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The ‘twisted convolution’ of two functions f and g on C
n can now be defined as

(f × g)(z) =
�

Cn
f (w)�–wg(z)dw

=
�

Cn
f (z – w)g(w) fl�(z,w)dw,

where �(z,w) = exp( i
 Im(z • flw)). More about twisted convolution can be found in [–].

In [], the authors defined the Hardy space H
L(Cn) associated with a twisted convo-

lution. They gave several characterizations of H
L(Cn) via maximal functions, the atomic

decomposition, and the behavior of the local Riesz transform. As applications, the bound-
edness of Hömander multipliers on Hardy spaces is considered in []. The ‘twisted can-
celation’ and Weyl multipliers were introduced for the first time in []. Recently, Huang
and Wang [] defined the Hardy space Hp

L (Cn) associated with a twisted convolution for
n

n+ < p � . Huang gave the characterizations of the Hardy space associated with twisted
convolution by the Lusin area integral function and the Littlewood-Paley function defined
by the heat kernel in [] and established the boundedness of the Weyl multiplier by these
characterizations in []. Recently, Huang and Liu gave the molecular characterization of
Hardy space associated with twisted convolution in []. The purpose of this paper is to
give some new real-variable characterizations for Hp

L (Cn), including the Poisson maxi-
mal function, the Lusin area integral, and the Littlewood-Paley g-function defined by the
Poisson kernel.

We first give some basic notations concerning Hp
L (Cn). Let B denote the class of C�-

functions � on C
n, supported on the ball B(, ) such that ���� �  and ����� � . For

t > , let �t(z) = t–n�(z/t). Given � > ,  < � � +�, and a tempered distribution f , define
the grand maximal function

M� f (z) = sup
��B

sup
<t<�

�
��t × f (z)

�
� .

Then the Hardy space Hp
L (Cn) can be defined by

Hp
L
	
C

n
 =
�
f � S �	

C
n
 : M�f � Lp

	
C

n
� .

For any f �Hp
L (Cn), define �f �Hp

L (Cn) = �M�f �Lp .

Definition  Let n
n+ < p �  � q � � and p �= q. A function a(z) is a Hp,q

L -atom for the
Hardy space Hp

L (Cn) associated to a ball B(z, r) if

() suppa 	 B(z, r);

() �a�q �
�
�B(z, r)

�
�/q–/p;

()
�

Cn
a(w) fl�(z,w)dw = .

We define the atomic Hardy space Hp,q
L (Cn) to be the set of all tempered distributions of

the form


j �jaj (the sum converges in the topology of S �(Cn)), where aj are Hp,q
L -atoms

and


j |�j|p < +�.
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The atomic quasi-norm in Hp,q
L (Cn) is defined by

�f �L-atom = inf
�� �

j

|�j|p
� /p�

,

where the infimum is taken over all decompositions f =


j �jaj and aj are Hp,q
L -atoms.

The following result has been proved in [] and [].

Proposition  Let n
n+ < p� . Then for a tempered distribution f onCn, the following are

equivalent:
(i) M�f � Lp(Cn).

(ii) For some � ,  < � < +�, M� f � Lp(Cn).
(iii) For some radial function � � S , such that

�
Cn �(z)dz �= , we have

sup
<t<

�
��t × f (z)

�
� � Lp

	
C

n
 .

(iv) f can be decomposed as f =


j �jaj, where aj are Hp,q
L -atoms and


j |�j|p < +�.

Corollary  Let n
n+ < p �  and  < q � �. Then Hp,q

L (Cn) = Hp
L (Cn) with equivalent

norms.

Let {PL
t }t> be the Poisson semigroup generated by the operator L. Then, for f � L(Cn),

the function e–t


Lf has the special Hermite expansion (cf. [])

e–t


Lf (z) = (� )–n

��

k=

e–



k+ntf × �k(z),

where �k are Laguerre functions. Therefore e–t


Lf is given by the twisted convolution with

the kernel

Pt(z) = (� )–n
��

k=

e–



k+nt�k(z). ()

The Poisson maximal function is defined by

MP(f )(z) = sup
t>

�
�Pt × f (z)

�
� .

We can characterize the Hardy space H
L(Cn) as follows.

Theorem  f �H
L(Cn) if and only if f � L(Cn) and MP(f ) � L(Cn). Moreover, we have

�f �H
L
�

�
� MP(f )

�
�
L .

We define the area integral associated to {PL
t }t> by

	
SkLf



(z) =

� � +�



�

|z–w|<t

�
�Dk

t f (w)
�
� dwdt

tn+

� /

,
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the Littlewood-Paley g-function by

Gk
L(f )(z) =

� � �



�
�Dk

t f (z)
�
� dt

t

� /

,

and we consider the g�
�-function associated with L defined by

g�
�,kf (z) =

� � �



�

Cn

�
t

t + |z – w|

� �n�
�Dk

t f (w)
�
� dwdt

tn+

� /

,

where Dk
t f (z) = tk(�k

t PL
t f )(z).

Now we can prove the main result of this paper.

Theorem 
(a) A function f �H

L(Cn) if and only if its Lusin area integral SkLf � L(Cn) and
f � L(Cn). Moreover, we have

�f �H
L
�

�
� SkLf

�
�
L .

(b) A function f �H
L(Cn) if and only if its Littlewood-Paley g-function Gk

Lf � L(Cn) and
f � L(Cn). Moreover, we have

�f �H
L
�

�
� Gk

Lf
�
�
L .

(c) A function f �H
L(Cn) if and only if its g�

�-function g�
�,kf � L(Cn) and f � L(Cn),

where � > . Moreover, we have

�f �H
L
�

�
� g�

�,kf
�
�
L .

Remark  In this paper, we just give the proofs of our results for p = . In fact, we can prove
the case n

n+ < p <  under more conditions (such as that f vanishes weakly at infinity). The
proofs of the case n

n+ < p <  are quite similar to the case p = , so we omit them.

Throughout the article, we will useC to denote a positive constant, which is independent
of the main parameters and may be different at each occurrence. By B � B, we mean that
there exists a constant C >  such that 

C � B
B

� C.

2 Preliminaries
In this section, we give some preliminaries that we will use in the sequel.

Let Kt(z) be the heat kernel of {TL
t }t>. Then we can get (cf. [])

Kt(z) = (� )–n(sinht)–ne– 
 |z|(cotht). ()

It is easy to prove that the heat kernel Kt(z) has the following estimates (cf. []).

Lemma  There exists a positive constant C >  such that

(i) |Kt(z)| � Ct–ne–C |z|
t ;

(ii) |�Kt(z)| � Ct–n– 
 e–C |z|

t .
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Let Qk
t (z) be the twisted convolution kernel of Qk

t = tk�k
s TL

s |s=t . Then

Qk
t (z) = tk�k

s Ks(z)|s=t .

We have the following estimates [].

Lemma  There exist constants C,Ck >  such that
(i) |Qk

t (z)| � Ckt–ne–Ct–|z| ;
(ii) |�Qk

t (z)| � Ckt–n–e–Ct–|z| .

By the subordination formula, we can give the following estimates as regards the Poisson
kernel.

Lemma  There exist constants Ck > , A >  such that
(a)

 < Pt(z) � Ck
t

(t + A|z|)(n+)/ ; ()

(b)

�
��Pt(z)

�
� � Ck



t

(t + A|z|)(n+)/ . ()

Lemma  Let Dk
t (z) be the integral kernel of the operator Dk

t . Then there exist constants
Ck > , A > , such that

(a)

�
�Dk

t (z)
�
� � Ck

t
(t + A|z|)(n+)/ ;

(b)

�
��Dk

t (z)
�
� � Ck



t

(t + A|z|)(n+)/ .

We also need some basic properties about the tent space (cf. []).
Let  < p < �, and  � q � �. Then the tent space Tp

q is defined as the space of functions
f on C

n ×R
+, so that

� �

	(z)

�
�f (w, t)

�
�q dwdt

tn+

� /q

� Lp
	
C

n
 , when  � q < �

and

sup
(w,t)�	(z)

�
�f (w, t)

�
� � Lp

	
C

n
 , when q = �,

where 	(z) is the standard cone whose vertex is z �C
n, i.e.,

	(z) =
�

(w, t) : |w – z| < t
�

.
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AssumeB(z, r) is a ball inC
n, its tent �B is defined by �B = {(w, t) : |w–z| � r–t}. A function

a(z, t) supported in a tent �B, B a ball in C
n, is said to be an atom in the tent space Tp

q if and
only if it satisfies

� �

�B

�
�a(z, t)

�
� dzdt

t

� /

� |B|/–/p.

The atomic decomposition of Tp
q is stated as follows.

Proposition  When  < p � , then for any f � Tp
 can be written as f =


�kak , where

ak are atoms and


|�k|p � C�f �p
Tp


.

3 The proofs of the main results
Let

MHf (z) = sup
t>

�
�Kt × f (z)

�
� , f � L	

C
n


be the heat maximal function. Then we can characterize H
L(Cn) by the maximal function

MHf as follows (cf. [] or []).

Lemma  f �H
L(Cn) if and only if MHf � L(Cn) and f � L(Cn).

Now, we give the proof of Theorem .

Proof of Theorem  If f �H
L(Cn), then, by Lemma , we get MHf � L(Cn). Since

Pt(z) =




�

� �


Kt/µ(z)e–µµ–/ dµ,

we have �MP(f )�L � C�MH (f )�L , i.e., MPf � L(Cn).
For the reverse, there exists a function 
 defined on (,�) that is rapidly decreasing at

� and satisfies the moment conditions (cf. [])

� �



(t)dt = ,

� �


tk
(t)dt = , k = , , . . . .

Let

�(z) =
� �



(t)Pt(z)dt. ()

Since

	
 + s
 –(n+)/ =

�

k<R

aksk + O
	
sR



,  � s < �

for appropriate binomial coefficients ak , we have

t
(t + A|z|)(n+)/ =

�

k<R

akt|z|––n
�

t
|z|

� k

+ O
	
tR+|z|–n––R


. ()
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By () and Lemma , we know that � and any derivative of � are rapidly decreasing. Thus
� � S and

�

Cn
�(z)dz =

� �



(t)dt = .

Therefore,

M�(f )(z) � MP(f )(z)
�� �



�
�
(t)

�
� dt � CMP(f )(z).

This proves that MP(f ) � L(Cn) implies f � H
L(Cn) and the proof of Theorem  is com-

plete. �

In order to get our results, we need the following lemma (cf. Lemma  in []).

Lemma 
(i) The operators SkL and Gk

L are isometries on L(Cn) up to constant factors. Exactly,

�
� Gk

Lf
�
�
L � �f �L ,

�
� SkLf

�
�
L � �f �L .

(ii) When � > , there exists a constant C > , such that

C–�f �L �
�
� g�

�,kf
�
�
L � C�f �L .

We define the new Lusin type area integral operator by

	
SkL,�f



(z) =

� � +�



�

|z–w|<�t

�
�Dk

t f (w)
�
� dwdt

tn+

� /

,

where � > .

Lemma  It is easy to see that the above definition of the area integral operator is indepen-
dent of � in the sense of �(S�

L f )�Lp � �(S
L f )�Lp , for  < � <  < � and  < p < � (cf. []).

In the following, we use SkL to denote SkL,.

Proof of Theorem  (a) By Lemma , we can prove that there exists a constant C >  such
that for any atom a(z) of H

L(Cn), we have

�
� SkLa

�
�
L � C. ()

In the following, we will show that f �H
L(Cn) when SkLf � L(Cn) and f � L(Cn).

We first assume that f � L(Cn)  L(Cn). When SkLf � L(Cn), we know Dk
t f � T 

 . By
Proposition , we get

Dk
t f (z) =

�

j

�jaj(z, t), ()
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where aj(z, t) are atoms of T 
 and


j |�j| < �. By the spectrum theorem (cf. []), we can

prove

f (z) = 
� �


Dk

t
	
Dk

t f (z)

 dt
t

. ()

By () and (), we get

f (z) = 
� +�


Dk

t

� �

j

�jaj(z, t)
�
dt
t

= C
�

j

�j

� +�


Dk

t aj(z, t)
dt
t

.

Therefore, it is sufficient to prove �j =
� +�

 Dk
t aj(z, t) dtt , i = , , . . . , are bounded in H

L(Cn)
uniformly, i.e., there exists a constant C >  such that for any atom a(z, t) in T 

 ,

���H
L

=
�
�
�
�

� +�


Dk

t a(z, t)
dt
t

�
�
�
�
H
L

� C.

We assume that a(z, t) is supported in �B(z, r), where �B(z, r) denotes the tent of the ball
B(z, r), then

�
�
� sup

t>

�
�e–t



L�(z)

�
�
�
�
�
L

�
�
�
�
�
sup
t>

�
�e–t



L�(z)

�
�
�
�B�

�
�
�
L

+
�
�
�
�
sup
t>

�
�e–t



L�(z)

�
�
�
�(B�)c

�
�
�
L

= I + I,

where B� = B(z, r).
By the Hölder inequality, we get

I �
�
�B��

�/
� �

Cn

�
sup
t>

�
�e–t



L�(z)

�
�
� 

dz
� /

�
�
�B��

�/���L .

By the self-adjointness of Dk
t and Lemma , we can get

���L = sup
��L �

�

Cn
�(z) fl(z)dz

= sup
��L �

�

Cn

� � +�


Dk

t a(z, t)
dt
t

�
fl(z)dz

= sup
��L �

� +�



�

Cn
Dk

t a(z, t) fl(z)dz
dt
t

= sup
��L �

� +�



�

Cn
a(z, t)Dk

t
fl(z)dz

dt
t

� sup
��L �

� �

Cn

� +�



�
�a(z, t)

�
� dzdt

t

� /

×
� �

Cn

� +�



�
�Dk

t
fl(z)

�
� dzdt

t

� /

� |B|–/��L � |B|–/.

This gives the proof of I � C.
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By Lemma , we can prove

sup
s>

�
�
�
�e

–s


L

� +�


Dk

t a(z, t)
dt
t

�
�
�
�

= sup
s>

�
�
�
�e

–s


L

� +�


(–t



L)ke–t



La(z, t)

dt
t

�
�
�
�

= sup
s>

�
�
�
�

� +�


(–t



L)ke–(s+t)



La(z, t)

dt
t

�
�
�
�

= sup
s>

�
�
�
�

� +�



�
t

s + t

� k 	
–(s + t)



L

 ke–(s+t)



La(z, t)

dt
t

�
�
�
�

= sup
s>

�
�
�
�

� +�



�
t

s + t

� k �

Cn
Dk

s+t(z – w)a(w, t)
dwdt
t

�
�
�
�

� sup
s>

� +�



t
s + t

�

Cn

s + t
((s + t) + A|z – w|)(n+)/

�
�a(w, t)

�
� dwdt

t

� sup
s>

� � r



�

B
(s + t)–n

�
 + A

|z – w|

(s + t)

� –(n+)� t
s + t

�  dwdt
t

� /

×
� � r



�

B

�
�a(w, t)

�
� dwdt

t

� /

� |B|–/|z – z|–(n+)
� � r



�

B
t dwdt

� /

� Cr|z – z|–(n+).

Then we get

I � Cr
�

(B�)c
|z – z|–(n+) dz � C.

When f � L(Cn), we can proceed similarly to Proposition  in []. In fact, we let fs =
TL

–s f , s � . Then, by f � L(Cn) and Lemma , we know fs � L(Cn) and �SkLfs� � �SkLf �.
By the above proof, we get

�fs�H
L(Cn) �

�
� SkLfs

�
�
L �

�
� SkLf

�
�
L .

By the monotone convergence theorem, we have

�fs – fn�H
L
�

�
� SkL(fs – fn)

�
�
L � , when s,n� +�.

Therefore, {fs} is a Cauchy sequence in H
L(Cn) and there exists g �H

L(Cn) such that

lim
s�+�

fs = g in H
L
	
C

n
 .

As

lim
s�+�

fs = f in (BMOL)�,

we know f = g �H
L(Cn) and �f �H

L(Cn) � �SkLf �L .
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This gives the proof of Theorem (a).
(b) Firstly, by Lemma , we can prove that there exists a positive constant C such that

for any atom a(z) of H
L(Cn), we have

�
� Gk

La
�
�
L � C.

For the reverse, by (a), it is sufficient to prove

�
� Sk+

L f
�
�
L � C

�
� Gk

Lf
�
�
L . ()

Our proof is motivated by []. Let

F(z)(t) =
	
�k
t e

–t


Lf



(z), V (z, s) = e–s



LF(z).

Then

V (z, s)(t) = e–s


L	

�k
t e

–t


Lf



(z) =

	
�k
t e

–(s+t)


Lf



(z).

Therefore
� +�



�
�V (z, s)(t)

�
�tk– dt =

� +�



�
�	 �k

t e
–(s+t)



Lf



(z)

�
�tk– dt

=
� +�

s

�
�	 �k

t e
–t



Lf



(z)

�
�(t – s)k– dt.

Hence

sup
s>

� +�



�
�V (z, s)(t)

�
�tk– dt �

� +�



�
�	 tk�k

t e
–t



Lf



(z)

�
� dt

t
=

	
Gk
Lf (z)


 .

Let X = L((,�), tk– dt). Then

sup
s>

�
� e–s



LF(z)

�
�

X = Gk
Lf (z) � L	

C
n
 .

Therefore F � H
X(Cn), here H

X(Cn) can be seen as a vector-valued Hardy space. This
shows that �S

LF(z) � L(Cn), where

�S
LF(z) =

� � +�



�

|z–w|<t

�
� D

t F(w)
�
� 

X
dwdt
tn+

� /

.

By

	
S
LF(z)


  =
� +�



�

|z–w|<t

�
� D

t (z)
�
� 

X
dwdt
tn+

=
� +�



�

|z–w|<t

� +�



�
�(–t



L)e–t



LF(w)(s)

�
�sk– ds

dwdt
tn+

=
� +�



� +�



�

|z–w|<t

�
�(–



L)k+e–(s+t)



Lf (w)

�
�t–nsk– dwdt ds
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=
� +�



� +�

s

�

|z–w|<(t–s)

�
�(–



L)k+e–t



Lf (w)

�
�(t – s)–nsk– dwdt ds

=
� +�



� t



�

|z–w|<(t–s)

�
�(–



L)k+e–t



Lf (w)

�
�(t – s)–nsk– dwdsdt

�
� +�



� t/



�

|z–w|<(t–s)

�
�(–



L)k+e–t



Lf (w)

�
�(t – s)–nsk– dwdsdt

�
� +�



� t/



�

|z–w|<t

�
�(–



L)k+e–t



Lf (w)

�
�t–nsk– dwdsdt

=


kk

� +�



�

|z–w|<t

�
�(–t



L)k+e–t



Lf (w)

�
�t––n dwdt

=


kk

� +�



�

|z–w|<t

�
�Dk+

t f (w)
�
� dwdt

tn+ =


kk

	
Sk+
L f (z)


 ,

we get Sk+
L f � L(Cn). Then f �H

L(Cn) follows from (a).
This completes the proof of Theorem (b).
(c) By SkLf (z) � ( 

 )�ng�
�,kf (z), we know f �H

L(Cn) when g�
�,kf � L(Cn) and f � L(Cn). In

the following, we show there exists a constant C >  such that for any atom a(z) of H
L(Cn),

we have

�
� g�

�,ka
�
�
L � C.

Without loss of generality, we may assume a(z) is supported in B(, r), then

g�
�,ka(z) =

� �



�

Cn

�
t

t + |z – w|

� �n�
�Dk

t a(w)
�
� dwdt

tn+

=
� �



�

|z–w|<t

�
t

t + |z – w|

� �n�
�Dk

t a(w)
�
� dwdt

tn+

+
��

i=

� �



�

i–t�|z–w|<it

�
t

t + |z – w|

� �n�
�Dk

t a(w)
�
� dwdt

tn+

� CS
La(z) +

��

i=

–i�nSkL,ia(z).

Therefore,

�
� g�

�,ka
�
�
L � C

�
� S

La
�
�
L +

��

i=

–i�n�� SkL,ia
�
�
L .

By part (a), we have �SkLa�L � C. In the following, we will prove that

�
� SkL,ia

�
�
L � Cin. ()

First, by Lemma , we can obtain

�
� SkL,ia

�
�
L(B(,i+r)) �

�
�B

	
, i+r


 ��/�
� SkL,ia

�
�
L � Cin. ()
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Let z /� B(, i+r). We have

SkL,ia(z) �
� �



�

|z–w|<it

� �

B(,r)

�
�Dk

t (w – v) – Dk
t (w)

�
�
�
�a(v)

�
� dv

�  dwdt
tn+

�
� |z|

i+



�

|z–w|<it
(• • • ) dwdt

tn+ +
� �

|z|
i+

�

|z–w|<it
(• • • ) dwdt

tn+

= I + I.

For z /� B(, i+r), when |z – w| < it � |z|
 , we have |w| � |z|. By Lemma , we get

I � C
� |z|

i+



�

|z–w|<it

� �

B(,r)



t

(t + A|w|)(n+)/ |v|
�
�a(v)

�
� dv

�  dwdt
tn+

� Cin
� |z|

i+


t–n

�
|z|
t

� –(n+)� r
t

�  dt
t

� Cin–i r

|z|n+ .

By Lemma  again, we get

I � C
� �

|z|
i+

�

|z–w|<it

� �

B(,r)
t–n

�
r
t

� �
�a(v)

�
� dv

�  dwdt
tn+

� Cin
� �

|z|
i+

t–n
�
r
t

�  dt
t

� Ci(n+) r

|z|(n+) .

Thus,

�

|z|�i+r

�
�SkL,ia(z)

�
� dz � Cin+i

�

|z|�i+r

r
|z|n+ dz � Cin. ()

Therefore, when � > , we prove �g�
�,ka�L � C. Then Theorem (c) is proved. �
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