Skip to main content

Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means

Abstract

In this paper, we present the best possible parameters \(\alpha, \beta \in\mathbb{R}\) and \(\lambda, \mu\in(1/2, 1)\) such that the double inequalities \(\alpha N_{AQ}(a,b)+(1-\alpha)A(a,b)< T^{\ast}(a,b)<\beta N_{AQ}(a,b)+(1-\beta)A(a,b)\), \(Q[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a]< T^{\ast}(a,b)< Q[\mu a+(1-\mu)b, \mu b+(1-\mu)a] \) hold for all \(a, b>0\) with \(a\neq b\), where \(T^{\ast}(a,b)\), \(A(a,b)\), \(Q(a,b)\) and \(N_{QA}(a,b)\) are the Toader, arithmetic, quadratic, and Neuman means of a and b, respectively.

1 Introduction

For \(a,b>0\) the Toader mean \(T^{\ast}(a,b)\) [1] is given by

$$ T^{\ast}(a,b)=\frac{2}{\pi}\int_{0}^{{\pi}/{2}} \sqrt{a^{2}{\cos^{2}{\theta }}+b^{2}{ \sin^{2}{\theta}}}\,d\theta. $$
(1.1)

It is well known that the Toader mean satisfies

$$ T^{\ast}(a,b)=R_{E} \bigl(a^{2}, b^{2} \bigr) $$

for all \(a, b>0\), where

$$ R_{E}(a,b)=\frac{1}{\pi}\int_{0}^{\infty} \frac{[a(t+b)+b(t+a)]t}{(t+a)^{3/2}(t+b)^{3/2}}\,dt $$

stands for the symmetric complete elliptic integral of the second kind (see [2–4]), therefore it cannot be expressed in terms of the elementary transcendental functions.

Recently, the Toader mean \(T^{\ast}(a,b)\) has been the subject of intensive research. In particular, many remarkable inequalities for the Toader mean can be found in the literature [5–12].

Let \(p\in\mathbb{R}\) and \(a, b>0\). Then the pth power mean \(M_{p}(a,b)\) is defined by

$$ M_{p}(a,b)= \biggl(\frac{a^{p}+b^{p}}{2} \biggr)^{1/p}\quad (p\neq0),\qquad M_{0}(a,b)=\sqrt{ab}. $$

It is well known that \(M_{p}(a,b)\) is continuous and strictly increasing with respect to \(p\in\mathbb{R}\) for fixed \(a, b>0\) with \(a\neq b\).

Vuorinen [13] conjectured that the inequality

$$ M_{3/2}(a,b)< T^{\ast}(a,b) $$
(1.2)

holds for all \(a, b>0\) with \(a\neq b\). This conjecture was proved by Qiu and Shen [14], and Barnard et al. [15], respectively.

Alzer and Qiu [16] presented a best possible upper power mean bound for the Toader mean as follows:

$$ T^{\ast}(a,b)< M_{\log2/(\log\pi-\log2)}(a,b) $$

for all \(a, b>0\) with \(a\neq b\).

Chu et al. [17] proved that the inequality

$$ T^{\ast}(a,b)< T(a,b) $$
(1.3)

holds for all \(a, b>0\) with \(a\neq b\), where \(T(a,b)=(a-b)/[2\arctan ((a-b)/(a+b))]\) is the second Seiffert mean.

Another important mean of two positive real numbers a and b is the Schwab-Borchardt mean [18, 19]

$$ SB(a,b)= \textstyle\begin{cases} \frac{\sqrt{b^{2}-a^{2}}}{\arccos{(a/b)}}, & a< b, \\ \frac{\sqrt{a^{2}-b^{2}}}{\cosh^{-1}{(a/b)}}, & a>b, \\ a, & a=b, \end{cases} $$

where \(\cosh^{-1}(x)=\log(x+\sqrt{x^{2}-1})\) is the inverse hyperbolic cosine function.

It is well known that the Schwab-Borchardt mean \(SB(a,b)\) is strictly increasing in both a and b, nonsymmetric and homogeneous of degree 1. Many symmetric bivariate means are special cases of the Schwab-Borchardt mean. For example, \(P(a,b)=(a-b)/[2\arcsin((a-b)/(a+b))]=SB[G(a,b), A(a,b)]\) is the first Seiffert mean, \(T(a,b)=(a-b)/[2\arctan ((a-b)/(a+b))]=SB[A(a,b), Q(a,b)]\) is the second Seiffert mean, \(M(a,b)=(a-b)/[2\sinh^{-1}((a-b)/(a+b))]=SB[Q(a,b), A(a,b)]\) is the Neuman-Sándor mean, \(L(a,b)=(a-b)/[2\tanh ^{-1}((a-b)/(a+b))]=SB[A(a,b), G(a,b)]\) is the logarithmic mean, where \(G(a,b)=\sqrt{ab}\), \(A(a,b)=(a+b)/2\) and \(Q(a,b)=\sqrt {(a^{2}+b^{2})/2}\) are the geometric, arithmetic, and quadratic means of a and b, respectively.

Very recently, Neuman [20] introduced the Neuman mean,

$$ N(a,b)=\frac{1}{2} \biggl[a+\frac{b^{2}}{SB(a,b)} \biggr], $$

and presented the explicit formula for \(N_{AQ}(a,b)\equiv N[A(a,b), Q(a,b)]\) as follows:

$$ N_{AQ}(a,b)=\frac{1}{2}A(a,b) \biggl[1+ \bigl(1+v^{2} \bigr)\frac{\arctan (v)}{v} \biggr] $$
(1.4)

and proved that the double inequality

$$ T(a,b)< N_{AQ}(a,b)< Q(a,b) $$
(1.5)

holds for all \(a, b>0\) with \(a\neq b\), where \(v=(a-b)/(a+b)\).

Inequalities (1.2), (1.3), and (1.5) lead to

$$ A(a,b)=M_{1}(a,b)< M_{3/2}(a,b)< T^{\ast}(a,b)< N_{AQ}(a,b)< Q(a,b) $$
(1.6)

for all \(a, b>0\) with \(a\neq b\).

Let \(a, b>0\) with \(a\neq b\) be fixed and \(f(x)=Q[xa+(1-x)b, xb+(1-x)a]\). Then it is not difficult to verify that \(f(x)\) is continuous and strictly increasing on \([1/2, 1]\). Note that

$$ f \biggl(\frac{1}{2} \biggr)=A(a,b)< T^{\ast}(a,b)< Q(a,b)=f(1). $$
(1.7)

Motivated by inequalities (1.6) and (1.7), it is natural to ask: what are the best possible parameters \(\alpha, \beta\in\mathbb{R}\) and \(\lambda, \mu\in(1/2, 1)\) such that the double inequalities

$$\begin{aligned}& \alpha N_{AQ}(a,b)+(1-\alpha)A(a,b)< T^{\ast}(a,b)< \beta N_{AQ}(a,b)+(1-\beta)A(a,b),\\& Q\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a\bigr]< T^{\ast}(a,b)< Q \bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a\bigr] \end{aligned}$$

hold for all \(a, b>0\) with \(a\neq b\)? The main purpose of this paper is to answer this question.

2 Lemmas

In order to prove our main results we need several lemmas, which we present in this section.

For \(r\in(0, 1)\) the complete elliptic integrals \(\mathcal{K}(r)\) and \(\mathcal{E}(r)\) of the first and second kinds are defined by

$$ \mathcal{K}(r)=\int_{0}^{\pi/2} \bigl(1-r^{2}\sin^{2}t \bigr)^{-1/2}\,dt $$

and

$$ \mathcal{E}(r)=\int_{0}^{\pi/2} \bigl(1-r^{2}\sin^{2}t \bigr)^{1/2}\,dt, $$

respectively. We clearly see that

$$ \mathcal{K}\bigl(0^{+}\bigr)=\mathcal{E}\bigl(0^{+}\bigr)= \frac{\pi}{2}, \qquad\mathcal {K}\bigl(1^{-}\bigr)=\infty, \qquad\mathcal{E} \bigl(1^{-}\bigr)=1, $$

and the Toader mean \(T^{\ast}(a,b)\) given by (1.1) can be expressed as

$$ T^{\ast}(a,b)=\left \{ \textstyle\begin{array}{@{}l@{\quad}l} {2a}{\mathcal{E}} ({\sqrt{1-(b/a)^{2}}} )/{\pi}, & a>b,\\ {2b}{\mathcal{E}} ({\sqrt{1-(a/b)^{2}}} )/{\pi}, & a< b,\\ a, & a=b, \end{array}\displaystyle \right . $$
(2.1)

\(\mathcal{K}(r)\) and \(\mathcal{E}(r)\) satisfy the formulas (see [21], Appendix E, p.474,475)

$$\begin{aligned}& \frac{d\mathcal{K}(r)}{dr}=\frac{\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)}{r(1-r^{2})}, \qquad\frac{d\mathcal{E}(r)}{dr}=\frac{\mathcal {E}(r)-\mathcal{K}(r)}{r},\\& \mathcal{E} \biggl(\frac{2\sqrt{r}}{1+r} \biggr)=\frac{2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)}{1+r}. \end{aligned}$$

Lemma 2.1

(See [21], Theorem 1.25)

Let \(-\infty< a< b<\infty\), \(f, g: [a, b]\rightarrow(-\infty, \infty)\) be continuous on \([a,b]\) and differentiable on \((a, b)\), and \(g^{\prime}(x)\neq0\) on \((a,b)\). If \(f'(x)/g'(x)\) is increasing (decreasing) on \((a,b)\), then so are

$$\frac{f(x)-f(a)}{g(x)-g(a)},\qquad \frac{f(x)-f(b)}{g(x)-g(b)}. $$

If \(f'(x)/g'(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2

(See [21], Theorem 3.21)

(1) The function \(r\mapsto[\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/r^{2}\) is strictly increasing from \((0, 1)\) onto \((\pi/4, 1)\).

(2) The function \(r\mapsto(1-r^{2})^{\lambda}\mathcal{K}(r)\) is strictly decreasing from \((0, 1)\) onto \((0, \pi/2)\) if \(\lambda\geq1/4\).

Lemma 2.3

The function \(r\mapsto[2(1-r^{2})\mathcal{E}(r)-\pi]/r^{2}\) is strictly increasing from \((0, 1)\) onto \((-5\pi/4, -\pi)\).

Proof

Let \(f_{1}(r)=2(1-r^{2})\mathcal{E}(r)-\pi\), \(f_{2}(r)=r^{2}\) and \(f(r)=[2(1-r^{2})\mathcal{E}(r)-\pi]/r^{2}\). Then

$$\begin{aligned}& f_{1} \bigl(0^{+} \bigr)=f_{2}(0)=0,\qquad f(r)=\frac{f_{1}(r)}{f_{2}(r)}, \end{aligned}$$
(2.2)
$$\begin{aligned}& f\bigl(1^{-}\bigr)=-\pi \end{aligned}$$
(2.3)

and simple computations lead to

$$ \frac{f^{\prime}_{1}(r)}{f^{\prime}_{2}(r)}=-3\mathcal{E}(r)+\frac {\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)}{r^{2}}. $$
(2.4)

It follows from Lemma 2.2(1), (2.2), and (2.4) that \(f^{\prime }_{1}(r)/f^{\prime}_{2}(r)\) is strictly increasing on \((0, 1)\) and

$$ f \bigl(0^{+} \bigr)=\lim_{r\rightarrow0^{+}} \frac{f^{\prime }_{1}(r)}{f^{\prime}_{2}(r)}=-\frac{5\pi}{4}. $$
(2.5)

Therefore, Lemma 2.3 follows from Lemma 2.1, (2.2), (2.3), (2.5), and the monotonicity of \(f^{\prime}_{1}(r)/f^{\prime}_{2}(r)\). □

Lemma 2.4

Let \(p\in(0, 1)\), \(r\in(0, 1)\) and

$$ f(r)=\frac{4 [\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) ]}{r^{2}}+\frac{2(1-r^{2})\mathcal{E}(r)-\pi}{r^{2}}+\pi(1-p). $$
(2.6)

Then the following statements are true:

  1. (1)

    If \(p=3/4\), then \(f(r)>0\) for all \(r\in(0, 1)\);

  2. (2)

    If \(p=4(4-\pi)/[\pi(\pi-2)]=0.9573\cdots\), then there exists \(r_{0}\in(0, 1)\) such that \(f(r)<0\) for \(r\in(0, r_{0})\) and \(f(r)>0\) for \(r\in(r_{0}, 1)\).

Proof

For part (1), if \(p=3/4\), then (2.6) becomes

$$ f(r)=\frac{4 [\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) ]}{r^{2}}+\frac{2(1-r^{2})\mathcal{E}(r)-\pi}{r^{2}}+\frac{\pi}{4}, $$

and Lemma 2.2(1) and Lemma 2.3 lead to

$$ f(r)>4\times\frac{\pi}{4}-\frac{5\pi}{4}+\frac{\pi}{4}=0 $$

for all \(r\in(0, 1)\).

For part (2), if \(p=4(4-\pi)/[\pi(\pi-2)]\), then it follows from Lemma 2.2(1), Lemma 2.3, and (2.6) that

$$\begin{aligned}& f \bigl(0^{+} \bigr)=-\frac{64-3\pi^{2}-10\pi}{4(\pi-2)}=-0.6515 \cdots< 0, \end{aligned}$$
(2.7)
$$\begin{aligned}& f \bigl(1^{-} \bigr)=\frac{8(\pi-3)}{\pi-2}=0.9922\cdots>0 \end{aligned}$$
(2.8)

and \(f(r)\) is strictly increasing on \((0, 1)\).

Therefore, part (2) follows from (2.7) and (2.8) together with the monotonicity of \(f(r)\). □

3 Main results

Theorem 3.1

The double inequality

$$ \alpha N_{AQ}(a,b)+(1-\alpha)A(a,b)< T^{\ast}(a,b)< \beta N_{AQ}(a,b)+(1-\beta)A(a,b) $$
(3.1)

holds for all \(a, b>0\) with \(a\neq b\) if and only if \(\alpha\leq3/4\) and \(\beta\geq4(4-\pi)/[\pi(\pi-2)]=0.9573\cdots\).

Proof

Since \(A(a,b)\), \(T^{\ast}(a,b)\) and \(N_{AQ}(a,b)\) are symmetric and homogeneous of degree 1, without loss of generality, we assume that \(a>b\). Let \(r=(a-b)/(a+b)\in(0, 1)\) and \(p\in(0, 1)\). Then (2.1) leads to

$$ T^{\ast}(a,b)=\frac{2}{\pi}A(a,b) \bigl[2 \mathcal{E}(r)-\bigl(1-r^{2}\bigr)\mathcal {K}(r) \bigr]. $$
(3.2)

It follows from (1.4), Lemma 2.2(2), and (3.2) that

$$\begin{aligned}& \frac{T^{\ast}(a,b)-A(a,b)}{N_{AQ}(a,b)-A(a,b)}=\frac{\frac{2}{\pi} [2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) ]-1}{ \frac{(1+r^{2})\arctan(r)}{2r}-\frac{1}{2}}, \end{aligned}$$
(3.3)
$$\begin{aligned}& T^{\ast}(a,b)-\bigl[pN_{AQ}(a,b)+(1-p)A(a,b) \bigr]=\frac{p(1+r^{2})}{2r}A(a,b)F(r), \end{aligned}$$
(3.4)

where

$$\begin{aligned}& F(r)=\frac{4r [2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) ]+\pi (p-2)r}{p\pi(1+r^{2})}-\arctan(r), \\& F\bigl(0^{+}\bigr)=0, \end{aligned}$$
(3.5)
$$\begin{aligned}& F\bigl(1^{-}\bigr)=\frac{4(4-\pi)+p\pi(2-\pi)}{4p\pi}, \end{aligned}$$
(3.6)
$$\begin{aligned}& F^{\prime}(r)=\frac{2r^{2}}{p\pi(1+r^{2})^{2}}f(r), \end{aligned}$$
(3.7)

where \(f(r)\) is defined as in Lemma 2.4.

We divide the proof into two cases.

Case 1 \(p=3/4\). Then Lemma 2.4(1) and (3.7) lead to the conclusion that \(F(r)\) is strictly increasing on \((0, 1)\). Therefore,

$$ T^{\ast}(a,b)>\frac{3}{4}N_{AQ}(a,b)+ \frac{1}{4}A(a,b) $$

follows from (3.4) and (3.5) together with the monotonicity of \(F(r)\).

Case 2 \(p=4(4-\pi)/[\pi(\pi-2)]\). Then (3.6) becomes

$$ F\bigl(1^{-}\bigr)=0, $$
(3.8)

and Lemma 2.4(2) and (3.7) imply that there exists \(r_{0}\in(0, 1)\) such that \(F(r)\) is strictly decreasing on \((0, r_{0}]\) and strictly increasing on \([r_{0}, 1)\). Therefore,

$$ T^{\ast}(a,b)< \frac{4(4-\pi)}{\pi(\pi-2)}N_{AQ}(a,b)+ \biggl[1- \frac {4(4-\pi)}{\pi(\pi-2)} \biggr]A(a,b) $$

follows from (3.4), (3.5), (3.8), and the piecewise monotonicity of \(F(r)\).

Next, we prove that \(\alpha=3/4\) and \(\beta=4(4-\pi)/[\pi(\pi-2)]\) are the best possible parameters such that the double inequality (3.1) holds for all \(a, b>0\) with \(a\neq b\). It is not difficult to verify that

$$\begin{aligned}& \lim_{r\rightarrow0^{+}}\frac{\frac{2}{\pi} [2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r) ]-1}{ \frac{(1+r^{2})\arctan(r)}{2r}-\frac{1}{2}}=\frac{3}{4}, \end{aligned}$$
(3.9)
$$\begin{aligned}& \lim_{r\rightarrow1^{-}}\frac{\frac{2}{\pi} [2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r) ]-1}{ \frac{(1+r^{2})\arctan(r)}{2r}-\frac{1}{2}}=\frac{4(4-\pi)}{\pi(\pi-2)}. \end{aligned}$$
(3.10)

If \(\alpha>3/4\), then (3.3) and (3.9) imply that there exists \(0<\delta _{1}<1\) such that

$$ T^{\ast}(a,b)< \alpha N_{AQ}(a,b)+(1-\alpha)A(a,b) $$

for all \(a>b>0\) with \((a-b)/(a+b)\in(0, \delta_{1})\).

If \(\beta<4(4-\pi)/[\pi(\pi-2)]\), then (3.3) and (3.10) imply that there exists \(0<\delta_{2}<1\) such that

$$ T^{\ast}(a,b)>\beta N_{AQ}(a,b)+(1-\beta)A(a,b) $$

for all \(a>b>0\) with \((a-b)/(a+b)\in(1-\delta_{2}, 1)\). □

Theorem 3.2

Let \(\lambda, \mu\in(1/2, 1)\). Then the double inequality

$$ Q\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a \bigr]< T^{\ast}(a,b)< Q\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a\bigr] $$
(3.11)

holds for all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda\leq 1/2+\sqrt{2}/4=0.8535\cdots\) and \(\mu\geq1/2+\sqrt{16/\pi ^{2}-1}/2=0.8940\cdots\).

Proof

Without loss of generality, we assume that \(a>b>0\). Let \(r=(a-b)/(a+b)\in(0, 1)\) and \(p\in(0, 1)\). Then from (3.2) and

$$ Q\bigl[pa+(1-p)b, pb+(1-p)a\bigr]=A(a,b)\sqrt{(2p-1)^{2}r^{2}+1} $$

we get

$$\begin{aligned} &T^{\ast}(a,b)-Q\bigl[pa+(1-p)b, pb+(1-p)a\bigr] \\ &\quad= \biggl[\frac{2}{\pi} \bigl(2\mathcal{E}(r)-\bigl(1-r^{2}\bigr) \mathcal{K}(r) \bigr)-\sqrt{(2p-1)^{2}r^{2}+1} \biggr]A(a,b) \\ &\quad=\frac{g(r)}{\frac{2}{\pi} (2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r) )+\sqrt{(2p-1)^{2}r^{2}+1}}A(a,b), \end{aligned}$$
(3.12)

where

$$\begin{aligned}& g(r)=\frac{4}{\pi^{2}} \bigl[2\mathcal{E}(r)- \bigl(1-r^{2}\bigr)\mathcal {K}(r) \bigr]^{2}-(2p-1)^{2}r^{2}-1, \end{aligned}$$
(3.13)
$$\begin{aligned}& g\bigl(0^{+}\bigr)=0, \end{aligned}$$
(3.14)
$$\begin{aligned}& g\bigl(1^{-}\bigr)=\frac{16}{\pi^{2}}-(2p-1)^{2}-1. \end{aligned}$$
(3.15)

Let

$$ g_{1}(r)=g^{\prime}(r)/r. $$
(3.16)

Then (3.13) and Lemma 2.2 lead to

$$\begin{aligned}& g_{1}(r)=\frac{8}{\pi^{2}} \bigl[2\mathcal{E}(r)- \bigl(1-r^{2}\bigr)\mathcal {K}(r) \bigr] \frac{\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)}{r^{2}}-2(2p-1)^{2}, \end{aligned}$$
(3.17)
$$\begin{aligned}& g_{1}\bigl(0^{+}\bigr)=1-2(2p-1)^{2}, \end{aligned}$$
(3.18)
$$\begin{aligned}& g_{1}\bigl(1^{-}\bigr)=\frac{16}{\pi^{2}}-2(2p-1)^{2}. \end{aligned}$$
(3.19)

We divide the proof into two cases.

Case 1 \(p=1/2+\sqrt{2}/4\). Then (3.18) becomes

$$ g_{1}\bigl(0^{+}\bigr)=0. $$
(3.20)

From Lemma 2.2(1) and \(d[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/dr=[\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)]/r\) we know that the function \(r\mapsto2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)\) is strictly increasing on \((0, 1)\). Then from Lemma 2.2(1) and (3.17) together with (3.20) we know that \(g_{1}(r)\) is strictly increasing on \((0, 1)\) and

$$ g_{1}(r)>g_{1}\bigl(0^{+}\bigr)=0 $$
(3.21)

for \(r\in(0, 1)\). Therefore,

$$ T^{\ast}(a, b)>Q \biggl[ \biggl(\frac{1}{2}+\frac{\sqrt{2}}{4} \biggr)a+ \biggl(\frac{1}{2}-\frac{\sqrt{2}}{4} \biggr)b, \biggl( \frac{1}{2}+\frac{\sqrt {2}}{4} \biggr)b+ \biggl(\frac{1}{2}- \frac{\sqrt{2}}{4} \biggr)a \biggr] $$

follows from (3.12), (3.14), (3.16), and (3.21).

Case 2 \(p=1/2+\sqrt{16/\pi^{2}-1}/2\). Then (3.15), (3.18), and (3.19) lead to

$$\begin{aligned}& g\bigl(1^{-}\bigr)=0, \end{aligned}$$
(3.22)
$$\begin{aligned}& g_{1}\bigl(0^{+}\bigr)=- \frac{32-3\pi^{2}}{\pi^{2}}< 0, \end{aligned}$$
(3.23)
$$\begin{aligned}& g_{1}\bigl(1^{-}\bigr)=\frac{2\pi^{2}-16}{\pi^{2}}>0. \end{aligned}$$
(3.24)

It follows from (3.16), (3.23), and (3.24) together with the monotonicity of \(g_{1}(r)\) that there exists \(r^{\ast}\in(0, 1)\) such that \(g(r)\) is strictly decreasing on \((0, r^{\ast}]\) and strictly increasing on \([r^{\ast}, 1)\). Therefore,

$$ T^{\ast}(a, b)< Q\bigl[pa+(1-p)b, pb+(1-p)a\bigr] $$

follows from (3.12), (3.14), (3.22), and the piecewise monotonicity of \(g(r)\).

Next, we prove that \(\lambda=1/2+\sqrt{2}/4\) and \(\mu=1/2+\sqrt{16/\pi ^{2}-1}/2\) are the best possible parameters in \((1/2, 1)\) such that the double inequality (3.11) holds for all \(a, b>0\) with \(a\neq b\).

If \(1/2+\sqrt{2}/4< p<1\), then (3.18) leads to

$$ g_{1}\bigl(0^{+}\bigr)< 0. $$
(3.25)

Equations (3.12), (3.14), and (3.16) and inequality (3.25) imply that there exists \(\delta_{3}\in(0, 1)\) such that

$$ T^{\ast}(a,b)< Q\bigl[pa+(1-p)b, pb+(1-p)a\bigr] $$

for all \(a>b>0\) with \((a-b)/(a+b)\in(0, \delta_{3})\).

If \(1/2< p<1/2+\sqrt{16/\pi^{2}-1}/2\), then (3.15) leads to

$$ g\bigl(1^{-}\bigr)>0. $$
(3.26)

Equation (3.12) and inequality (3.26) imply that there exists \(\delta _{4}\in(0, 1)\) such that

$$ T^{\ast}(a,b)>Q\bigl[pa+(1-p)b, pb+(1-p)a\bigr] $$

for all \(a>b>0\) with \((a-b)/(a+b)\in(1-\delta_{4}, 1)\). □

Let \(r\in(0, 1)\), \(r^{\ast}=r^{2}/(1+\sqrt{1-r^{2}})^{2}\), \(a=1\), \(b=\sqrt{1-r^{2}}\), \(\alpha=3/4\), \(\beta=4(4-\pi)/[\pi(\pi-2)]\), \(\lambda=1/2+\sqrt{2}/4\), and \(\mu=1/2+\sqrt{16/\pi^{2}-1}/2\). Then Theorems 3.1 and 3.2 lead to Corollary 3.3 as follows.

Corollary 3.3

The double inequalities

$$\begin{aligned} &\frac{\pi(1+\sqrt{1-r^{2}})}{32} \biggl[5+3 \biggl(r^{\ast}+\frac{1}{r^{\ast }} \biggr) \arctan \bigl(r^{\ast} \bigr) \biggr]\\ &\quad< \mathcal{E}(r)< \frac{1+\sqrt{1-r^{2}}}{4(\pi-2)} \biggl[\pi^{2}-8+2(4-\pi) \biggl(r^{\ast }+ \frac{1}{r^{\ast}} \biggr)\arctan \bigl(r^{\ast} \bigr) \biggr] \end{aligned}$$

and

$$ \frac{\pi\sqrt{6+2\sqrt{1-r^{2}}-3r^{2}}}{4\sqrt{2}}< \mathcal {E}(r)< \frac{\sqrt{8+(\pi^{2}-8)\sqrt{1-r^{2}}-4r^{2}}}{2} $$

hold for all \(r\in(0, 1)\).

References

  1. Toader, G: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358-368 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Neuman, E: Bounds for symmetric elliptic integrals. J. Approx. Theory 122(2), 249-259 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kazi, H, Neuman, E: Inequalities and bounds for elliptic integrals. J. Approx. Theory 146(2), 212-226 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kazi, H, Neuman, E: Inequalities and bounds for elliptic integrals II. In: Special Functions and Orthogonal Polynomials. Contemp. Math., vol. 471, pp. 127-138. Am. Math. Soc., Providence (2008)

    Chapter  Google Scholar 

  5. Chu, Y-M, Wang, M-K, Qiu, S-L: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41-51 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chu, Y-M, Wang, M-K: Inequalities between arithmetic-geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012, Article ID 830585 (2012)

    MathSciNet  Google Scholar 

  7. Chu, Y-M, Wang, M-K: Optimal Lehmer mean bounds for Toader mean. Results Math. 61(3-4), 223-229 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chu, Y-M, Wang, M-K, Ma, X-Y: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(1), 161-166 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Song, Y-Q, Jiang, W-D, Chu, Y-M, Yan, D-D: Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means. J. Math. Inequal. 7(4), 751-757 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, W-H, Zheng, M-M: Some inequalities for bounding Toader mean. J. Funct. Spaces Appl. 2013, Article ID 394194 (2013)

    Google Scholar 

  11. Yun, H, Qi, F: A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 124(4), 527-531 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Yun, H, Qi, F: The best bounds for Toader mean in terms of the centroidal and arithmetic means. arXiv:1303.2451v1 [math. CA]

  13. Vuorinen, M: Hypergeometric functions in geometric function theory. In: Special Functions and Differential Equations (Madras, 1977), pp. 119-126. Allied Publishers, New Delhi (1998)

    Google Scholar 

  14. Qiu, S-L, Shen, J-M: On two problems concerning means. J. Hangzhou Inst. Electr. Eng. 17(3), 1-7 (1997) (in Chinese)

    Google Scholar 

  15. Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Alzer, H, Qiu, S-L: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chu, Y-M, Wang, M-K, Qiu, S-L, Qiu, Y-F: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011)

    MathSciNet  Google Scholar 

  18. Neuman, E, Sándor, J: On the Schwab-Borchardt mean. Math. Pannon. 14(2), 253-266 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Neuman, E, Sándor, J: On the Schwab-Borchardt mean II. Math. Pannon. 17(1), 49-59 (2006)

    MATH  MathSciNet  Google Scholar 

  20. Neuman, E: On a new bivariate mean. Aequ. Math. 88(3), 277-289 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their careful reading of the manuscript and their fruitful comments and suggestions. The research was supported by the Major Project Foundation of the Department of Education of Hunan Province under Grant 12A026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Chu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JF., Qian, WM. & Chu, YM. Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. J Inequal Appl 2015, 277 (2015). https://doi.org/10.1186/s13660-015-0800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-015-0800-7

MSC

Keywords