that {xn} is a Cauchy sequence in (X, dp). Since (X, p) is complete, from
Lemma , (X, dp) is a complete metric space. Therefore, {xn} converges to some x∗ ∈ X
with respect to the metric dp, and we also have

p
(
x∗, x∗) = lim

n→∞ p
(
xn, x∗) = lim

n→∞ p(xn, xm) = . (.)

Since T : X → CBp(X) is a (α,ϕ)-Meir-Keeler contraction with respect to the partial Haus-
dorff metric Hp, we have

α
(
xn, x∗)Hp

(
Txn, Tx∗) ≤ ϕ

(
p
(
xn, x∗)).

By the definition of the mapping α, we have α(xn, x∗) > . By the condition (ϕ) and using
(.), we get

lim
n→∞Hp

(
Txn, Tx∗) = . (.)
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Now xn+ ∈ Txn shows

p
(
xn+, Tx∗) ≤ δp

(
Txn, Tx∗) ≤Hp

(
Txn, Tx∗).

Using (.), we get

p
(
x∗, Tx∗) = lim

n→∞ p
(
xn+, Tx∗) = .

Therefore, from (.), p(x∗, x∗) = , we obtain

p
(
x∗, x∗) = p

(
x∗, Tx∗),

which implies x∗ ∈ Tx∗ by Remark . �

4 Fixed point theorem (III)
In this section, we consider the family

 =
{

(ξ, ξ, ξ, ξ)|ξi : R+ →R
+, i = , , , 

}

such that:
() ξ(t), ξ(t), ξ(t) ≤ ξ(t) for all t > ;
() ξ(t), ξ(t), ξ(t), ξ(t) are continuous;
() ξ(t) = ξ(t) = ξ(t) = ξ(t) =  if and only if t = t = t = t = ;
() ξ is a Meir-Keeler-type function;
() ξ(t + t) ≤ ξ(t) + ξ(t) for all t, t > .
We now introduce the notion of (α,φ, ξ, ξ, ξ, ξ)-Meir-Keeler contraction on partial

Hausdorff metric spaces.

Definition  Let (X, p) be a partial metric space, φ ∈ 	, (ξ, ξ, ξ, ξ) ∈ , and α : X ×
X → R

+
�{}. We call T : X → CBp(X) a (α,φ, ξ, ξ, ξ, ξ)-Meir-Keeler contraction with

respect to the partial Hausdorff metric Hp if the following conditions hold:
() T is strictly α-admissible;
() for all x, y ∈ X , we have

α(x, y)Hp(Tx, Ty) ≤ φ

(
ξ

(
p(x, y)

)
, ξ

(
p(x, Tx)

)
, ξ

(
p(y, Ty)

)
,
ξ(p(x, Ty) + p(y, Tx))



)
.

We now state and prove our main result for the (α,φ, ξ, ξ, ξ, ξ)-Meir-Keeler contrac-
tion with respect to the partial Hausdorff metric Hp.

Theorem  Let (X, p) be a complete partial metric space. Suppose T : X → CBp(X) is a
(α,φ, ξ, ξ, ξ, ξ)-Meir-Keeler contraction with respect to the partial Hausdorff metric Hp.
Suppose also that

(i) there exists x ∈ X such that α(x, y) >  for all y ∈ Tx;
(ii) if {xn} is a sequence in X such that α(xn, xn+) ≥  for all n and xn → x ∈ X as

n → ∞, then α(xn, x) ≥  for all n.
Then T has a fixed point in X (that is, there exists x∗ ∈ X such that x∗ ∈ Tx∗).
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Proof Let x ∈ Tx. Since T : X → CBp(X) is a (α,φ, ξ, ξ, ξ, ξ)-Meir-Keeler contraction
with respect to the partial Hausdorff metric Hp, we have

α(x, x)Hp(Tx, Tx)

≤ φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, Tx)

)
, ξ

(
p(x, Tx)

)
,
ξ(p(x, Tx) + p(x, Tx))



)
. (.)

By the condition (i), we have α(x, x) > . Put α(x, x) = h. Note h > . From Lemma 
with h =

√
h, there exists x ∈ Tx such that

p(x, x) ≤ √
hHp(Tx, Tx). (.)

Using (.) and (.), we have

 ≤ p(x, x)

≤ √
h

φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, Tx)

)
, ξ

(
p(x, Tx)

)
,
ξ(p(x, Tx) + p(x, Tx))



)

≤ √
h

φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
,
ξ(p(x, x) + p(x, x))



)

≤ √
h

φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
,
ξ(p(x, x)) + ξ(p(x, x))



)
.

(.)

Now, if ξ(p(x, x)) ≤ ξ(p(x, x)), then by using (.) and since φ ∈ 	, (ξ, ξ, ξ, ξ) ∈ ,
we have

 ≤ p(x, x)

≤ √
h

φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
,
ξ(p(x, x) + p(x, x))



)

≤ √
h

φ
(
ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

))

≤ √
h

ξ
(
p(x, x)

)
.

By Remark , we also have

p(x, x) ≤ √
h

ξ
(
p(x, x)

)
< p(x, x),

which implies a contradiction. Therefore, we have

p(x, x) ≤ √
h

ξ
(
p(x, x)

) ≤ √
h

p(x, x).

Since T : X → CBp(X) is a (α,φ, ξ, ξ, ξ, ξ)-Meir-Keeler contraction with respect to the
partial Hausdorff metric Hp, we have
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α(x, x)Hp(Tx, Tx)

≤ φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, Tx)

)
, ξ

(
p(x, Tx)

)
,
ξ(p(x, Tx) + p(x, Tx))



)
. (.)

Since T is strictly α-admissible, we have α(x, x) > . Put α(x, x) = h. Note h > . From
Lemma  with h =

√
h, there exists x ∈ Tx such that

p(x, x) ≤
√

hHp(Tx, Tx). (.)

Using (.) and (.), we have

 ≤ p(x, x)

≤ √
h

φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, Tx)

)
, ξ

(
p(x, Tx)

)
,
ξ(p(x, Tx) + p(x, Tx))



)

≤ √
h

φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
,
ξ(p(x, x) + p(x, x))



)

≤ √
h

φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
,
ξ(p(x, x)) + ξ(p(x, x))



)
.

(.)

Now, if ξ(p(x, x)) ≤ ξ(p(x, x)), then by using (.) and since φ ∈ 	, (ξ, ξ, ξ, ξ) ∈ ,
we have

 ≤ p(x, x)

≤ √
h

φ

(
ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
,
ξ(p(x, x) + p(x, x))



)

≤ √
h

φ
(
ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

)
, ξ

(
p(x, x)

))

≤ √
h

ξ
(
p(x, x)

)
.

By Remark ,we also have

p(x, x) ≤ √
h

ξ
(
p(x, x)

)
< p(x, x),

which implies a contradiction. Therefore, we have

p(x, x) ≤ √
h

ξ
(
p(x, x)

) ≤ √
h

p(x, x) ≤ √
h

√
h

p(x, x).

Continuing this process, we can obtain a sequence {xn} of X recursively as follows:

xn ∈ Txn–, for all n ∈N.
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Since T : X → CBp(X) is a (α,φ, ξ, ξ, ξ, ξ)-Meir-Keeler contraction with respect to the
partial Hausdorff metric Hp, we have

α(xn, xn+)Hp(Txn, Txn+)

≤ φ

(
ξ

(
p(xn, xn+)

)
, ξ

(
p(xn, Txn)

)
, ξ

(
p(xn+, Txn+)

)
,

ξ(p(xn, Txn+) + p(xn+, Txn))


)
. (.)

Since T is strictly α-admissible, we have α(xn, xn+) >  for all n ∈N. Put α(xn, xn+) = hn.
From Lemma  with h =

√
hn, there exists xn+ ∈ Txn+ such that

p(xn+, xn+) ≤ √
hnHp(Txn, Txn+). (.)

Using (.) and (.), we have

 ≤ p(xn+, xn+)

≤ √
hn

φ

(
ξ

(
p(xn, xn+)

)
, ξ

(
p(xn, Txn)

)
, ξ

(
p(xn+, Txn+)

)
,

ξ(p(xn, Txn+) + p(xn+, Txn))


)

≤ √
hn

φ

(
ξ

(
p(xn, xn+)

)
, ξ

(
p(xn, xn+)

)
, ξ

(
p(xn+, xn+)

)
,

ξ(p(xn, xn+) + p(xn+, xn+))


)

≤ √
hn

φ

(
ξ

(
p(xn, xn+)

)
, ξ

(
p(xn, xn+)

)
, ξ

(
p(xn+, xn+)

)
,

ξ(p(xn, xn+)) + ξ(p(xn+, xn+))


)
. (.)

Now, if ξ(p(xn, xn+)) ≤ ξ(p(xn+, xn+)), then by using (.) and since φ ∈ 	, (ξ, ξ,
ξ, ξ) ∈ , we have

 ≤ p(xn+, xn+)

≤ √
hn

φ

(
ξ

(
p(xn, xn+)

)
, ξ

(
p(xn, xn+)

)
, ξ

(
p(xn+, xn+)

)
,

ξ(p(xn, xn+) + p(xn+, xn+))


)

≤ √
hn

φ
(
ξ

(
p(xn+, xn+)

)
, ξ

(
p(xn+, xn+)

)
, ξ

(
p(xn+, xn+)

)
, ξ

(
p(xn+, xn+)

))

≤ √
hn

ξ
(
p(xn+, xn+)

)
.
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By Remark ,we also have

p(xn+, xn+) ≤ √
hn

ξ
(
p(xn+, xn+)

)
< p(xn+, xn+),

which implies a contradiction. Therefore, we have

p(xn+, xn+) ≤ √
hn

ξ
(
p(xn, xn+)

)

≤ √
hn

p(xn, xn+)

≤ · · ·

≤ √
hn

√
hn–

· · · √
h

p(x, x). (.)

Since hn >  for all n ∈N∪ {}, we get

√
hn

< , for all n ∈N∪ {}.

Put

k = max

{
√
hn

: n ∈N∪ {}
}

. (.)

Using (.) and (.), we obtain

p(xn+, xn+) ≤ (k)n+p(x, x), for all n ∈N∪ {}. (.)

Let n → ∞ in (.). Then

lim
n→∞ p(xn, xn+) = . (.)

By the property (p) of a partial metric and using (.), we have

lim
n→∞ p(xn, xn) = . (.)

Using (.) and the property (p) of a partial metric, for any m ∈N, we have

p(xn, xn+m) ≤
m∑

i=

p(xn+i–, xn+i) –
m–∑
i=

p(xn+i, xn+i)

≤
m∑

i=

(k)n+i–p(x, x) –
m–∑
i=

p(xn+i, xn+i)

≤ (k)n

( – k)
p(x, x) –

m–∑
i=

p(xn+i, xn+i). (.)
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Using (.) and (.), we get

lim
n→∞ p(xn, xn+m) = .

By the definition of dp, we see that, for any m ∈N,

lim
n→∞ dp(xn, xn+m) ≤ lim

n→∞ p(xn, xn+m) = . (.)

This shows that {xn} is a Cauchy sequence in (X, dp). Since (X, p) is complete, from
Lemma , (X, dp) is a complete metric space. Therefore, {xn} converges to some x∗ ∈ X
with respect to the metric dp, and we also have

p
(
x∗, x∗) = lim

n→∞ p
(
xn, x∗) = lim

n→∞ p(xn, xm) = . (.)

By the definition of the mapping α, we have α(xn, x∗) > . By using (.) together with the
properties of the auxiliary functions φ, ξ, ξ, ξ, ξ, and the condition (ii), we get

Hp
(
Txn, Tx∗)

≤ α
(
xn, x∗)Hp

(
Txn, Tx∗)

≤ φ

(
ξ

(
p
(
xn, x∗)), ξ

(
p(xn, Txn)

)
, ξ

(
p
(
x∗, Tx∗)),

ξ(p(xn, Tx∗) + p(x∗, Txn))


)

≤ φ

(
ξ

(
p
(
xn, x∗)), ξ

(
p(xn, xn+)

)
, ξ

(
p
(
x∗, Tx∗)),

ξ(p(xn, x∗) + p(x∗, Tx∗) – p(x∗, x∗) + p(x∗, xn+))


)

≤ φ

(
ξ

(
p
(
xn, x∗)), ξ

(
p(xn, xn+)

)
, ξ

(
p
(
x∗, Tx∗)),

ξ(p(xn, x∗) + p(x∗, Tx∗) – p(x∗, x∗) + p(x∗, xn+))


)
. (.)

Let n → ∞ in (.). By Remark ,

lim
n→∞Hp

(
Txn, Tx∗)

≤ φ(, , ξ
(
p
(
x∗, Tx∗)),



ξ

(
p
(
x∗, Tx∗))

≤ ξ
(
p
(
x∗, Tx∗))

< p
(
x∗, Tx∗). (.)

Now xn+ ∈ Txn shows

p
(
xn+, Tx∗) ≤ δp

(
Txn, Tx∗) ≤Hp

(
Txn, Tx∗). (.)

Using (.), (.), and (.), we get

p
(
x∗, Tx∗) = lim

n→∞ p
(
xn+, Tx∗) < p

(
x∗, Tx∗),
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a contradiction. So, we have

p
(
x∗, Tx∗) = .

Therefore, from (.), p(x∗, x∗) = , we obtain

p
(
x∗, x∗) = p

(
x∗, Tx∗),

which implies x∗ ∈ Tx∗ by Remark . �
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