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Abstract
In this paper, we present the best possible parameters α,β ∈ R and λ,μ ∈ (1/2, 1)
such that the double inequalities
αNAQ(a,b) + (1 – α)A(a,b) < T∗(a,b) < βNAQ(a,b) + (1 – β)A(a,b),
Q[λa + (1 – λ)b,λb + (1 – λ)a] < T∗(a,b) < Q[μa + (1 –μ)b,μb + (1 –μ)a] hold for all
a,b > 0 with a �= b, where T∗(a,b), A(a,b), Q(a,b) and NQA(a,b) are the Toader,
arithmetic, quadratic, and Neuman means of a and b, respectively.
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1 Introduction
For a, b >  the Toader mean T∗(a, b) [] is given by

T∗(a, b) =

π

∫ π/



√
acos θ + bsin θ dθ . (.)

It is well known that the Toader mean satisfies

T∗(a, b) = RE
(
a, b)

for all a, b > , where

RE(a, b) =

π

∫ ∞



[a(t + b) + b(t + a)]t
(t + a)/(t + b)/ dt

stands for the symmetric complete elliptic integral of the second kind (see [–]), therefore
it cannot be expressed in terms of the elementary transcendental functions.

Recently, the Toader mean T∗(a, b) has been the subject of intensive research. In par-
ticular, many remarkable inequalities for the Toader mean can be found in the literature
[–].

Let p ∈R and a, b > . Then the pth power mean Mp(a, b) is defined by

Mp(a, b) =
(

ap + bp



)/p

(p �= ), M(a, b) =
√

ab.
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It is well known that Mp(a, b) is continuous and strictly increasing with respect to p ∈R

for fixed a, b >  with a �= b.
Vuorinen [] conjectured that the inequality

M/(a, b) < T∗(a, b) (.)

holds for all a, b >  with a �= b. This conjecture was proved by Qiu and Shen [], and
Barnard et al. [], respectively.

Alzer and Qiu [] presented a best possible upper power mean bound for the Toader
mean as follows:

T∗(a, b) < Mlog /(logπ–log )(a, b)

for all a, b >  with a �= b.
Chu et al. [] proved that the inequality

T∗(a, b) < T(a, b) (.)

holds for all a, b >  with a �= b, where T(a, b) = (a – b)/[ arctan((a – b)/(a + b))] is the
second Seiffert mean.

Another important mean of two positive real numbers a and b is the Schwab-Borchardt
mean [, ]

SB(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

√
b–a

arccos (a/b) , a < b,
√

a–b

cosh– (a/b) , a > b,

a, a = b,

where cosh–(x) = log(x +
√

x – ) is the inverse hyperbolic cosine function.
It is well known that the Schwab-Borchardt mean SB(a, b) is strictly increasing in

both a and b, nonsymmetric and homogeneous of degree . Many symmetric bivari-
ate means are special cases of the Schwab-Borchardt mean. For example, P(a, b) = (a –
b)/[ arcsin((a – b)/(a + b))] = SB[G(a, b), A(a, b)] is the first Seiffert mean, T(a, b) = (a –
b)/[ arctan((a–b)/(a+b))] = SB[A(a, b), Q(a, b)] is the second Seiffert mean, M(a, b) = (a–
b)/[ sinh–((a – b)/(a + b))] = SB[Q(a, b), A(a, b)] is the Neuman-Sándor mean, L(a, b) =
(a – b)/[ tanh–((a – b)/(a + b))] = SB[A(a, b), G(a, b)] is the logarithmic mean, where
G(a, b) =

√
ab, A(a, b) = (a + b)/ and Q(a, b) =

√
(a + b)/ are the geometric, arithmetic,

and quadratic means of a and b, respectively.
Very recently, Neuman [] introduced the Neuman mean,

N(a, b) =



[
a +

b

SB(a, b)

]
,

and presented the explicit formula for NAQ(a, b) ≡ N[A(a, b), Q(a, b)] as follows:

NAQ(a, b) =



A(a, b)
[

 +
(
 + v)arctan(v)

v

]
(.)

and proved that the double inequality
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T(a, b) < NAQ(a, b) < Q(a, b) (.)

holds for all a, b >  with a �= b, where v = (a – b)/(a + b).
Inequalities (.), (.), and (.) lead to

A(a, b) = M(a, b) < M/(a, b) < T∗(a, b) < NAQ(a, b) < Q(a, b) (.)

for all a, b >  with a �= b.
Let a, b >  with a �= b be fixed and f (x) = Q[xa + ( – x)b, xb + ( – x)a]. Then it is not

difficult to verify that f (x) is continuous and strictly increasing on [/, ]. Note that

f
(




)
= A(a, b) < T∗(a, b) < Q(a, b) = f (). (.)

Motivated by inequalities (.) and (.), it is natural to ask: what are the best possible
parameters α,β ∈R and λ,μ ∈ (/, ) such that the double inequalities

αNAQ(a, b) + ( – α)A(a, b) < T∗(a, b) < βNAQ(a, b) + ( – β)A(a, b),

Q
[
λa + ( – λ)b,λb + ( – λ)a

]
< T∗(a, b) < Q

[
μa + ( – μ)b,μb + ( – μ)a

]

hold for all a, b >  with a �= b? The main purpose of this paper is to answer this question.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-
tion.

For r ∈ (, ) the complete elliptic integrals K(r) and E(r) of the first and second kinds
are defined by

K(r) =
∫ π/



(
 – r sin t

)–/ dt

and

E(r) =
∫ π/



(
 – r sin t

)/ dt,

respectively. We clearly see that

K
(
+)

= E
(
+)

=
π


, K

(
–)

= ∞, E
(
–)

= ,

and the Toader mean T∗(a, b) given by (.) can be expressed as

T∗(a, b) =

⎧⎪⎨
⎪⎩

aE(
√

 – (b/a))/π , a > b,
bE(

√
 – (a/b))/π , a < b,

a, a = b,
(.)

K(r) and E(r) satisfy the formulas (see [], Appendix E, p.,)

dK(r)
dr

=
E(r) – ( – r)K(r)

r( – r)
,

dE(r)
dr

=
E(r) – K(r)

r
,
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E
(


√

r
 + r

)
=

E(r) – ( – r)K(r)
 + r

.

Lemma . (See [], Theorem .) Let –∞ < a < b < ∞, f , g : [a, b] → (–∞,∞) be con-
tinuous on [a, b] and differentiable on (a, b), and g ′(x) �=  on (a, b). If f ′(x)/g ′(x) is increasing
(decreasing) on (a, b), then so are

f (x) – f (a)
g(x) – g(a)

,
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . (See [], Theorem .) () The function r 
→ [E(r)–(–r)K(r)]/r is strictly
increasing from (, ) onto (π/, ).

() The function r 
→ ( – r)λK(r) is strictly decreasing from (, ) onto (,π/) if λ ≥ /.

Lemma . The function r 
→ [( – r)E(r) – π ]/r is strictly increasing from (, ) onto
(–π/, –π ).

Proof Let f(r) = ( – r)E(r) – π , f(r) = r and f (r) = [( – r)E(r) – π ]/r. Then

f
(
+)

= f() = , f (r) =
f(r)
f(r)

, (.)

f
(
–)

= –π (.)

and simple computations lead to

f ′
 (r)

f ′
(r)

= –E(r) +
E(r) – ( – r)K(r)

r . (.)

It follows from Lemma .(), (.), and (.) that f ′
 (r)/f ′

(r) is strictly increasing on (, )
and

f
(
+)

= lim
r→+

f ′
 (r)

f ′
(r)

= –
π


. (.)

Therefore, Lemma . follows from Lemma ., (.), (.), (.), and the monotonicity
of f ′

 (r)/f ′
(r). �

Lemma . Let p ∈ (, ), r ∈ (, ) and

f (r) =
[E(r) – ( – r)K(r)]

r +
( – r)E(r) – π

r + π ( – p). (.)

Then the following statements are true:
() If p = /, then f (r) >  for all r ∈ (, );
() If p = ( – π )/[π (π – )] = . · · · , then there exists r ∈ (, ) such that f (r) < 

for r ∈ (, r) and f (r) >  for r ∈ (r, ).
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Proof For part (), if p = /, then (.) becomes

f (r) =
[E(r) – ( – r)K(r)]

r +
( – r)E(r) – π

r +
π


,

and Lemma .() and Lemma . lead to

f (r) >  × π


–

π


+

π


= 

for all r ∈ (, ).
For part (), if p = ( – π )/[π (π – )], then it follows from Lemma .(), Lemma .,

and (.) that

f
(
+)

= –
 – π – π

(π – )
= –. · · · < , (.)

f
(
–)

=
(π – )
π – 

= . · · · >  (.)

and f (r) is strictly increasing on (, ).
Therefore, part () follows from (.) and (.) together with the monotonicity of f (r).

�

3 Main results
Theorem . The double inequality

αNAQ(a, b) + ( – α)A(a, b) < T∗(a, b) < βNAQ(a, b) + ( – β)A(a, b) (.)

holds for all a, b >  with a �= b if and only if α ≤ / and β ≥ ( – π )/[π (π – )] =
. · · · .

Proof Since A(a, b), T∗(a, b) and NAQ(a, b) are symmetric and homogeneous of degree ,
without loss of generality, we assume that a > b. Let r = (a – b)/(a + b) ∈ (, ) and p ∈ (, ).
Then (.) leads to

T∗(a, b) =

π

A(a, b)
[
E(r) –

(
 – r)K(r)

]
. (.)

It follows from (.), Lemma .(), and (.) that

T∗(a, b) – A(a, b)
NAQ(a, b) – A(a, b)

=

π

[E(r) – ( – r)K(r)] – 
(+r) arctan(r)

r – 


, (.)

T∗(a, b) –
[
pNAQ(a, b) + ( – p)A(a, b)

]
=

p( + r)
r

A(a, b)F(r), (.)

where

F(r) =
r[E(r) – ( – r)K(r)] + π (p – )r

pπ ( + r)
– arctan(r),

F
(
+)

= , (.)
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F
(
–)

=
( – π ) + pπ ( – π )

pπ
, (.)

F ′(r) =
r

pπ ( + r) f (r), (.)

where f (r) is defined as in Lemma ..
We divide the proof into two cases.
Case  p = /. Then Lemma .() and (.) lead to the conclusion that F(r) is strictly

increasing on (, ). Therefore,

T∗(a, b) >



NAQ(a, b) +



A(a, b)

follows from (.) and (.) together with the monotonicity of F(r).
Case  p = ( – π )/[π (π – )]. Then (.) becomes

F
(
–)

= , (.)

and Lemma .() and (.) imply that there exists r ∈ (, ) such that F(r) is strictly
decreasing on (, r] and strictly increasing on [r, ). Therefore,

T∗(a, b) <
( – π )
π (π – )

NAQ(a, b) +
[

 –
( – π )
π (π – )

]
A(a, b)

follows from (.), (.), (.), and the piecewise monotonicity of F(r).
Next, we prove that α = / and β = ( –π )/[π (π – )] are the best possible parameters

such that the double inequality (.) holds for all a, b >  with a �= b. It is not difficult to
verify that

lim
r→+


π

[E(r) – ( – r)K(r)] – 
(+r) arctan(r)

r – 


=



, (.)

lim
r→–


π

[E(r) – ( – r)K(r)] – 
(+r) arctan(r)

r – 


=
( – π )
π (π – )

. (.)

If α > /, then (.) and (.) imply that there exists  < δ <  such that

T∗(a, b) < αNAQ(a, b) + ( – α)A(a, b)

for all a > b >  with (a – b)/(a + b) ∈ (, δ).
If β < ( – π )/[π (π – )], then (.) and (.) imply that there exists  < δ <  such

that

T∗(a, b) > βNAQ(a, b) + ( – β)A(a, b)

for all a > b >  with (a – b)/(a + b) ∈ ( – δ, ). �

Theorem . Let λ,μ ∈ (/, ). Then the double inequality

Q
[
λa + ( – λ)b,λb + ( – λ)a

]
< T∗(a, b) < Q

[
μa + ( – μ)b,μb + ( – μ)a

]
(.)
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holds for all a, b >  with a �= b if and only if λ ≤ / +
√

/ = . · · · and μ ≥ / +√
/π – / = . · · · .

Proof Without loss of generality, we assume that a > b > . Let r = (a – b)/(a + b) ∈ (, )
and p ∈ (, ). Then from (.) and

Q
[
pa + ( – p)b, pb + ( – p)a

]
= A(a, b)

√
(p – )r + 

we get

T∗(a, b) – Q
[
pa + ( – p)b, pb + ( – p)a

]

=
[


π

(
E(r) –

(
 – r)K(r)

)
–

√
(p – )r + 

]
A(a, b)

=
g(r)


π

(E(r) – ( – r)K(r)) +
√

(p – )r + 
A(a, b), (.)

where

g(r) =

π

[
E(r) –

(
 – r)K(r)

] – (p – )r – , (.)

g
(
+)

= , (.)

g
(
–)

=

π – (p – ) – . (.)

Let

g(r) = g ′(r)/r. (.)

Then (.) and Lemma . lead to

g(r) =

π

[
E(r) –

(
 – r)K(r)

]E(r) – ( – r)K(r)
r – (p – ), (.)

g
(
+)

=  – (p – ), (.)

g
(
–)

=

π – (p – ). (.)

We divide the proof into two cases.
Case  p = / +

√
/. Then (.) becomes

g
(
+)

= . (.)

From Lemma .() and d[E(r) – ( – r)K(r)]/dr = [E(r) – ( – r)K(r)]/r we know
that the function r 
→ E(r) – ( – r)K(r) is strictly increasing on (, ). Then from
Lemma .() and (.) together with (.) we know that g(r) is strictly increasing on
(, ) and

g(r) > g
(
+)

=  (.)



Li et al. Journal of Inequalities and Applications  (2015) 2015:277 Page 8 of 9

for r ∈ (, ). Therefore,

T∗(a, b) > Q
[(




+
√




)
a +

(



–
√




)
b,

(



+
√




)
b +

(



–
√




)
a
]

follows from (.), (.), (.), and (.).
Case  p = / +

√
/π – /. Then (.), (.), and (.) lead to

g
(
–)

= , (.)

g
(
+)

= –
 – π

π < , (.)

g
(
–)

=
π – 

π > . (.)

It follows from (.), (.), and (.) together with the monotonicity of g(r) that
there exists r∗ ∈ (, ) such that g(r) is strictly decreasing on (, r∗] and strictly increasing
on [r∗, ). Therefore,

T∗(a, b) < Q
[
pa + ( – p)b, pb + ( – p)a

]

follows from (.), (.), (.), and the piecewise monotonicity of g(r).
Next, we prove that λ = / +

√
/ and μ = / +

√
/π – / are the best possible

parameters in (/, ) such that the double inequality (.) holds for all a, b >  with a �= b.
If / +

√
/ < p < , then (.) leads to

g
(
+)

< . (.)

Equations (.), (.), and (.) and inequality (.) imply that there exists δ ∈ (, )
such that

T∗(a, b) < Q
[
pa + ( – p)b, pb + ( – p)a

]

for all a > b >  with (a – b)/(a + b) ∈ (, δ).
If / < p < / +

√
/π – /, then (.) leads to

g
(
–)

> . (.)

Equation (.) and inequality (.) imply that there exists δ ∈ (, ) such that

T∗(a, b) > Q
[
pa + ( – p)b, pb + ( – p)a

]

for all a > b >  with (a – b)/(a + b) ∈ ( – δ, ). �

Let r ∈ (, ), r∗ = r/(+
√

 – r), a = , b =
√

 – r, α = /, β = (–π )/[π (π –)], λ =
/ +

√
/, and μ = / +

√
/π – /. Then Theorems . and . lead to Corollary .

as follows.
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Corollary . The double inequalities

π ( +
√

 – r)


[
 + 

(
r∗ +


r∗

)
arctan

(
r∗)]

< E(r) <
 +

√
 – r

(π – )

[
π –  + ( – π )

(
r∗ +


r∗

)
arctan

(
r∗)]

and

π
√

 + 
√

 – r – r


√


< E(r) <

√
 + (π – )

√
 – r – r



hold for all r ∈ (, ).
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