- Research
- Open access
- Published:
New real-variable characterizations of Hardy spaces associated with twisted convolution
Journal of Inequalities and Applications volume 2015, Article number: 170 (2015)
Abstract
In this paper, we give some new real-variables characterizations of the Hardy space associated with twisted convolution, including Poisson maximal function, area integral, and Littlewood-Paley g-function.
1 Introduction
In this paper, we consider the 2n linear differential operators
Together with the identity they generate a Lie algebra \(h^{n}\) which is isomorphic to the \(2n+1\) dimensional Heisenberg algebra. The only nontrivial commutation relations are
The operator L defined by
is nonnegative, self-adjoint, and elliptic. Therefore it generates a diffusion semigroup \(\{T_{t}^{L}\}_{t>0}=\{e^{-tL}\}_{t>0}\). The operators in (1) generate a family of ‘twisted translations’ \(\tau_{w}\) on \(\mathbb{C}^{n}\) defined on measurable functions by
The ‘twisted convolution’ of two functions f and g on \(\mathbb{C}^{n}\) can now be defined as
where \(\omega(z,w)=\exp (\frac{i}{2}\operatorname{Im}(z\cdot\bar{w}) )\). More about twisted convolution can be found in [1–3].
In [4], the authors defined the Hardy space \(H_{L}^{1}(\mathbb{C}^{n})\) associated with a twisted convolution. They gave several characterizations of \(H_{L}^{1}(\mathbb{C}^{n})\) via maximal functions, the atomic decomposition, and the behavior of the local Riesz transform. As applications, the boundedness of Hömander multipliers on Hardy spaces is considered in [5]. The ‘twisted cancelation’ and Weyl multipliers were introduced for the first time in [6]. Recently, Huang and Wang [7] defined the Hardy space \(H_{L}^{p}(\mathbb{C}^{n})\) associated with a twisted convolution for \(\frac{2n}{2n+1}< p\leq1\). Huang gave the characterizations of the Hardy space associated with twisted convolution by the Lusin area integral function and the Littlewood-Paley function defined by the heat kernel in [8] and established the boundedness of the Weyl multiplier by these characterizations in [9]. Recently, Huang and Liu gave the molecular characterization of Hardy space associated with twisted convolution in [10]. The purpose of this paper is to give some new real-variable characterizations for \(H_{L}^{p}(\mathbb {C}^{n})\), including the Poisson maximal function, the Lusin area integral, and the Littlewood-Paley g-function defined by the Poisson kernel.
We first give some basic notations concerning \(H_{L}^{p}(\mathbb{C}^{n})\). Let \(\mathcal{B}\) denote the class of \(C^{\infty}\)-functions φ on \(\mathbb{C}^{n}\), supported on the ball \(B(0,1)\) such that \(\|\varphi\|_{\infty}\leq1\) and \(\|\nabla\varphi\|_{\infty}\leq 2\). For \(t>0\), let \(\varphi_{t}(z)=t^{-2n}\varphi(z/t)\). Given \(\sigma>0\), \(0<\sigma\leq+\infty\), and a tempered distribution f, define the grand maximal function
Then the Hardy space \(H_{L}^{p}(\mathbb{C}^{n})\) can be defined by
For any \(f\in H_{L}^{p}(\mathbb{C}^{n})\), define \(\| f\|_{ H_{L}^{p}(\mathbb{C}^{n})}=\| M_{\infty}f\|_{L^{p}}\).
Definition 1
Let \(\frac{2n}{2n+1}< p\le1\le q\le\infty\) and \(p\neq q\). A function \(a(z)\) is a \(H_{L}^{p,q}\)-atom for the Hardy space \(H_{L}^{p}(\mathbb{C}^{n})\) associated to a ball \(B(z_{0},r)\) if
We define the atomic Hardy space \(H^{p,q}_{L}(\mathbb{C}^{n})\) to be the set of all tempered distributions of the form \(\sum_{j} \lambda_{j}a_{j}\) (the sum converges in the topology of \(\mathcal{S}'(\mathbb{C}^{n})\)), where \(a_{j}\) are \(H_{L}^{p,q}\)-atoms and \(\sum_{j}|\lambda_{j}|^{p}<+\infty\).
The atomic quasi-norm in \(H_{L}^{p,q}(\mathbb{C}^{n})\) is defined by
where the infimum is taken over all decompositions \(f=\sum_{j} \lambda_{j}a_{j}\) and \(a_{j}\) are \(H_{L}^{p,q}\)-atoms.
The following result has been proved in [4] and [7].
Proposition 1
Let \(\frac{2n}{2n+1}< p\leq1\). Then for a tempered distribution f on \(\mathbb{C}^{n}\), the following are equivalent:
-
(i)
\(M_{\infty}f \in L^{p}(\mathbb{C}^{n})\).
-
(ii)
For some σ, \(0<\sigma<+\infty\), \(M_{\sigma}f \in L^{p}(\mathbb{C}^{n})\).
-
(iii)
For some radial function \(\varphi\in\mathcal{S}\), such that \(\int_{\mathbb{C}^{n}}\varphi(z)\, dz\neq0\), we have
$$\sup_{0< t< 1}\bigl\vert \varphi_{t}\times f(z)\bigr\vert \in L^{p}\bigl(\mathbb{C}^{n}\bigr). $$ -
(iv)
f can be decomposed as \(f=\sum_{j} \lambda_{j}a_{j}\), where \(a_{j}\) are \(H_{L}^{p,q}\)-atoms and \(\sum_{j}|\lambda_{j}|^{p}<+\infty\).
Corollary 1
Let \(\frac{2n}{2n+1}< p\leq1\) and \(1< q\le\infty\). Then \(H_{L}^{p,q}(\mathbb{C}^{n})=H^{p}_{L}(\mathbb{C}^{n})\) with equivalent norms.
Let \(\{P_{t}^{L}\}_{t>0}\) be the Poisson semigroup generated by the operator L. Then, for \(f\in L^{2}(\mathbb{C}^{n})\), the function \(e^{-t\sqrt{L}}f\) has the special Hermite expansion (cf. [11])
where \(\varphi_{k}\) are Laguerre functions. Therefore \(e^{-t\sqrt{L}}f\) is given by the twisted convolution with the kernel
The Poisson maximal function is defined by
We can characterize the Hardy space \(H_{L}^{1}(\mathbb{C}^{n})\) as follows.
Theorem 1
\(f\in H_{L}^{1}(\mathbb{C}^{n})\) if and only if \(f\in L^{1}(\mathbb{C}^{n})\) and \(M_{P}(f)\in L^{1}(\mathbb{C}^{n})\). Moreover, we have
We define the area integral associated to \(\{P_{t}^{L}\}_{t>0}\) by
the Littlewood-Paley g-function by
and we consider the \(g_{\lambda}^{*}\)-function associated with L defined by
where \(D_{t}^{k}f(z)=t^{k} (\partial_{t}^{k}P_{t}^{L}f )(z)\).
Now we can prove the main result of this paper.
Theorem 2
-
(a)
A function \(f\in H_{L}^{1}(\mathbb{C}^{n})\) if and only if its Lusin area integral \(S_{L}^{k}f\in L^{1}(\mathbb{C}^{n})\) and \(f\in L^{1}(\mathbb{C}^{n})\). Moreover, we have
$$\|f\|_{H_{L}^{1}}\sim\bigl\Vert S_{L}^{k}f\bigr\Vert _{L^{1}}. $$ -
(b)
A function \(f\in H_{L}^{1}(\mathbb{C}^{n})\) if and only if its Littlewood-Paley g-function \(\mathcal{G}_{L}^{k}f\in L^{1}(\mathbb{C}^{n})\) and \(f\in L^{1}(\mathbb{C}^{n})\). Moreover, we have
$$\|f\|_{H_{L}^{1}}\sim\bigl\Vert \mathcal{G}_{L}^{k}f \bigr\Vert _{L^{1}}. $$ -
(c)
A function \(f\in H_{L}^{1}(\mathbb{C}^{n})\) if and only if its \(g_{\lambda}^{*}\)-function \(g_{\lambda,k}^{*}f\in L^{1}(\mathbb{C}^{n})\) and \(f\in L^{1}(\mathbb{C}^{n})\), where \(\lambda>3\). Moreover, we have
$$\|f\|_{H_{L}^{1}}\sim\bigl\Vert g_{\lambda,k}^{*}f\bigr\Vert _{L^{1}}. $$
Remark 1
In this paper, we just give the proofs of our results for \(p=1\). In fact, we can prove the case \(\frac{2n}{2n+1}< p<1\) under more conditions (such as that f vanishes weakly at infinity). The proofs of the case \(\frac{2n}{2n+1}< p<1\) are quite similar to the case \(p=1\), so we omit them.
Throughout the article, we will use C to denote a positive constant, which is independent of the main parameters and may be different at each occurrence. By \(B_{1} \sim B_{2}\), we mean that there exists a constant \(C>1\) such that \(\frac{1}{C} \leq \frac{B_{1}}{B_{2}}\leq C\).
2 Preliminaries
In this section, we give some preliminaries that we will use in the sequel.
Let \(K_{t}(z)\) be the heat kernel of \(\{T_{t}^{L}\}_{t>0}\). Then we can get (cf. [11])
It is easy to prove that the heat kernel \(K_{t}(z)\) has the following estimates (cf. [8]).
Lemma 1
There exists a positive constant \(C>0\) such that
-
(i)
\(|K_{t}(z) |\leq C t^{-n}e^{-C\frac{|z|^{2}}{t}}\);
-
(ii)
\(|\nabla K_{t}(z) |\leq C t^{-n-\frac{1}{2}}e^{-C\frac{|z|^{2}}{t}}\).
Let \(Q_{t}^{k}(z)\) be the twisted convolution kernel of \(Q_{t}^{k}=t^{2k}\partial_{s}^{k}T_{s}^{L}|_{s=t^{2}}\). Then
We have the following estimates [8].
Lemma 2
There exist constants \(C, C_{k}>0\) such that
-
(i)
\(|Q_{t}^{k}(z) |\leq C_{k} t^{-2n}e^{-C t^{-2}|z|^{2}}\);
-
(ii)
\(| \nabla Q_{t}^{k}(z) |\leq C_{k} t^{-2n-1}e^{-C t^{-2}|z|^{2}}\).
By the subordination formula, we can give the following estimates as regards the Poisson kernel.
Lemma 3
There exist constants \(C_{k}>0\), \(A>0\) such that
-
(a)
$$ 0< P_{t}(z)\leq C_{k}\frac{t}{(t^{2}+A|z|^{2})^{(2n+1)/2}}; $$(5)
-
(b)
$$ \bigl\vert \nabla P_{t}(z)\bigr\vert \leq C_{k}\frac{\sqrt{t}}{(t^{2}+A|z|^{2})^{(2n+1)/2}}. $$(6)
Lemma 4
Let \(D_{t}^{k}(z)\) be the integral kernel of the operator \(D_{t}^{k}\). Then there exist constants \(C_{k}>0\), \(A>0\), such that
-
(a)
$$ \bigl|D_{t}^{k}(z) \bigr|\leq C_{k}\frac {t}{(t^{2}+A|z|^{2})^{(2n+1)/2}}; $$
-
(b)
$$ \bigl\vert \nabla D_{t}^{k}(z)\bigr\vert \leq C_{k}\frac{\sqrt{t}}{(t^{2}+A|z|^{2})^{(2n+1)/2}}. $$
We also need some basic properties about the tent space (cf. [12]).
Let \(0< p<\infty\), and \(1\leq q\leq\infty\). Then the tent space \(T^{p}_{q}\) is defined as the space of functions f on \(\mathbb{C}^{n}\times\mathbb{R}^{+}\), so that
and
where \(\Gamma(z)\) is the standard cone whose vertex is \(z\in\mathbb{C}^{n}\), i.e.,
Assume \(B(z_{0},r)\) is a ball in \(\mathbb{C}^{n}\), its tent \(\hat{B}\) is defined by \(\hat{B}=\{(w,t):|w-z_{0}|\leq r-t\}\). A function \(a(z,t)\) supported in a tent \(\hat{B}\), B a ball in \(\mathbb{C}^{n}\), is said to be an atom in the tent space \(T^{p}_{q}\) if and only if it satisfies
The atomic decomposition of \(T^{p}_{q}\) is stated as follows.
Proposition 2
When \(0< p\leq1\), then for any \(f\in T^{p}_{2}\) can be written as \(f=\sum\lambda_{k}a_{k}\), where \(a_{k}\) are atoms and \(\sum|\lambda_{k}|^{p}\leq C\|f\|_{T^{p}_{2}}^{p}\).
3 The proofs of the main results
Let
be the heat maximal function. Then we can characterize \(H_{L}^{1}(\mathbb{C}^{n})\) by the maximal function \(M_{H}f\) as follows (cf. [4] or [8]).
Lemma 5
\(f\in H_{L}^{1}(\mathbb{C}^{n})\) if and only if \(M_{H}f\in L^{1}(\mathbb{C}^{n})\) and \(f\in L^{1}(\mathbb{C}^{n})\).
Now, we give the proof of Theorem 1.
Proof of Theorem 1
If \(f\in H_{L}^{1}(\mathbb{C}^{n})\), then, by Lemma 5, we get \(M_{H}f\in L^{1}(\mathbb{C}^{n})\). Since
we have \(\|M_{P}(f)\|_{L^{1}}\leq C \|M_{H}(f)\|_{L^{1}}\), i.e., \(M_{P}f\in L^{1}(\mathbb{C}^{n})\).
For the reverse, there exists a function η defined on \((1,\infty )\) that is rapidly decreasing at ∞ and satisfies the moment conditions (cf. [13])
Let
Since
for appropriate binomial coefficients \(a_{k}\), we have
By (8) and Lemma 3, we know that Φ and any derivative of Φ are rapidly decreasing. Thus \(\Phi\in\mathcal{S}\) and
Therefore,
This proves that \(M_{P}(f)\in L^{1}(\mathbb{C}^{n})\) implies \(f\in H_{L}^{1}(\mathbb{C}^{n})\) and the proof of Theorem 1 is complete. □
In order to get our results, we need the following lemma (cf. Lemma 5 in [8]).
Lemma 6
-
(i)
The operators \(S_{L}^{k}\) and \(\mathcal{G}_{L}^{k}\) are isometries on \(L^{2}(\mathbb{C}^{n})\) up to constant factors. Exactly,
$$ \bigl\Vert \mathcal{G}_{L}^{k} f \bigr\Vert _{L^{2}}\sim \| f \|_{L^{2}},\qquad \bigl\Vert S_{L}^{k} f \bigr\Vert _{L^{2}}\sim \| f \|_{L^{2}}. $$ -
(ii)
When \(\lambda>1\), there exists a constant \(C>0\), such that
$$C^{-1}\|f\|_{L^{2}}\leq\bigl\Vert g_{\lambda,k}^{*}f\bigr\Vert _{L^{2}}\leq C\|f\|_{L^{2}}. $$
We define the new Lusin type area integral operator by
where \(\alpha>0\).
Lemma 7
It is easy to see that the above definition of the area integral operator is independent of α in the sense of \(\|(S_{L}^{\alpha}f)\|_{L^{p}}\sim \|(S_{L}^{\beta}f)\|_{L^{p}}\), for \(0<\alpha<\beta<\infty\) and \(0< p<\infty\) (cf. [12]). In the following, we use \(S_{L}^{k}\) to denote \(S_{L,1}^{k}\).
Proof of Theorem 2
(a) By Lemma 4, we can prove that there exists a constant \(C>0\) such that for any atom \(a(z)\) of \(H_{L}^{1}(\mathbb{C}^{n})\), we have
In the following, we will show that \(f\in H_{L}^{1}(\mathbb{C}^{n})\) when \(S_{L}^{k}f\in L^{1}(\mathbb{C}^{n})\) and \(f\in L^{1}(\mathbb{C}^{n})\).
We first assume that \(f\in L^{1}(\mathbb{C}^{n})\cap L^{2}(\mathbb{C}^{n})\). When \(S_{L}^{k}f\in L^{1}(\mathbb{C}^{n})\), we know \(D_{t}^{k}f\in T_{2}^{1}\). By Proposition 2, we get
where \(a_{j}(z,t)\) are atoms of \(T^{1}_{2}\) and \(\sum_{j}|\lambda_{j}|<\infty\). By the spectrum theorem (cf. [14]), we can prove
Therefore, it is sufficient to prove \(\alpha_{j}=\int_{0}^{+\infty}D_{t}^{k}a_{j}(z,t)\frac{dt}{t}\), \(i=1,2, \ldots\) , are bounded in \(H_{L}^{1}(\mathbb{C}^{n})\) uniformly, i.e., there exists a constant \(C>0\) such that for any atom \(a(z,t)\) in \(T^{1}_{2}\),
We assume that \(a(z,t)\) is supported in \(\hat{B}(z_{0},r)\), where \(\hat{B}(z_{0},r)\) denotes the tent of the ball \(B(z_{0},r)\), then
where \(B^{*}=B(z_{0}, 2r)\).
By the Hölder inequality, we get
By the self-adjointness of \(D_{t}^{k}\) and Lemma 5, we can get
This gives the proof of \(I_{1}\leq C\).
By Lemma 2, we can prove
Then we get
When \(f\in L^{1}(\mathbb{C}^{n})\), we can proceed similarly to Proposition 14 in [15]. In fact, we let \(f_{s}=T_{2^{-s}}^{L}f\), \(s\geq0\). Then, by \(f\in L^{1}(\mathbb{C}^{n})\) and Lemma 3, we know \(f_{s}\in L^{2}(\mathbb{C}^{n})\) and \(\|S_{L}^{k}f_{s}\|_{1}\leq\|S_{L}^{k}f\|_{1}\). By the above proof, we get
By the monotone convergence theorem, we have
Therefore, \(\{f_{s}\}\) is a Cauchy sequence in \(H^{1}_{L}(\mathbb{C}^{n})\) and there exists \(g\in H^{1}_{L}(\mathbb{C}^{n})\) such that
As
we know \(f=g\in H^{1}_{L}(\mathbb{C}^{n})\) and \(\|f\|_{H_{L}^{1}(\mathbb{C}^{n})}\lesssim\|S_{L}^{k}f\|_{L^{1}}\).
This gives the proof of Theorem 2(a).
(b) Firstly, by Lemma 4, we can prove that there exists a positive constant C such that for any atom \(a(z)\) of \(H_{L}^{1}(\mathbb{C}^{n})\), we have
For the reverse, by (a), it is sufficient to prove
Our proof is motivated by [16]. Let
Then
Therefore
Hence
Let \(\mathbf{X}=L^{2} ((0,\infty), t^{2k-1}\, dt )\). Then
Therefore \(F\in H_{\mathbf{X}}^{1}(\mathbb{C}^{n})\), here \(H_{\mathbf{X}}^{1}(\mathbb{C}^{n})\) can be seen as a vector-valued Hardy space. This shows that \(\widetilde{S_{L}^{1}}F(z)\in L^{1}(\mathbb{C}^{n})\), where
By
we get \(S_{L}^{k+1}f\in L^{1}(\mathbb{C}^{n})\). Then \(f\in H_{L}^{1}(\mathbb{C}^{n})\) follows from (a).
This completes the proof of Theorem 2(b).
(c) By \(S_{L}^{k}f(z)\leq (\frac{1}{2} )^{2\lambda n}g_{\lambda,k}^{*}f(z)\), we know \(f\in H_{L}^{1}(\mathbb{C}^{n})\) when \(g_{\lambda,k}^{*}f\in L^{1}(\mathbb{C}^{n})\) and \(f\in L^{1}(\mathbb{C}^{n})\). In the following, we show there exists a constant \(C>0\) such that for any atom \(a(z)\) of \(H^{1}_{L}(\mathbb{C}^{n})\), we have
Without loss of generality, we may assume \(a(z)\) is supported in \(B(0,r)\), then
Therefore,
By part (a), we have \(\|S_{L}^{k}a\|_{L^{1}}\leq C\). In the following, we will prove that
First, by Lemma 5, we can obtain
Let \(z\notin B(0, 2^{i+2}r)\). We have
For \(z \notin B(0,2^{i+2}r)\), when \(|z-w|< 2^{i}t \leq\frac{|z|}{2}\), we have \(|w| \sim|z|\). By Lemma 4, we get
By Lemma 4 again, we get
Thus,
Therefore, when \(\lambda>3\), we prove \(\|g_{\lambda,k}^{*}a \| _{L^{1}}\leq C\). Then Theorem 2(c) is proved. □
References
Anderson, RF: The multiplicative Weyl functional calculus. J. Funct. Anal. 9, 423-440 (1972)
Grassman, A, Loupias, G, Stein, EM: An algebra of pseudo-differential operators and quantum mechanics in phase space. Ann. Inst. Fourier (Grenoble) 18, 343-368 (1969)
Peetre, J: The Weyl transform and Laguerre polynomials. Matematiche 27, 301-323 (1972)
Mauceri, G, Picardello, M, Ricci, F: A Hardy space associated with twisted convolution. Adv. Math. 39, 270-288 (1981)
Mauceri, G, Picardello, M, Ricci, F: Twisted convolution, Hardy spaces and Hörmander multipliers. In: Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980). Rend. Circ. Mat. Palermo (2), pp. 191-202 (1981)
Mauceri, G: The Weyl transform and bounded operators on \(L^{p}(\mathbb{R}^{n})\). J. Funct. Anal. 39, 408-429 (1980)
Huang, J, Wang, J: \(\mathcal{H}^{p}\)-Boundedness of Weyl multiplier. J. Inequal. Appl. 2014, 422 (2014)
Huang, J: Some characterizations of Hardy space associated with twisted convolution. Bull. Aust. Math. Soc. 79, 405-417 (2009)
Huang, J: The boundedness of Weyl multiplier on Hardy space associated with twisted convolution. Bull. Sci. Math. 133, 588-596 (2009)
Huang, J, Liu, Y: The molecular characterization of Hardy space associated with twisted convolution. J. Funct. Spaces 2014, 1-6 (2014)
Thangavelu, S: Lectures on Hermite and Laguerre Expansions. Math. Notes, vol. 42. Princeton University Press, Princeton (1993)
Coifman, RR, Meyer, Y, Stein, EM: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304-335 (1985)
Stein, EM: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Stein, EM: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Annals of Mathematics Studies. Princeton University Press, Princeton (1970)
Auscher, P, Russ, E: Hardy spaces and divergence operators on strongly Lipschitz domain of \(\mathbb{R}^{n}\). J. Funct. Anal. 201, 148-184 (2003)
Folland, GB, Stein, EM: Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton (1982)
Acknowledgements
This paper is supported by National Natural Science Foundation of China (11471018), the Beijing Natural Science Foundation (1142005).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Huang, J., Xing, Z. New real-variable characterizations of Hardy spaces associated with twisted convolution. J Inequal Appl 2015, 170 (2015). https://doi.org/10.1186/s13660-015-0687-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-015-0687-3