- Research
- Open Access
- Published:
Hybrid extragradient viscosity method for general system of variational inequalities
Journal of Inequalities and Applications volume 2015, Article number: 150 (2015)
Abstract
In this paper, we introduce a hybrid extragradient viscosity iterative algorithm for finding a common element of the set of solutions of a general mixed equilibrium problem, the set of solutions of a general system of variational inequalities, the set of solutions of a split feasibility problem (SFP), and the set of common fixed points of finitely many nonexpansive mappings and a strict pseudocontraction in a real Hilbert space. The iterative algorithm is based on Korpelevich’s extragradient method, viscosity approximation method, Mann’s iteration method, hybrid steepest-descent method and gradient-projection method (GPM) with regularization. We derive the strong convergence of the iterative algorithm to a common element of these sets, which also solves some hierarchical variational inequality.
1 Introduction
Let H be a real Hilbert space with the inner product \(\langle\cdot ,\cdot\rangle\) and the norm \(\|\cdot\|\), C be a nonempty closed convex subset of H and \(P_{C}\) be the metric projection of H onto C. Let \(S:C\to C\) be a self-mapping on C. We denote by \({\operatorname{Fix}}(S)\) the set of fixed points of S and by R the set of all real numbers. A mapping \({\mathcal{A}}:C\to H\) is called L-Lipschitz continuous if there exists a constant \(L\geq0\) such that
In particular, if \(L=1\) then \({\mathcal{A}}\) is called a nonexpansive mapping; if \(L\in[0,1)\) then \({\mathcal{A}}\) is called a contraction. A mapping \(T:C\to C\) is called ξ-strictly pseudocontractive if there exists a constant \(\xi\in [0,1)\) such that
In particular, if \(\xi=0\), then T is a nonexpansive mapping.
Let \({\mathcal{A}}:C\to H\) be a nonlinear mapping on C. We consider the following variational inequality problem (VIP): find a point \(\bar{x}\in C\) such that
The solution set of VIP (1.1) is denoted by \({\operatorname {VI}}(C,{\mathcal{A}})\).
VIP (1.1) was first discussed by Lions [1] and now it is well known. Variational inequalities have extensively been investigated; see the monographs [2–6]. It is well known that if \({\mathcal{A}}\) is a strongly monotone and Lipschitz continuous mapping on C, then VIP (1.1) has a unique solution. In the literature, the recent research work shows that variational inequalities like VIP (1.1) cover several topics, for example, monotone inclusions, convex optimization and quadratic minimization over fixed point sets; see [7–11] for more details.
In 1976, Korpelevich [12] proposed an iterative algorithm for solving VIP (1.1) in the Euclidean space \({\mathbf{R}}^{n}\):
with \(\tau>0\) a given number, which is known as the extragradient method. The literature on the VIP is vast, and Korpelevich’s extragradient method has received great attention given by many authors who improved it in various ways; see, e.g., [11, 13–21] and the references therein, to name but a few.
On the other hand, let C and Q be nonempty closed convex subsets of infinite-dimensional real Hilbert spaces H and \({\mathcal{H}}\), respectively. The split feasibility problem (SFP) is to find a point \(x^{*}\) with the property
where \(A\in B(H,{\mathcal{H}})\) and \(B(H,{\mathcal{H}})\) denotes the family of all bounded linear operators from H to \({\mathcal{H}}\). We denote by Γ the solution set of the SFP.
In 1994, the SFP was first introduced by Censor and Elfving [22], in finite-dimensional Hilbert spaces, for modeling inverse problems which arise from phase retrievals and in medical image reconstruction. A number of image reconstruction problems can be formulated as the SFP; see, e.g., [23] and the references therein. Recently, it has been found that the SFP can also be applied to study intensity-modulated radiation therapy (IMRT); see, e.g., [24, 25] and the references therein. In the recent past, a wide variety of iterative methods have been used in signal processing and image reconstruction and for solving the SFP; see, e.g., [13, 15, 18, 19, 23–28] and the references therein. A seemingly more popular algorithm that solves the SFP is the CQ algorithm of Byrne [23, 27] which is found to be a gradient-projection method (GPM) in convex minimization. However, it remains a challenge how to implement the CQ algorithm in the case where the projections \(P_{C}\) and/or \(P_{Q}\) fail to have closed-form expressions, though theoretically we can prove the (weak) convergence of the algorithm.
Very recently, Xu [26] gave a continuation of the study on the CQ algorithm and its convergence. He applied Mann’s algorithm to the SFP and proposed an averaged CQ algorithm which was proved to be weakly convergent to a solution of the SFP. He also established the strong convergence result, which shows that the minimum-norm solution can be obtained.
Throughout this paper, assume that the SFP is consistent, that is, the solution set Γ of the SFP is nonempty. Let \(f:H\to{\mathbf{R}}\) be a continuous differentiable function. The minimization problem
is ill-posed. Therefore, Xu [26] considered the following Tikhonov regularization problem:
where \(\alpha>0\) is the regularization parameter.
Very recently, by combining the gradient-projection method with regularization and extragradient method due to Nadezhkina and Takahashi [14], Ceng et al. [19] proposed a Mann-type extragradient-like algorithm, and proved that the sequences generated by the proposed algorithm converge weakly to a common solution of SFP (1.2) and the fixed point problem of a nonexpansive mapping.
Theorem CAY
(see Theorem 3.2 in [19])
Let \(T:C\to C\) be a nonexpansive mapping such that \({\operatorname{Fix}}(T)\cap{ \varGamma }\neq \emptyset\). Assume that \(0<\lambda<\frac{2}{\|A\|^{2}}\), and let \(\{x_{n}\} \) and \(\{y_{n}\}\) be the sequences in C generated by the following Mann-type extragradient-like algorithm:
where the sequences of parameters \(\{\alpha_{n}\}\), \(\{\beta_{n}\}\) and \(\{ \gamma_{n}\}\) satisfy the following conditions:
-
(i)
\(\sum^{\infty}_{n=0}\alpha_{n}<\infty\);
-
(ii)
\(\{\beta_{n}\}\subset[0,1]\) and \(0<\liminf_{n\to\infty}\beta_{n}\leq \limsup_{n\to\infty}\beta_{n}<1\);
-
(iii)
\(\{\gamma_{n}\}\subset[0,1]\) and \(0<\liminf_{n\to\infty}\gamma _{n}\leq\limsup_{n\to\infty}\gamma_{n}<1\).
Then both the sequences \(\{x_{n}\}\) and \(\{y_{n}\}\) converge weakly to an element \(z\in{\operatorname{Fix}}(T)\cap{ \varGamma }\).
In this paper, we consider the following general mixed equilibrium problem (GMEP) (see also [29, 30]) of finding \(x\in C\) such that
where \({\varTheta },h:C\times C\to{\mathbf{R}}\) are two bi-functions. We denote the set of solutions of GMEP (1.3) by \({\operatorname {GMEP}}({\varTheta },h)\). GMEP (1.3) is very general; for example, it includes the following equilibrium problems as special cases.
As an example, in [16, 31, 32] the authors considered and studied the generalized equilibrium problem (GEP) which is to find \(x\in C\) such that
The set of solutions of GEP is denoted by \({\operatorname{GEP}}({\varTheta },{\mathcal{A}})\).
In [29, 33, 34], the authors considered and studied the mixed equilibrium problem (MEP) which is to find \(x\in C\) such that
The set of solutions of MEP is denoted by \({\operatorname{MEP}}({\varTheta },\varphi)\).
In [35–37], the authors considered and studied the equilibrium problem (EP) which is to find \(x\in C\) such that
The set of solutions of EP is denoted by \({\operatorname{EP}}({\varTheta })\). It is worth to mention that the EP is a unified model of several problems, namely, variational inequality problems, optimization problems, saddle point problems, complementarity problems, fixed point problems, Nash equilibrium problems, etc.
Throughout this paper, it is assumed as in [38] that \({\varTheta }:C\times C\to{\mathbf{R}}\) is a bi-function satisfying conditions (θ1)-(θ3) and \(h:C\times C\to{\mathbf{R}}\) is a bi-function with restrictions (h1)-(h3), where
- (θ1):
-
\({\varTheta }(x,x)=0\) for all \(x\in C\);
- (θ2):
-
Θ is monotone (i.e., \({\varTheta }(x,y)+{\varTheta }(y,x)\leq0\), \(\forall x,y\in C\)) and upper hemicontinuous in the first variable, i.e., for each \(x,y,z\in C\),
$$\limsup_{t\to0^{+}}{\varTheta }\bigl(tz+(1-t)x,y\bigr)\leq{ \varTheta }(x,y); $$ - (θ3):
-
Θ is lower semicontinuous and convex in the second variable;
- (h1):
-
\(h(x,x)=0\) for all \(x\in C\);
- (h2):
-
h is monotone and weakly upper semicontinuous in the first variable;
- (h3):
-
h is convex in the second variable.
For \(r>0\) and \(x\in H\), let \(T_{r}:H\to2^{C}\) be a mapping defined by
called the resolvent of Θ and h.
Assume that C is the fixed point set of a nonexpansive mapping \(T:H\to H\), i.e., \(C={\operatorname{Fix}}(T)\). Let \(F:H\to H\) be η-strongly monotone and κ-Lipschitzian with positive constants \(\eta,\kappa>0\). Let \(u_{0}\in H\) be given arbitrarily and \(\{\lambda_{n}\}^{\infty}_{n=1}\) be a sequence in \([0,1]\). The hybrid steepest-descent method introduced by Yamada [39] is the algorithm
where I is the identity mapping on H.
In 2003, Xu and Kim [40] proved the following strong convergence result.
Theorem XK
(see Theorem 3.1 in [40])
Assume that \(0<\mu <2\eta/\kappa^{2}\). Assume also that the control conditions hold for \(\{\lambda_{n}\}^{\infty}_{n=1}\): \(\lim_{n\to\infty}\lambda_{n}=0\), \(\sum^{\infty}_{n=1}\lambda_{n}=\infty\) and \(\lim_{n \to\infty}\lambda_{n}/\lambda_{n+1}=1\) (or equivalently, \(\lim_{n\to \infty}(\lambda_{n}-\lambda_{n+1})/\lambda_{n+1}=0\)). Then the sequence \(\{u_{n}\}\) generated by algorithm (1.4) converges strongly to the unique solution \(u^{*}\) in \({\operatorname{Fix}} (T)\) to the hierarchical VIP:
Let \(F_{1},F_{2}:C\to H\) be two mappings. Consider the following general system of variational inequalities (GSVI) of finding \((x^{*},y^{*})\in C\times C\) such that
where \(\nu_{1}>0\) and \(\nu_{2}>0\) are two constants. The solution set of GSVI (1.6) is denoted by \({\operatorname{GSVI}}(C,F_{1},F_{2})\).
In particular, if \(F_{1}=F_{2}={\mathcal{A}}\), then the GSVI (1.6) reduces to the following problem of finding \((x^{*},y^{*})\in C\times C\) such that
which is defined by Verma [41] and it is called a new system of variational inequalities (NSVI). Further, if \(x^{*}=y^{*}\) additionally, then the NSVI reduces to the classical VIP (1.1). In 2008, Ceng et al. [21] transformed GSVI (1.6) into the fixed point problem of the mapping \(G=P_{C}(I-\nu _{1}F_{1})P_{C}(I-\nu_{2}F_{2})\), that is, \(Gx^{*}=x^{*}\), where \(y^{*}= P_{C}(I-\nu_{2}F_{2})x^{*}\). Throughout this paper, the fixed point set of the mapping G is denoted by Ξ.
On the other hand, if C is the fixed point set \({\operatorname {Fix}}(T)\) of a nonexpansive mapping T and S is another nonexpansive mapping (not necessarily with fixed points), then VIP (1.1) becomes the variational inequality problem of finding \(x^{*}\in {\operatorname{Fix}}(T)\) such that
This problem, introduced by Mainge and Moudafi [34, 36], is called the hierarchical fixed point problem. It is clear that if S has fixed points, then they are solutions of VIP (1.7).
If S is a ρ-contraction (i.e., \(\|Sx-Sy\|\leq\rho\| x-y\|\) for some \(0\leq\rho<1\)), the solution set of VIP (1.7) is a singleton and it is well known as the viscosity problem. This was previously introduced by Moudafi [7] and also developed by Xu [8]. In this case, it is easy to see that solving VIP (1.7) is equivalent to finding a fixed point of the nonexpansive mapping \(P_{{\operatorname{Fix}}(T)}S\), where \(P_{{\operatorname {Fix}}(T)}\) is the metric projection on the closed and convex set \({\operatorname{Fix}}(T)\).
In 2012, Marino et al. [42] introduced a multi-step iterative scheme
with \(f:C\to C\) a ρ-contraction and \(\{\alpha_{n}\},\{\beta_{n,i}\} \subset(0,1)\), \(\{r_{n}\}\subset(0,\infty)\), that generalizes the two-step iterative scheme in [10] for two nonexpansive mappings to a finite family of nonexpansive mappings \(T,S_{i}:C\to C\), \(i=1,\ldots,N\), and proved that the proposed scheme (1.8) converges strongly to a common fixed point of the mappings that is also an equilibrium point of GMEP (1.3).
More recently, Marino, Muglia and Yao’s multi-step iterative scheme (1.8) was extended to develop the following relaxed viscosity iterative algorithm.
Algorithm CKW
(see (3.1) in [43])
Let \(f:C\to C\) be a ρ-contraction and \(T:C\to C\) be a ξ-strict pseudocontraction. Let \(S_{i}:C\to C\) be a nonexpansive mapping for each \(i=1,\ldots,N\). Let \(F_{j}:C\to H\) be \(\zeta_{j}\)-inverse strongly monotone with \(0<\nu_{j}<\zeta_{j}\) for each \(j=1,2\). Let \({\varTheta }:C\times C\to{\mathbf{R}}\) be a bi-function satisfying conditions (θ1)-(θ3) and \(h:C\times C\to{\mathbf{R}}\) be a bi-function with restrictions (h1)-(h3). Let \(\{x_{n}\}\) be the sequence generated by
where \(G=P_{C}(I-\nu_{1}F_{1})P_{C}(I-\nu_{2}F_{2})\), \(\{\alpha_{n}\}\), \(\{\beta_{n}\}\) are sequences in \((0,1)\) with \(0< \liminf_{n\to\infty}\beta _{n}\leq\limsup_{n\to\infty}\beta_{n}<1\), \(\{\gamma_{n}\}\), \(\{\delta_{n}\}\) are sequences in \([0,1]\) with \(\liminf_{n\to\infty}\delta_{n}>0\) and \(\beta_{n}+\gamma_{n}+\delta_{n}=1\), \(\forall n\geq0\), \(\{\beta_{n,i}\}\) is a sequence in \((0,1)\) for each \(i=1,\ldots,N\), \((\gamma_{n}+ \delta_{n})\xi\leq\gamma_{n}\), \(\forall n\geq0\), and \(\{r_{n}\}\) is a sequence in \((0,\infty)\) with \(\liminf_{n\to\infty}r_{n}>0\).
The authors [43] proved that the proposed scheme (1.9) converges strongly to a common fixed point of the mappings \(T,S_{i}:C\to C\), \(i=1,\ldots,N\), that is also an equilibrium point of GMEP (1.3) and a solution of GSVI (1.6).
In this paper, we introduce a hybrid extragradient viscosity iterative algorithm for finding a common element of the solution set \({\operatorname{GMEP}}({\varTheta },h)\) of GMEP (1.3), the solution set \({\operatorname{GSVI}}(C,F_{1},F_{2})\) (i.e., Ξ) of GSVI (1.6), the solution set Γ of SFP (1.2), and the common fixed point set \(\bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i})\cap {\operatorname{Fix}}(T)\) of finitely many nonexpansive mappings \(S_{i}:C\to C\), \(i=1,\ldots,N\), and a strictly pseudocontractive mapping \(T:C\to C\), in the setting of the infinite-dimensional Hilbert space. The iterative algorithm is based on Korpelevich’s extragradient method, viscosity approximation method [7] (see also [8]), Mann’s iteration method, hybrid steepest-descent method [40] and gradient-projection method (GPM) with regularization. Our aim is to prove that the iterative algorithm converges strongly to a common element of these sets, which also solves some hierarchical variational inequality. We observe that related results have been derived say in [10, 13, 28, 34, 36, 37, 42–54].
2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product and norm are denoted by \(\langle\cdot, \cdot\rangle\) and \(\|\cdot\|\), respectively. Let C be a nonempty closed convex subset of H. We write \(x_{n}\rightharpoonup x\) to indicate that the sequence \(\{x_{n}\}\) converges weakly to x and \(x_{n}\to x\) to indicate that the sequence \(\{x_{n}\}\) converges strongly to x. Moreover, we use \(\omega_{w}(x_{n})\) to denote the weak ω-limit set of the sequence \(\{x_{n}\}\) and \(\omega_{s}(x_{n})\) to denote the strong ω-limit set of the sequence \(\{x_{n}\}\), i.e.,
and
The metric (or nearest point) projection from H onto C is the mapping \(P_{C}:H\to C\) which assigns to each point \(x\in H\) the unique point \(P_{C}x\in C\) satisfying the property
The following properties of projections are useful and pertinent to our purpose.
Proposition 2.1
Given any \(x\in H\) and \(z\in C\), one has
-
(i)
\(z=P_{C}x \Leftrightarrow\langle x-z,y-z\rangle\leq0\), \(\forall y\in C\);
-
(ii)
\(z=P_{C}x \Leftrightarrow\|x-z\|^{2}\leq\|x-y\|^{2}-\|y-z\|^{2}\), \(\forall y\in C\);
-
(iii)
\(\langle P_{C}x-P_{C}y,x-y\rangle\geq\|P_{C}x-P_{C}y\|^{2}\), \(\forall y\in H\), which hence implies that \(P_{C}\) is nonexpansive and monotone.
Definition 2.1
A mapping \(T:H\to H\) is said to be
-
(a)
nonexpansive if
$$\|Tx-Ty\|\leq\|x-y\|,\quad \forall x,y\in H; $$ -
(b)
firmly nonexpansive if \(2T-I\) is nonexpansive, or equivalently, if T is 1-inverse strongly monotone (1-ism),
$$\langle x-y,Tx-Ty\rangle\geq\|Tx-Ty\|^{2}, \quad \forall x,y\in H; $$alternatively, T is firmly nonexpansive if and only if T can be expressed as
$$T=\frac{1}{2}(I+S), $$where \(S:H\to H\) is nonexpansive; projections are firmly nonexpansive.
Definition 2.2
A mapping \({\mathcal{A}}:C\to H\) is said to be
-
(i)
monotone if
$$\langle{\mathcal{A}}x-{\mathcal{A}}y,x-y\rangle\geq0,\quad \forall x,y\in C; $$ -
(ii)
η-strongly monotone if there exists a constant \(\eta>0\) such that
$$\langle{\mathcal{A}}x-{\mathcal{A}}y,x-y\rangle\geq\eta\|x-y\|^{2}, \quad \forall x,y\in C; $$ -
(iii)
α-inverse-strongly monotone if there exists a constant \(\alpha>0\) such that
$$\langle{\mathcal{A}}x-{\mathcal{A}}y,x-y\rangle\geq\alpha\|{\mathcal {A}}x-{ \mathcal{A}}y\|^{2}, \quad \forall x,y\in C. $$
It can be easily seen that if T is nonexpansive, then \(I-T\) is monotone. It is also easy to see that the projection \(P_{C}\) is 1-ism. Inverse strongly monotone (also referred to as co-coercive) operators have been applied widely in solving practical problems in various fields.
On the other hand, it is obvious that if \({\mathcal{A}}:C\to H\) is α-inverse-strongly monotone, then A is monotone and \(\frac{1}{\alpha}\)-Lipschitz continuous. Moreover, we also have that, for all \(u,v\in C\) and \(\lambda>0\),
So, if \(\lambda\leq2\alpha\), then \(I-\lambda{\mathcal{A}}\) is a nonexpansive mapping from C to H.
In 2008, Ceng et al. [21] transformed problem (1.6) into a fixed point problem in the following way.
Proposition 2.2
(see [21])
For given \(\bar{x},\bar {y}\in C\), \((\bar{x},\bar{y})\) is a solution of GSVI (1.6) if and only if \(\bar{x}\) is a fixed point of the mapping \(G:C\to C\) defined by
where \(\bar{y}=P_{C}(I-\nu_{2}F_{2})\bar{x}\).
In particular, if the mapping \(F_{j}:C\to H\) is \(\zeta _{j}\)-inverse-strongly monotone for \(j=1,2\), then the mapping G is nonexpansive provided \(\nu_{j}\in(0,2\zeta_{j}]\) for \(j=1,2\). We denote by Ξ the fixed point set of the mapping G.
The following result is easy to prove.
Proposition 2.3
(see [18])
Given \(x^{*}\in H\), the following statements are equivalent:
-
(i)
\(x^{*}\) solves the SFP;
-
(ii)
\(x^{*}\) solves the fixed point equation
$$P_{C}(I-\lambda\nabla f)x^{*}=x^{*}, $$where \(\lambda>0\), \(\nabla f=A^{*}(I-P_{Q})A\) and \(A^{*}\) is the adjoint of A;
-
(iii)
\(x^{*}\) solves the variational inequality problem (VIP) of finding \(x^{*}\in C\) such that
$$\bigl\langle \nabla f\bigl(x^{*}\bigr),x-x^{*}\bigr\rangle \geq0,\quad \forall x\in C. $$
It is clear from Proposition 2.1 that
Definition 2.3
A mapping \(T:H\to H\) is said to be an averaged mapping if it can be written as the average of the identity I and a nonexpansive mapping, that is,
where \(\alpha\in(0,1)\) and \(S:H\to H\) is nonexpansive. More precisely, when the last equality holds, we say that T is α-averaged. Thus firmly nonexpansive mappings (in particular, projections) are \(\frac{1}{2}\)-averaged mappings.
Proposition 2.4
(see [55])
Let \(T: H\to H\) be a given mapping.
-
(i)
T is nonexpansive if and only if the complement \(I-T\) is \(\frac {1}{2}\)-ism.
-
(ii)
If T is ν-ism, then for \(\gamma>0\), γT is \(\frac{\nu }{\gamma}\)-ism.
-
(iii)
T is averaged if and only if the complement \(I-T\) is ν-ism for some \(\nu>1/2\). Indeed, for \(\alpha\in(0,1)\), T is α-averaged if and only if \(I-T\) is \(\frac{1}{2\alpha}\)-ism.
Proposition 2.5
Let \(S,T,V:H\to H\) be given operators.
-
(i)
If \(T=(1-\alpha)S+\alpha V\) for some \(\alpha\in(0,1)\) and if S is averaged and V is nonexpansive, then T is averaged.
-
(ii)
T is firmly nonexpansive if and only if the complement \(I-T\) is firmly nonexpansive.
-
(iii)
If \(T=(1-\alpha)S+\alpha V\) for some \(\alpha\in(0,1)\) and if S is firmly nonexpansive and V is nonexpansive, then T is averaged.
-
(iv)
The composite of finitely many averaged mappings is averaged. That is, if each of the mappings \(\{T_{i}\}^{N}_{i=1}\) is averaged, then so is the composite \(T_{1}\cdots T_{N}\). In particular, if \(T_{1}\) is \(\alpha_{1}\)-averaged and \(T_{2}\) is \(\alpha_{2}\)-averaged, where \(\alpha_{1},\alpha_{2}\in(0,1)\), then the composite \(T_{1}T_{2}\) is α-averaged, where \(\alpha=\alpha_{1}+\alpha_{2}-\alpha_{1} \alpha_{2}\).
-
(v)
If the mappings \(\{T_{i}\}^{N}_{i=1}\) are averaged and have a common fixed point, then
$$\bigcap^{N}_{i=1}{\operatorname{Fix}}(T_{i})={ \operatorname{Fix}}(T_{1}\cdots T_{N}). $$The notation \({\operatorname{Fix}}(T)\) denotes the set of all fixed points of the mapping T, that is, \({\operatorname{Fix}}(T)=\{x\in H:Tx=x\}\).
We need some facts and tools in a real Hilbert space H which are listed as lemmas below.
Lemma 2.1
Let X be a real inner product space. Then there holds the following inequality:
Lemma 2.2
Let H be a real Hilbert space. Then the following hold:
-
(a)
\(\|x-y\|^{2}=\|x\|^{2}-\|y\|^{2}-2\langle x-y,y\rangle\) for all \(x,y\in H\);
-
(b)
\(\|\lambda x+\mu y\|^{2}=\lambda\|x\|^{2}+\mu\|y\|^{2}-\lambda\mu\|x-y\| ^{2}\) for all \(x,y\in H\) and \(\lambda,\mu\in[0,1]\) with \(\lambda+\mu=1\);
-
(c)
if \(\{x_{n}\}\) is a sequence in H such that \(x_{n}\rightharpoonup x\), it follows that
$$\limsup_{n\to\infty}\|x_{n}-y\|^{2}=\limsup _{n\to\infty}\|x_{n}-x\|^{2}+\|x-y\| ^{2}, \quad \forall y\in H. $$
It is clear that, in a real Hilbert space H, \(T:C\to C\) is ξ-strictly pseudocontractive if and only if the following inequality holds:
This immediately implies that if T is a ξ-strictly pseudocontractive mapping, then \(I-T\) is \(\frac{1-\xi}{2}\)-inverse strongly monotone; for further details, we refer to [57] and the references therein. It is well known that the class of strict pseudocontractions strictly includes the class of nonexpansive mappings and that the class of pseudocontractions strictly includes the class of strict pseudocontractions.
Lemma 2.3
(see Proposition 2.1 in [57])
Let C be a nonempty closed convex subset of a real Hilbert space H and \(T: C\to C\) be a mapping.
-
(i)
If T is a ξ-strictly pseudocontractive mapping, then T satisfies the Lipschitzian condition
$$\|Tx-Ty\|\leq\frac{1+\xi}{1-\xi}\|x-y\|,\quad \forall x,y\in C. $$ -
(ii)
If T is a ξ-strictly pseudocontractive mapping, then the mapping \(I-T\) is semiclosed at 0, that is, if \(\{x_{n}\}\) is a sequence in C such that \(x_{n}\rightharpoonup\tilde{x}\) and \((I-T)x_{n}\to0\), then \((I-T)\tilde{x}=0\).
-
(iii)
If T is ξ-(quasi-)strict pseudocontraction, then the fixed-point set \({\operatorname{Fix}}(T)\) of T is closed and convex so that the projection \(P_{{\operatorname{Fix}}(T)}\) is well defined.
Lemma 2.4
(see [17])
Let C be a nonempty closed convex subset of a real Hilbert space H. Let \(T:C\to C\) be a ξ-strictly pseudocontractive mapping. Let γ and δ be two nonnegative real numbers such that \((\gamma+\delta)\xi \leq\gamma\). Then
Lemma 2.5
(see Demiclosedness principle in [58])
Let C be a nonempty closed convex subset of a real Hilbert space H. Let S be a nonexpansive self-mapping on C with \({\operatorname{Fix}}(S)\neq\emptyset\). Then \(I-S\) is demiclosed. That is, whenever \(\{x_{n}\}\) is a sequence in C weakly converging to some \(x\in C\) and the sequence \(\{(I-S)x_{n}\}\) strongly converges to some y, it follows that \((I-S)x=y\). Here I is the identity operator of H.
Lemma 2.6
Let \({\mathcal{A}}:C\to H\) be a monotone mapping. In the context of the variational inequality problem, the characterization of the projection (see Proposition 2.1(i)) implies
Let C be a nonempty closed convex subset of a real Hilbert space H. We introduce some notations. Let λ be a number in \((0,1]\) and let \(\mu>0\). Associating with a nonexpansive mapping \(T:C\to C\), we define the mapping \(T^{\lambda}:C\to H\) by
where \(F:C\to H\) is an operator such that, for some positive constants \(\kappa,\eta>0\), F is κ-Lipschitzian and η-strongly monotone on C; that is, F satisfies the conditions
for all \(x,y\in C\).
Lemma 2.7
(see Lemma 3.1 in [40])
\(T^{\lambda}\) is a contraction provided \(0<\mu<\frac{2\eta}{\kappa^{2}}\); that is,
where \(\tau=1-\sqrt{1-\mu(2\eta-\mu\kappa^{2})}\in(0,1]\).
Lemma 2.8
(see Lemma 2.1 in [59])
Let \(\{a_{n}\}\) be a sequence of nonnegative real numbers satisfying
where \(\{\beta_{n}\}\), \(\{\gamma_{n}\}\) and \(\{\delta_{n}\}\) satisfy the following conditions:
-
(i)
\(\{\beta_{n}\}\subset[0,1]\) and \(\sum^{\infty}_{n=0}\beta_{n}=\infty\);
-
(ii)
either \(\limsup_{n\to\infty}\gamma_{n}\leq0\) or \(\sum^{\infty}_{n=0}\beta_{n}|\gamma_{n}|<\infty\);
-
(iii)
\(\delta_{n}\geq0\) for all \(n\geq0\), and \(\sum^{\infty}_{n=1}\delta _{n}<\infty\).
Then \(\lim_{n\to\infty}a_{n}=0\).
In the sequel, we will indicate with \({\operatorname{GMEP}}({\varTheta },h)\) the solution set of GMEP (1.3).
Lemma 2.9
(see [38])
Let C be a nonempty closed convex subset of a real Hilbert space H. Let \({\varTheta }:C\times C\to{\mathbf{R}}\) be a bi-function satisfying conditions (θ1)-(θ3) and \(h:C\times C\to{\mathbf{R}}\) be a bi-function with restrictions (h1)-(h3). Moreover, let us suppose that
-
(H)
for fixed \(r>0\) and \(x\in C\), there exist bounded \(K\subset C\) and \(\hat{x}\in K\) such that for all \(z\in C\setminus K\), \(-{\varTheta } (\hat{x},z)+h(z,\hat{x})+\frac{1}{r}\langle\hat{x}-z,z-x\rangle<0\).
For \(r>0\) and \(x\in H\), the mapping \(T_{r}:H\to2^{C}\) (i.e., the resolvent of Θ and h) has the following properties:
-
(i)
\(T_{r}x\neq\emptyset\);
-
(ii)
\(T_{r}x\) is a singleton;
-
(iii)
\(T_{r}\) is firmly nonexpansive;
-
(iv)
\({\operatorname{GMEP}}({\varTheta },h)={\operatorname{Fix}}(T_{r})\) and it is closed and convex.
Lemma 2.10
(see [38])
Let us suppose that (θ1)-(θ3), (h1)-(h3) and (H) hold. Let \(x,y\in H\), \(r_{1},r_{2}>0\). Then
Lemma 2.11
(see [42])
Suppose that the hypotheses of Lemma 2.9 are satisfied. Let \(\{r_{n}\}\) be a sequence in \((0,\infty)\) with \(\liminf_{n\to\infty}r_{n}>0\). Suppose that \(\{x_{n}\}\) is a bounded sequence. Then the following statements are equivalent and true:
-
(a)
if \(\|x_{n}-T_{r_{n}}x_{n}\|\to0\) as \(n\to\infty\), each weak cluster point of \(\{x_{n}\}\) satisfies the problem
$${\varTheta }(x,y)+h(x,y)\geq0,\quad \forall y\in C, $$i.e., \(\omega_{w}(x_{n})\subseteq{\operatorname{GMEP}}({\varTheta },h)\);
-
(b)
the demiclosedness principle holds in the sense that if \(x_{n}\rightharpoonup x^{*}\) and \(\|x_{n}-T_{r_{n}}x_{n}\|\to0\) as \(n\to\infty\), then \((I-T_{r_{k}})x^{*}=0\) for all \(k\geq1\).
Recall that a set-valued mapping \(T:D(T)\subset H\to2^{H}\) is called monotone if for all \(x,y\in D(T)\), \(f\in Tx\) and \(g\in Ty\) imply
A set-valued mapping T is called maximal monotone if T is monotone and \((I+\lambda T)D(T)=H\) for each \(\lambda>0\), where I is the identity mapping of H. We denote by \(G(T)\) the graph of T. It is known that a monotone mapping T is maximal if and only if, for \((x,f)\in H\times H\), \(\langle f-g,x-y\rangle\geq0\) for every \((y,g)\in G(T)\) implies \(f\in Tx\). Next we provide an example to illustrate the concept of maximal monotone mapping.
Let \({\mathcal{A}}:C\to H\) be a monotone, k-Lipschitz-continuous mapping, and let \(N_{C}v\) be the normal cone to C at \(v\in C\), i.e.,
Define
Then it is known in [60] that \(\widetilde{T}\) is maximal monotone and
3 Main results
We now propose the following hybrid extragradient viscosity iterative scheme:
for all \(n\geq0\), where
-
\(F:C\to H\) is a κ-Lipschitzian and η-strongly monotone operator with positive constants \(\kappa,\eta>0\) and \(V:C\to C\) is an l-Lipschitzian mapping with constant \(l\geq0\);
-
\(F_{j}:C\to H\) is \(\zeta_{j}\)-inverse strongly monotone and \(G:=P_{C}(I-\nu _{1}F_{1})P_{C}(I-\nu_{2}F_{2})\) with \(\nu_{j}\in(0,2\zeta_{j})\) for \(j=1,2\);
-
\(T:C\to C\) is a ξ-strict pseudocontraction and \(S_{i}:C\to C\) is a nonexpansive mapping for each \(i=1,\ldots,N\);
-
\({\varTheta },h:C\times C\to{\mathbf{R}}\) are two bi-functions satisfying the hypotheses of Lemma 2.9;
-
\(\{\lambda_{n}\}\) is a sequence in \((0,\frac{1}{\|A\|^{2}})\) with \(0<\liminf_{n\to\infty}\lambda_{n}\leq\limsup_{n\to\infty}\lambda_{n}<\frac {1}{\|A\|^{2}}\);
-
\(0<\mu<2\eta/\kappa^{2}\) and \(0\leq\gamma l<\tau\) with \(\tau:=1-\sqrt {1-\mu(2\eta-\mu\kappa^{2})}\);
-
\(\{\alpha_{n}\}\) is a sequence in \((0,\infty)\) with \(\sum^{\infty}_{n=0}\alpha_{n}<\infty\);
-
\(\{\epsilon_{n}\}\), \(\{\beta_{n}\}\) are sequences in \((0,1)\) with \(0<\liminf_{n\to\infty}\beta_{n}\leq\limsup_{n\to\infty}\beta_{n}<1\);
-
\(\{\gamma_{n}\}\), \(\{\delta_{n}\}\) are sequences in \([0,1]\) with \(\beta _{n}+\gamma_{n}+\delta_{n}=1\), \(\forall n\geq0\);
-
\(\{\beta_{n,i}\}^{N}_{i=1}\) are sequences in \((0,1)\) and \((\gamma _{n}+\delta_{n})\xi\leq\gamma_{n}\), \(\forall n\geq0\);
-
\(\{r_{n}\}\) is a sequence in \((0,\infty)\) with \(\liminf_{n\to\infty }r_{n}>0\) and \(\liminf_{n\to\infty}\delta_{n}>0\).
We start our main result from the following series of propositions.
Proposition 3.1
Let us suppose that \({\varOmega }={\operatorname {Fix}}(T)\cap\bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i})\cap{\operatorname {GMEP}}({\varTheta },h) \cap{ \varXi }\cap{ \varGamma }\neq\emptyset\). Then the sequences \(\{x_{n}\}\), \(\{ y_{n}\}\), \(\{y_{n,i}\}\) for all i, \(\{u_{n}\}\) are bounded.
Proof
Since \(0<\liminf_{n\to\infty}\lambda_{n}\leq\limsup_{n\to \infty}\lambda_{n}<\frac{1}{\|A\|^{2}}\) and \(0<\liminf_{n\to \infty}\beta_{n}\leq \limsup_{n\to\infty}\beta_{n}<1\), we may assume, without loss of generality, that \(\{\lambda_{n}\}\subset[a,b] \subset(0,\frac{1}{\|A\|^{2}})\) and \(\{\beta_{n}\}\subset[c,d]\subset (0,1)\). Now, let us show that \(P_{C}(I-\lambda\nabla f_{\alpha})\) is σ-averaged for each \(\lambda\in(0,\frac{2}{\alpha+\|A\| ^{2}})\), where
Indeed, it is easy to see that \(\nabla f=A^{*}(I-P_{Q})A\) is \(\frac{1}{\|A\| ^{2}}\)-ism, that is,
Observe that
Hence, it follows that \(\nabla f_{\alpha}=\alpha I+A^{*}(I-P_{Q})A\) is \(\frac {1}{\alpha+\|A\|^{2}}\)-ism. Thus, \(\lambda\nabla f_{\alpha}\) is \(\frac{1}{\lambda(\alpha+\|A\|^{2})}\)-ism according to Proposition 2.4(ii). By Proposition 2.4(iii), the complement \(I-\lambda\nabla f_{\alpha}\) is \(\frac{\lambda(\alpha+\|A\| ^{2})}{2}\)-averaged. Therefore, noting that \(P_{C}\) is \(\frac{1}{2}\)-averaged and utilizing Proposition 2.5(iv), we know that for each \(\lambda\in(0,\frac{2}{\alpha+\|A\| ^{2}})\), \(P_{C}(I-\lambda\nabla f_{\alpha})\) is σ-averaged with
This shows that \(P_{C}(I-\lambda\nabla f_{\alpha})\) is nonexpansive. Furthermore, for \(\{\lambda_{n}\}\subset[a,b]\subset(0, \frac{1}{\|A\|^{2}})\), we have
Without loss of generality, we may assume that
Consequently, it follows that for each integer \(n\geq0\), \(P_{C}(I-\lambda _{n}\nabla f_{\alpha_{n}})\) is \(\sigma_{n}\)-averaged with
This immediately implies that \(P_{C}(I-\lambda_{n}\nabla f_{\alpha_{n}})\) is nonexpansive for all \(n\geq0\).
For simplicity, we write \(t_{n}=P_{C}(y_{n,N}-\lambda_{n}\nabla f_{\alpha _{n}}(\tilde{y}_{n,N}))\) and
for all \(n\geq0\). Then \(y_{n}=P_{C}v_{n}\) and \(x_{n+1}=\beta_{n}y_{n}+\gamma _{n}t_{n}+\delta_{n}Tt_{n}\).
First of all, take a fixed \(p\in{ \varOmega }\) arbitrarily. We observe that
For all from \(i=2\) to \(i=N\), by induction, one proves that
Thus we obtain that for every \(i=1,\ldots,N\),
For simplicity, we write \(\tilde{p}=P_{C}(p-\nu_{2}F_{2}p)\), \(\tilde {t}_{n}=P_{C}(t_{n}-\nu_{2}F_{2}t_{n})\) and \(z_{n}=P_{C}(\tilde{t}_{n}-\nu_{1}F_{1}\tilde{t}_{n})\) for each \(n\geq0\). Then \(z_{n}=Gt_{n}\) and
Since \(F_{j}:C\to H\) is \(\zeta_{j}\)-inverse strongly monotone and \(0<\nu _{j}<2\zeta_{j}\) for each \(j=1,2\), we know that for all \(n\geq0\),
From (3.1), (3.9) and the nonexpansivity of \(P_{C}(I-\lambda_{n}\nabla f_{\alpha_{n}})\), it follows that
Utilizing Lemma 2.1, we also have
Furthermore, utilizing Proposition 2.1(ii), we have
In the meantime, by Proposition 2.1(i), we have
So, from (3.9) and (3.11), we obtain
Hence, utilizing Lemma 2.7 we deduce from (3.9) and (3.15) that
Since \((\gamma_{n}+\delta_{n})\xi\leq\gamma_{n}\) for all \(n\geq0\), utilizing Lemma 2.4, we obtain from (3.15) and (3.16) that
By induction, we can prove
Since \(\{\lambda_{n}\}\subset[a,b]\subset(0,\frac{1}{\|A\|^{2}})\) and \(\sum^{\infty}_{n=0}\alpha_{n}<\infty\), we know that \(\{x_{n}\}\) is bounded, and so are the sequences \(\{u_{n}\}\), \(\{v_{n}\}\), \(\{t_{n}\}\), \(\{\tilde {t}_{n}\}\), \(\{y_{n}\}\), \(\{\tilde{y}_{n,N}\}\), \(\{y_{n,i}\}\) for each \(i=1,\ldots,N\). Since \(\|Tt_{n}-p\|\leq\frac{1+\xi}{1-\xi}\|t_{n}-p\|\), \(\{Tt_{n}\}\) is also bounded. □
Proposition 3.2
Let us suppose that \({\varOmega }\neq\emptyset\). Moreover, let us suppose that the following hold:
-
(H0)
\(\lim_{n\to\infty}\epsilon_{n}=0\) and \(\sum^{\infty}_{n=0}\epsilon _{n}=\infty\);
-
(H1)
\(\lim_{n\to\infty}\frac{|\alpha_{n}-\alpha_{n-1}|}{\epsilon_{n}}=0\) and \(\lim_{n\to\infty}\frac{|\lambda_{n}-\lambda_{n-1}|}{ \epsilon_{n}}=0\);
-
(H2)
\(\lim_{n\to\infty}\frac{|\beta_{n,i}-\beta_{n-1,i}|}{\epsilon _{n}}=0\) for each \(i=1,\ldots,N\);
-
(H3)
\(\sum^{\infty}_{n=1}|\epsilon_{n}-\epsilon_{n-1}|<\infty\) or \(\lim_{n\to\infty}\frac{|\epsilon_{n}-\epsilon_{n-1}|}{\epsilon_{n}}=0\);
-
(H4)
\(\sum^{\infty}_{n=1}|r_{n}-r_{n-1}|<\infty\) or \(\lim_{n\to\infty}\frac {|r_{n}-r_{n-1}|}{\epsilon_{n}}=0\)
-
(H5)
\(\sum^{\infty}_{n=1}|\beta_{n}-\beta_{n-1}|<\infty\) or \(\lim_{n\to \infty}\frac{|\beta_{n}-\beta_{n-1}|}{\epsilon_{n}}=0\);
-
(H6)
\(\sum^{\infty}_{n=1}|\frac{\gamma_{n}}{1-\beta_{n}}-\frac{\gamma _{n-1}}{1-\beta_{n-1}}|<\infty\) or \(\lim_{n\to\infty}\frac{1}{\epsilon_{n}}|\frac{\gamma_{n}}{1-\beta_{n}}-\frac {\gamma_{n-1}}{1-\beta_{n-1}}|=0\).
If \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n})\), then \(\lim_{n\to\infty}\| x_{n+1}-x_{n}\|=0\), i.e., \(\{x_{n}\}\) is asymptotically regular.
Proof
First, it is known that \(\{\lambda_{n}\}\subset [a,b]\subset(0,\frac{1}{\|A\|^{2}})\) and \(\{\beta_{n}\}\subset[c,d] \subset(0,1)\) as in the proof of Proposition 3.1. Taking into account \(\liminf_{n\to\infty}r_{n}>0\), we may assume, without loss of generality, that \(\{r_{n}\}\subset[\bar{r},\infty)\) for some \(\bar{r}>0\). First, we write \(x_{n}=\beta_{n-1}y_{n-1} +(1-\beta_{n-1})w_{n-1}\), \(\forall n\geq1\), where \(w_{n-1}=\frac {x_{n}-\beta_{n-1}y_{n-1}}{1-\beta_{n-1}}\). It follows that for all \(n\geq1\),
Since \((\gamma_{n}+\delta_{n})\xi\leq\gamma_{n}\) for all \(n\geq0\), utilizing Lemma 2.4 we have
Next, we estimate \(\|y_{n}-y_{n-1}\|\). Indeed, according to \(\lambda _{n}(\alpha_{n}+\|A\|^{2})<1\),
and
In the meantime, by the definition of \(y_{n,i}\) one obtains that, for all \(i=N,\ldots,2\),
In the case \(i=1\), we have
Substituting (3.22) in all (3.21)-type one obtains, for \(i=2,\ldots,N\),
which together with (3.20) implies that
Since \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n})\) and the sequences \(\{u_{n}\}\), \(\{ y_{n,i}\}^{N}_{i=1}\) are bounded, we know that
On the other hand, we observe that
Simple calculations show that
Then, passing to the norm and using the nonexpansivity of G, we get
where \(\sup_{n\geq0}\|\gamma Vy_{n,N}-\mu Fz_{n}\|\leq\widetilde{M}\) for some \(\widetilde{M}>0\). Also, it is easy to see from (3.17) and (3.18) that
Moreover, by Lemma 2.10, we know that
where \(L=\sup_{n\geq0}\|u_{n}-x_{n}\|\).
Further, we observe that
Simple calculations show that
Consequently, passing to the norm we get from (3.19), (3.23) and (3.25)-(3.26)
where
for some \(\widetilde{M}_{0}>0\). Noticing \(\lim_{n\to\infty}\frac{\|\tilde {y}_{n,N}-\tilde{y}_{n-1,N}\|}{\epsilon_{n}}=0\) and using hypotheses (H0)-(H6) and Lemma 2.8, we obtain the claim. □
Proposition 3.3
Let us suppose that \({\varOmega }\neq\emptyset\). Let us suppose that \(\{x_{n}\}\) is asymptotically regular. Then \(\|x_{n}-u_{n}\|=\|x_{n}-T_{r_{n}}x_{n}\|\to0\) and \(\| y_{n,N}-\tilde{y}_{n,N}\|\to0\) as \(n\to\infty\).
Proof
Take fixed \(p\in{ \varOmega }\) arbitrarily. We recall that, by the firm nonexpansivity of \(T_{r_{n}}\), a standard calculation (see [44]) shows that for \(p\in{\operatorname {GMEP}}({\varTheta },h)\),
Utilizing Lemmas 2.1 and 2.7, we obtain from \(0\leq\gamma l<\tau\), (3.1) and (3.10) that
Since \((\gamma_{n}+\delta_{n})\xi\leq\gamma_{n}\) for all \(n\geq0\), utilizing Lemma 2.4 we have from (3.1), (3.9), (3.15), (3.28) and (3.29) that
So, we deduce from \(\{\beta_{n}\}\subset[c,d]\subset(0,1)\) and \(\{\lambda _{n}\}\subset[a,b]\subset(0,\frac{1}{\|A\|^{2}})\) that
By Propositions 3.1 and 3.2 we know that the sequences \(\{x_{n}\}\), \(\{y_{n}\} \), \(\{y_{n,N}\}\) and \(\{\tilde{y}_{n,N}\}\) are bounded and that \(\{x_{n}\}\) is asymptotically regular. Therefore, from \(\alpha_{n}\to0\) and \(\epsilon_{n}\to0\) we obtain that
□
Remark 3.1
By the last proposition we have \(\omega _{w}(x_{n})=\omega_{w}(u_{n})\) and \(\omega_{s}(x_{n})=\omega_{s}(u_{n})\), i.e., the sets of strong/weak cluster points of \(\{x_{n}\}\) and \(\{u_{n}\}\) coincide.
Of course, if \(\beta_{n,i}\to\beta_{i}\neq0\) as \(n\to\infty\), for all indices i, the assumptions of Proposition 3.2 are enough to assure that
In the next proposition, we estimate the case in which at least one sequence \(\{\beta_{n,k_{0}}\}\) is a null sequence.
Proposition 3.4
Let us suppose that \({\varOmega }\neq\emptyset\). Let us suppose that (H0) holds. Moreover, for an index \(k_{0}\in\{1,\ldots,N\}\), \(\lim_{n\to\infty}\beta_{n,k_{0}}=0\) and the following hold:
-
(H7)
for each index \(i\in\{1,\ldots,N\}\),
$$\begin{aligned} { \lim_{n\to\infty}}\frac{|\beta_{n,i}-\beta _{n-1,i}|}{\epsilon_{n}\beta_{n,k_{0}}} =&{ \lim_{n\to\infty}} \frac{|\alpha_{n}-\alpha_{n-1}|}{\epsilon_{n}\beta_{n,k_{0}}} ={ \lim_{n\to\infty}}\frac{|\beta_{n}-\beta_{n-1}|}{\epsilon_{n}\beta_{n,k_{0}}} ={ \lim _{n\to\infty}}\frac{|r_{n}-r_{n-1}|}{\epsilon_{n}\beta_{n,k_{0}}} \\ =&{ \lim_{n\to\infty}}\frac{|\epsilon_{n}-\epsilon_{n-1}|}{\epsilon _{n}\beta_{n,k_{0}}} ={ \lim _{n\to\infty}}\frac{1}{\epsilon_{n}\beta_{n,k_{0}}}\biggl\vert \frac{\gamma _{n}}{1-\beta_{n}}- \frac{\gamma_{n-1}}{1-\beta_{n-1}}\biggr\vert \\ =&{ \lim_{n\to\infty}} \frac{|\lambda_{n}-\lambda_{n-1}|}{\epsilon_{n}\beta _{n,k_{0}}}=0; \end{aligned}$$ -
(H8)
there exists a constant \(\delta>0\) such that \(\frac{1}{\epsilon _{n}}|\frac{1}{\beta_{n,k_{0}}}-\frac{1}{\beta_{n-1,k_{0}}}|< \delta\) for all \(n\geq1\).
If \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n}\beta_{n,k_{0}})\), then
Proof
It is clear from (3.24) that
According to (H7) and \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n}\beta_{n,k_{0}})\), we get
Consider (3.27). Dividing both the terms by \(\beta_{n,k_{0}}\), we have
So, by (H8) we have
Therefore, utilizing Lemma 2.8, from (3.32), (H0), (H7) and the asymptotical regularity of \(\{x_{n}\}\) (due to Proposition 3.2), we deduce that
□
Proposition 3.5
Let us suppose that \({\varOmega }\neq\emptyset\). Let us suppose that (H0)-(H6) hold. If \(\|u_{n}-u_{n-1}\| =o(\epsilon_{n})\), then \(\|z_{n}-t_{n}\|\to0\) as \(n\to\infty\).
Proof
Let \(p\in{ \varOmega }\). In terms of the firm nonexpansivity of \(P_{C}\) and the \(\zeta_{j}\)-inverse strong monotonicity of \(F_{j}\) for \(j=1,2\), we obtain from \(\nu_{j}\in(0,2\zeta_{j})\), \(j=1,2\) and (3.10) that
and
Thus, we have
and
Consequently, from (3.10), (3.15), (3.29), (3.30) and (3.33), it follows that
which yields
Since \(\lim_{n\to\infty}\alpha_{n}=0\), \(\lim_{n\to\infty}\epsilon_{n}=0\), \(\lim_{n\to\infty}\|x_{n+1}-x_{n}\|=0\), and \(\{x_{n}\}\), \(\{y_{n}\}\), \(\{y_{n,N}\}\), \(\{ t_{n}\}\) and \(\{\tilde{t}_{n}\}\) are bounded, we deduce from (3.31) that
Furthermore, from (3.15), (3.29), (3.30) and (3.34), it follows that
which leads to
Since \(\lim_{n\to\infty}\alpha_{n}=0\), \(\lim_{n\to\infty}\epsilon_{n}=0\), \(\lim_{n\to\infty}\|x_{n+1}-x_{n}\|=0\), and \(\{x_{n}\}\), \(\{y_{n}\}\), \(\{y_{n,N}\}\), \(\{ z_{n}\}\) and \(\{\tilde{t}_{n}\}\) are bounded, we deduce from (3.31) that
Note that
Hence from (3.35) and (3.36) we get
□
Proposition 3.6
Let us suppose that \({\varOmega }\neq\emptyset\). Let us suppose that \(0<\liminf_{n\to\infty}\beta_{n,i} \leq\limsup_{n\to\infty}\beta_{n,i}<1\) for each \(i=1,\ldots,N\). Moreover, suppose that \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n})\) and (H0)-(H6) are satisfied. Then \(\lim_{n\to\infty}\|S_{i}u_{n}-u_{n}\|=0\) for each \(i=1,\ldots,N\) provided \(\|Ty_{n}-y_{n}\|\to0\) as \(n\to\infty\).
Proof
First of all, it is clear that
By Proposition 3.3, we get
which together with (3.31) implies that
Note that
From Proposition 3.5 and \(\epsilon_{n}\to0\), we obtain
Also, observe that
By Proposition 3.2 we know that \(\{x_{n}\}\) is asymptotically regular. Utilizing Lemma 2.4 we have from \((\gamma_{n}+\delta_{n}) \xi\leq\gamma_{n}\) that
which together with (3.39) and \(\|Ty_{n}-y_{n}\|\to0\) leads to
Let us show that for each \(i\in\{1,\ldots,N\}\), one has \(\| S_{i}u_{n}-y_{n,i-1}\|\to0\) as \(n\to\infty\). Let \(p\in{ \varOmega }\). When \(i=N\), by Lemma 2.2(b) we have from (3.9), (3.10), (3.15) and (3.29)
So, we have
Since \(\alpha_{n}\to0\), \(\epsilon_{n}\to0\), \(0<\liminf_{n\to\infty}\beta _{n,N}\leq\limsup_{n\to\infty}\beta_{n,N}<1\) and \(\lim_{n \to\infty}\|x_{n}-y_{n}\|=0\) (due to (3.40)), it is known that \(\{ \|S_{N}u_{n}-y_{n,N-1}\|\}\) is a null sequence.
Let \(i\in\{1,\ldots,N-1\}\). Then one has
and so, after \((N-i+1)\)-iterations,
Again we obtain that
Since \(\alpha_{n}\to0\), \(\epsilon_{n}\to0\), \(0<\liminf_{n\to\infty}\beta _{n,i}\leq\limsup_{n\to\infty}\beta_{n,i}<1\) for each \(i=1,\ldots,N-1\), and \(\lim_{n\to\infty}\|x_{n}-y_{n}\|=0\) (due to (3.40)), it is known that
Obviously for \(i=1\), we have \(\|S_{1}u_{n}-u_{n}\|\to0\).
To conclude, we have that
from which \(\|S_{2}u_{n}-u_{n}\|\to0\). Thus by induction \(\|S_{i}u_{n}-u_{n}\|\to0\) for all \(i=2,\ldots,N\) since it is enough to observe that
□
Remark 3.2
As an example, we consider \(N=2\) and the sequences:
-
(a)
\(\beta_{n}=\frac{1}{2}+\frac{2}{n}\), \(\gamma_{n}=\delta_{n}=\frac {1}{4}-\frac{1}{n}\), \(\forall n>4\);
-
(b)
\(\lambda_{n}=\frac{1}{2\|A\|^{2}}-\frac{1}{2n}\), \(\forall n>\|A\|^{2}\);
-
(c)
\(\alpha_{n}=\frac{1}{n^{2}}\), \(\epsilon_{n}=\frac{1}{\sqrt{n}}\), \(r_{n}=2-\frac {1}{n}\), \(\forall n>1\);
-
(d)
\(\beta_{n,1}=\frac{1}{2}-\frac{1}{n}\), \(\beta_{n,2}=\frac{1}{2}-\frac {1}{n^{2}}\), \(\forall n>2\).
Then they satisfy the hypotheses on the parameter sequences in Proposition 3.6.
Proposition 3.7
Let us suppose that \({\varOmega }\neq\emptyset\) and \(\beta_{n,i}\to\beta_{i}\) for all i as \(n\to\infty\). Suppose that there exists \(k\in\{1,\ldots,N\}\) such that \(\beta_{n,k}\to0\) as \(n\to\infty\). Let \(k_{0} \in\{1,\ldots,N\}\) be the largest index such that \(\beta_{n,k_{0}}\to0\) as \(n\to\infty\). Suppose that
-
(i)
\(\frac{\alpha_{n}+\epsilon_{n}}{\beta_{n,k_{0}}}\to0\) as \(n\to\infty\);
-
(ii)
if \(i\leq k_{0}\) and \(\beta_{n,i}\to0\), then \(\frac{\beta _{n,k_{0}}}{\beta_{n,i}}\to0\) as \(n\to\infty\);
-
(iii)
if \(\beta_{n,i}\to\beta_{i}\neq0\), then \(\beta_{i}\) lies in \((0,1)\).
Moreover, suppose that \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n}\beta_{n,k_{0}})\) and (H0), (H7) and (H8) hold. Then \(\lim_{n\to\infty}\|S_{i}u_{n}-u_{n}\|=0\) for each \(i=1,\ldots,N\) provided \(\| Ty_{n}-y_{n}\|\to0\) as \(n\to\infty\).
Proof
First of all we note that if (H7) holds then also (H1)-(H6) are satisfied. So \(\{x_{n}\}\) is asymptotically regular.
Let \(k_{0}\) be as in the hypotheses. As in Proposition 3.6, for every index \(i\in\{1,\ldots,N\}\) such that \(\beta_{n,i}\to\beta_{i} \neq0\) (which leads to \(0<\liminf_{n\to\infty}\beta_{n,i}\leq\limsup_{n\to\infty}\beta_{n,i}<1\)), one has \(\|S_{i}u_{n}-y_{n,i-1}\| \to0\) as \(n\to\infty\).
For all the other indices \(i\leq k_{0}\), we can prove that \(\| S_{i}u_{n}-y_{n,i-1}\|\to0\) as \(n\to\infty\) in a similar manner. By the relation (due to (3.15), (3.30) and (3.41))
we immediately obtain that
By Proposition 3.4 or by hypothesis (ii) on the sequences, we have
So, the conclusion follows. □
Remark 3.3
Let us consider \(N=3\) and the following sequences:
-
(a)
\(\beta_{n}=\frac{1}{2}+\frac{2}{n^{2}}\), \(\gamma_{n}=\delta_{n}=\frac {1}{4}-\frac{1}{n^{2}}\), \(\forall n>2\);
-
(b)
\(\lambda_{n}=\frac{1}{2\|A\|^{2}}-\frac{1}{2n^{2}}\), \(\forall n>\|A\|\);
-
(c)
\(\alpha_{n}=\frac{1}{n^{2}}\), \(\alpha_{n}=\frac{1}{n^{1/2}}\), \(r_{n}=2-\frac {1}{n^{2}}\), \(\forall n>1\);
-
(d)
\(\beta_{n,1}=\frac{1}{n^{1/4}}\), \(\beta_{n,2}=\frac{1}{2}-\frac {1}{n^{2}}\), \(\beta_{n,3}=\frac{1}{n^{1/3}}\), \(\forall n>1\).
It is easy to see that all hypotheses (i)-(iii), (H0), (H7) and (H8) of Proposition 3.7 are satisfied.
Remark 3.4
Under the hypotheses of Proposition 3.7, analogously to Proposition 3.6, one can see that
Corollary 3.1
Let us suppose that the hypotheses of either Proposition 3.6 or Proposition 3.7 are satisfied. Then \(\omega_{w}(x_{n})=\omega_{w}(u_{n})=\omega_{w}(y_{n,1})\), \(\omega_{s}(x_{n})=\omega _{s}(u_{n})=\omega_{s}(y_{n,1})\) and \(\omega_{w}(x_{n})\subset{ \varOmega }\).
Proof
By Remark 3.1, we have \(\omega_{w}(x_{n})=\omega_{w}(u_{n})\) and \(\omega_{s}(x_{n})=\omega_{s}(u_{n})\). Note that by Remark 3.4,
In the meantime, it is known that
Hence we have
Furthermore, it follows from (3.1) that
which together with \(\lim_{n\to\infty}\|S_{N}u_{n}-y_{n,N-1}\|=0\) yields
Combining (3.42) and (3.43), we conclude that
which together with \(\lim_{n\to\infty}\|x_{n}-y_{n}\|=0\) leads to
Now we observe that
By Propositions 3.3 and 3.6, \(\|x_{n}-u_{n}\|\to0\) and \(\|S_{1}u_{n}-u_{n}\|\to0\) as \(n\to\infty\), and hence
So we get \(\omega_{w}(x_{n})=\omega_{w}(y_{n,1})\) and \(\omega_{s}(x_{n})=\omega _{s}(y_{n,1})\).
Let \(p\in\omega_{w}(x_{n})\). Then there exists a subsequence \(\{x_{n_{i}}\}\) of \(\{x_{n}\}\) such that \(x_{n_{i}}\rightharpoonup p\). Since \(p\in\omega_{w}(u_{n})\), by Proposition 3.6 and Lemma 2.5 (demiclosedness principle), we have \(p\in{\operatorname{Fix}}(S_{i})\) for each \(i=1,\ldots,N\), i.e., \(p\in\bigcap^{N}_{i=1}{\operatorname {Fix}}(S_{i})\). Combining (3.38) and (3.45), we obtain \(\| x_{n}-t_{n}\|\to0\) as \(n \to\infty\). Taking into account \(p\in\omega_{w}(t_{n})\) and \(\|t_{n}-Gt_{n}\| \to0\) (due to (3.37)), by Lemma 2.5 (demiclosedness principle) we know that \(p\in{\operatorname{Fix}}(G)=:{\varXi }\). Also, since \(p\in\omega_{w}(y_{n})\) (due to (3.40)), in terms of \(\|Ty_{n} -y_{n}\|\to0\) and Lemma 2.3 (demiclosedness principle), we get \(p\in {\operatorname{Fix}}(T)\). Moreover, by Lemma 2.11 and Proposition 3.3 we know that \(p\in{\operatorname{GMEP}}({\varTheta },h)\). Next we prove that \(p\in{ \varGamma }\). As a matter of fact, from (3.31) and (3.45) we know that \(y_{n_{i}}\rightharpoonup p\) and \(\tilde {y}_{n_{i},N}\rightharpoonup p\). Let
where \(N_{C}v=\{u\in H:\langle v-p,u\rangle\geq0,\forall p\in C\}\). Then \(\widetilde{T}\) is maximal monotone and \(0\in\widetilde{T}v\) if and only if \(v\in{\operatorname{VI}}(C,\nabla f)\); see [60] for more details. Let \((v,u)\in G(\widetilde{T})\). Since \(u-\nabla f(v)\in N_{C}v\) and \(\tilde{y}_{n,N}\in C\), we have
On the other hand, from \(\tilde{y}_{n,N}=P_{C}(I-\lambda_{n}\nabla f_{\alpha _{n}})y_{n,N}\) and \(v\in C\), we have
and hence
Therefore we have
From (3.31) and since ∇f is Lipschitz continuous, we obtain that \(\lim_{n\to\infty}\|\nabla f(\tilde{y}_{n_{i},N}) -\nabla f(y_{n_{i},N})\|=0\). From \(\tilde{y}_{n_{i},N}\rightharpoonup p\), \(\{ \lambda_{n}\}\subset[a,b]\subset(0,\frac{1}{\|A\|^{2}})\) and (3.31), we have
Since \(\widetilde{T}\) is maximal monotone, we have \(p\in\widetilde {T}^{-1}0\) and hence \(p\in{\operatorname{VI}}(C,\nabla f)\), which implies \(p\in \varGamma \). Consequently, it is known that \(p\in{\operatorname {Fix}}(T)\cap\bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i}) \cap{\operatorname{GMEP}}({\varTheta },h)\cap{ \varXi }\cap {\varGamma }=:{\varOmega }\). □
Theorem 3.1
Let us suppose that \({\varOmega }\neq\emptyset\). Let \(\{\alpha_{n}\}\), \(\{\beta_{n,i}\}\), \(i=1,\ldots,N\), be sequences in \((0,1)\) such that \(0<\liminf_{n\to\infty}\beta_{n,i}\leq\limsup_{n\to\infty}\beta_{n,i}<1\) for each index i. Moreover, let us suppose that (H0)-(H6) hold. Then the sequences \(\{x_{n}\}\), \(\{y_{n}\} \) and \(\{u_{n}\}\) defined by scheme (3.1) all converge strongly to \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma f))x^{*}\) if and only if \(\lim_{n\to\infty}\|y_{n}-Ty_{n}\|=0\), provided \(\|u_{n}-u_{n-1} \|=o(\epsilon_{n})\), where \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma f))x^{*}\) is the unique solution of the hierarchical VIP
Proof
First of all, we note that \(F:C\to H\) is η-strongly monotone and κ-Lipschitzian on C and \(f:C \to C\) is an l-Lipschitz continuous mapping with \(0\leq\gamma l<\tau\). Observe that
It is clear that
Hence we deduce that \(\mu F-\gamma f\) is \((\mu\eta-\gamma l)\)-strongly monotone. In the meantime, it is easy to see that \(\mu F- \gamma f\) is \((\mu\kappa+\gamma l)\)-Lipschitz continuous with constant \(\mu\kappa+\gamma l>0\). Thus, there exists a unique solution \(x^{*}\) in Ω to VIP (3.46).
Now, observe that there exists a subsequence \(\{x_{n_{i}}\}\) of \(\{x_{n}\} \) such that
Since \(\{x_{n_{i}}\}\) is bounded, there exists a subsequence \(\{ x_{n_{i_{j}}}\}\) of \(\{x_{n_{i}}\}\) which converges weakly to some \(p\in H\). Without loss of generality, we may assume that \(x_{n_{i}}\rightharpoonup p\). Then, by Corollary 3.1, we get \(p\in\omega_{w} (x_{n})\subset{ \varOmega }\). Hence, from (3.46) and (3.47), we have
Since (H1)-(H6) hold, the sequence \(\{x_{n}\}\) is asymptotically regular (according to Proposition 3.2). In terms of (3.40) and Proposition 3.3, \(\|x_{n}-y_{n}\|\to0\) and \(\|x_{n}-u_{n}\|\to0\) as \(n\to\infty\).
Let us show that \(\|x_{n}-x^{*}\|\to0\) as \(n\to\infty\). Indeed, putting \(p=x^{*}\), we deduce from (3.9), (3.10), (3.15), (3.29) and (3.30) that
Since \(\sum^{\infty}_{n=0}\alpha_{n}<\infty\), \(\sum^{\infty}_{n=0}\epsilon _{n}=\infty\), \(\{\lambda_{n}\}\subset[a,b]\subset(0,\frac{1}{\|A\|^{2}})\) and \(\{\beta_{n}\}\subset[c,d]\subset(0,1)\), we conclude from (3.48) that \(\sum^{\infty}_{n=0}2\lambda_{n}\alpha_{n}\|x^{*}\| (\sqrt{2}\|x_{n}-x^{*}\|+\lambda_{n}\alpha_{n}\|x^{*}\|)<\infty\),
and
Applying Lemma 2.8 to (3.49), we infer that the sequence \(\{ x_{n}\}\) converges strongly to \(x^{*}\). This completes the proof. □
In a similar way, we can conclude another theorem as follows.
Theorem 3.2
Let us suppose that \({\varOmega }\neq\emptyset\). Let \(\{\alpha_{n}\}\), \(\{\beta_{n,i}\}\), \(i=1,\ldots,N\), be sequences in \((0,1)\) such that \(\beta_{n,i}\to\beta_{i}\) for each index i as \(n\to\infty\). Suppose that there exists \(k\in\{1,\ldots,N\}\) for which \(\beta_{n,k}\to0\) as \(n\to\infty\). Let \(k_{0}\in\{1,\ldots,N\}\) be the largest index for which \(\beta_{n,k_{0}}\to0\). Moreover, let us suppose that (H0), (H7) and (H8) hold and
-
(i)
\(\frac{\alpha_{n}+\epsilon_{n}}{\beta_{n,k_{0}}}\to0\) as \(n\to\infty\);
-
(ii)
if \(i\leq k_{0}\) and \(\beta_{n,i}\to\beta_{i}\), then \(\frac{\beta _{n,k_{0}}}{\beta_{n,i}}\to0\) as \(n\to\infty\);
-
(iii)
if \(\beta_{n,i}\to\beta_{i}\neq0\), then \(\beta_{i}\) lies in \((0,1)\).
Then the sequences \(\{x_{n}\}\), \(\{y_{n}\}\) and \(\{u_{n}\}\) defined by scheme (3.1) all converge strongly to \(x^{*}=P_{\varOmega } (I-(\mu F-\gamma f))x^{*}\) if and only if \(\lim_{n\to\infty}\|y_{n}-Ty_{n}\| =0\), provided \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n}\beta_{n,k_{0}})\), where \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma f))x^{*}\) is the unique solution of the hierarchical VIP
Remark 3.5
According to the above argument process for Theorems 3.1 and 3.2, we can readily see that if in scheme (3.1) the iterative step \(y_{n}=P_{C}[\epsilon_{n}\gamma Vy_{n,N}+(I-\epsilon_{n}\mu F)GP_{C}(y_{n,N}-\lambda_{n}\nabla f_{\alpha _{n}}(\tilde{y}_{n,N}))]\) is replaced by the iterative one \(y_{n}=P_{C}[\epsilon_{n}\gamma Vx_{n}+(I-\epsilon_{n}\mu F)GP_{C}(y_{n,N}-\lambda _{n}\nabla f_{\alpha_{n}}(\tilde{y}_{n,N}))]\), then Theorems 3.1 and 3.2 remain valid.
Remark 3.6
Theorems 3.1 and 3.2 improve, extend, supplement and develop Theorems 3.1 and 3.2 in [43] and Theorems 3.12 and 3.13 in [42] in the following aspects.
(i) The multi-step iterative scheme (3.1) of [43] is extended to develop a hybrid extragradient viscosity iterative scheme (3.1) by virtue of Korpelevich’s extragradient method, hybrid steepest-descent method [40] and gradient-projection method (GPM) with regularization. The iterative scheme (3.1) is based on Korpelevich’s extragradient method, viscosity approximation method [7] (see also [8]), Mann’s iteration method, hybrid steepest-descent method [40] and gradient-projection method (GPM) with regularization.
(ii) The argument techniques in our Theorems 3.1 and 3.2 are very different from those techniques in Theorems 3.1 and 3.2 in [43] and Theorems 3.12 and 3.13 in [42] because we make use of the properties of strict pseudocontractions (see Lemmas 2.3 and 2.4), the ones of the resolvent operator associated with Θ and h (see Lemmas 2.9-2.11), the fixed point problem \(x^{*}=Gx^{*}\) (⇔ GSVI (1.6)) (see Proposition 2.2), the equivalence of inclusion problem \(0\in\widetilde {T}v\) to the VIP \(v\in{\operatorname{VI}}(C,\nabla f)\) for maximal monotone operator \(\widetilde{T}\) (see (2.2)) and the contractive coefficient estimates for the contractions \(T^{\lambda}\) associating with nonexpansive mappings (see Lemma 2.7).
(iii) The problem of finding an element of \({\operatorname{Fix}}(T)\cap \bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i})\cap{\operatorname {GMEP}}({\varTheta },h)\cap{ \varXi } \cap{ \varGamma }\) in our Theorems 3.1 and 3.2 is more general and more subtle than the one of finding an element of \({\operatorname{Fix}}(T) \cap\bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i})\cap{\operatorname {GMEP}}({\varTheta },h)\) in Theorems 3.12 and 3.13 in [42] (where T is a nonexpansive mapping) and the one of finding an element of \({\operatorname{Fix}}(T)\cap \bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i})\cap{\operatorname {GMEP}}({\varTheta },h)\cap{ \varXi }\) in Theorems 3.1 and 3.2 in [43] (where T is a strict pseudocontraction).
(iv) Our Theorems 3.1 and 3.2 generalize Theorems 3.12 and 3.13 in [42] from the nonexpansive mapping T to the strict pseudocontraction T and extend them to the setting of GSVI (1.6), hierarchical VIP (3.46) and SFP (1.2). In the meantime, our Theorems 3.1 and 3.2 extend Theorems 3.1 and 3.2 in [43] to the setting of hierarchical VIP (3.46) and SFP (1.2).
4 Applications
For a given nonlinear mapping \({\mathcal{A}}:C\to H\), we consider the variational inequality problem (VIP) of finding \(\bar{x}\in C\) such that
We will indicate with \({\operatorname{VI}}(C,{\mathcal{A}})\) the set of solutions of VIP (4.1).
Recall that if u is a point in C, then the following relation holds:
In the meantime, it is easy to see that the following relation holds:
An operator \({\mathcal{A}}:C\to H\) is said to be an α-inverse strongly monotone operator if there exists a constant \(\alpha>0\) such that
As an example, we recall that the α-inverse strongly monotone operators are firmly nonexpansive mappings if \(\alpha \geq1\) and that every α-inverse strongly monotone operator is also \(\frac{1}{\alpha}\)-Lipschitz continuous (see [45]).
Let us observe also that if \({\mathcal{A}}\) is α-inverse strongly monotone, the mappings \(P_{C}(I-\lambda{\mathcal{A}})\) are nonexpansive for all \(\lambda\in(0,2\alpha]\) since they are compositions of nonexpansive mappings (see p.419 in [45]).
Let us consider \(\widetilde{S}_{1},\ldots,\widetilde{S}_{M}\) be a finite number of nonexpansive self-mappings on C and \(A_{1},\ldots,A_{N}\) be a finite number of α-inverse strongly monotone operators. Let \(T:C\to C\) be a ξ-strict pseudocontraction with fixed points. Let us consider the following mixed problem of finding \(x^{*}\in{\operatorname{Fix}}(T)\cap{\operatorname{GMEP}}({\varTheta },h)\cap {\varXi }\cap{ \varGamma }\) such that
Let us call (SVI) the set of solutions of the \((M+N)\)-system. This problem is equivalent to finding a common fixed point of T, \(\{P_{{\operatorname{Fix}}(T)\cap{\operatorname {GMEP}}({\varTheta },h)\cap{ \varXi }\cap{ \varGamma }}\widetilde{S}_{i}\}^{M}_{i=1}\), \(\{P_{C}(I-\lambda A_{i})\}^{N}_{i=1}\). So we claim that the following holds.
Theorem 4.1
Let us suppose that \({\varOmega }={\operatorname {Fix}}(T)\cap({\operatorname{SVI}})\cap{\operatorname{GMEP}}({\varTheta },h)\cap{ \varXi } \cap{ \varGamma }\neq\emptyset\). Fix \(\lambda>0\). Let \(\{\alpha_{n}\}\), \(\{\beta _{n,i}\}\), \(i=1,\ldots,(M+N)\), be sequences in \((0,1)\) such that \(0<\liminf_{n\to\infty}\beta_{n,i}\leq\limsup_{n\to\infty }\beta_{n,i}<1\) for all indices i. Moreover, let us suppose that (H0)-(H6) hold. Then the sequences \(\{x_{n}\}\), \(\{y_{n}\}\) and \(\{u_{n}\}\) explicitly defined by scheme
all converge strongly to \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma V))x^{*}\) if and only if \(\lim_{n\to\infty}\|y_{n}-Ty_{n}\|=0\), provided \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n})\), where \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma V))x^{*}\) is the unique solution of the hierarchical VIP
Theorem 4.2
Let us suppose that \({\varOmega }\neq\emptyset\). Fix \(\lambda>0\). Let \(\{\alpha_{n}\}\), \(\{\beta_{n,i}\}\), \(i= 1,\ldots,(M+N)\), be sequences in \((0,1)\) and \(\beta_{n,i}\to\beta_{i}\) for all i as \(n\to\infty\). Suppose that there exists \(k\in\{1,\ldots,M+N\}\) such that \(\beta_{n,k}\to0\) as \(n\to\infty\). Let \(k_{0}\in\{1,\ldots,M+N\}\) be the largest index for which \(\beta_{n,k_{0}}\to0\). Moreover, let us suppose that (H0), (H7) and (H8) hold and
-
(i)
\(\frac{\alpha_{n}+\epsilon_{n}}{\beta_{n,k_{0}}}\to0\) as \(n\to\infty\);
-
(ii)
if \(i\leq k_{0}\) and \(\beta_{n,i}\to0\), then \(\frac{\beta _{n,k_{0}}}{\beta_{n,i}}\to0\) as \(n\to\infty\);
-
(iii)
if \(\beta_{n,i}\to\beta_{i}\neq0\), then \(\beta_{i}\) lies in \((0,1)\).
Then the sequences \(\{x_{n}\}\), \(\{y_{n}\}\) and \(\{u_{n}\}\) explicitly defined by scheme (4.4) all converge strongly to \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma V))x^{*}\) if and only if \(\lim_{n\to \infty}\|y_{n}-Ty_{n}\|=0\), provided \(\|u_{n}-u_{n-1}\|= o(\epsilon_{n}\beta_{n,k_{0}})\), where \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma V))x^{*}\) is the unique solution of the VIP
Remark 4.1
If in system (4.3), \(F_{1}=F_{2}=A_{1}=\cdots =A_{N}=0\) and T is a nonexpansive mapping, we obtain a system of hierarchical fixed point problems introduced by Mainge and Moudafi [34, 36].
On the other hand, recall that a mapping \(S:C\to C\) is called ζ-strictly pseudocontractive if there exists a constant \(\zeta\in[0,1)\) such that
If \(\zeta=0\), then S is nonexpansive. Put \({\mathcal{A}}=I-S\), where \(S:C\to C\) is a ζ-strictly pseudocontractive mapping. Then \({\mathcal{A}}\) is \(\frac{1-\zeta}{2}\)-inverse strongly monotone; see [57].
Utilizing Theorems 3.1 and 3.2, we also give two strong convergence theorems for finding a common element of the solution set \({\operatorname{GMEP}}({\varTheta },h)\) of GMEP (1.3), the solution set Γ of SFP (1.2) and the common fixed point set \(\bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i})\cap{\operatorname{Fix}}(S)\) of finitely many nonexpansive mappings \(S_{i}:C\to C\), \(i=1,\ldots,N\), and a ζ-strictly pseudocontractive mapping \(S:C\to C\).
Theorem 4.3
Let \(\nu_{1}\in(0,1-\zeta)\). Let us suppose that \({\varOmega }=\bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i})\cap{\operatorname{Fix}}(S) \cap{\operatorname{GMEP}}({\varTheta }, h)\cap{ \varGamma }\neq\emptyset\). Let \(\{\alpha_{n}\}\), \(\{\beta_{n,i}\}\), \(i=1,\ldots,N\), be sequences in \((0,1)\) such that \(0<\liminf_{n\to\infty}\beta_{n,i}\leq\limsup_{n\to \infty}\beta_{n,i}<1\) for all indices i. Moreover, let us suppose that there hold (H0)-(H6) with \(\gamma_{n}=0\), \(\forall n\geq 0\). Then the sequences \(\{x_{n}\}\), \(\{y_{n}\}\) and \(\{u_{n}\}\) generated explicitly by
all converge strongly to \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma V))x^{*}\), provided \(\|u_{n}-u_{n-1}\|=o(\epsilon_{n})\), which is the unique solution of the VIP
Proof
In Theorem 3.1, put \(F_{1}={\mathcal{A}}=I-S\) and \(F_{2}=0\). Then \({\mathcal{A}}\) is \(\frac{1-\zeta}{2}\)-inverse strongly monotone. Hence we deduce that \({\operatorname {Fix}}(S)={\operatorname{VI}}(C,{\mathcal{A}})={\varXi }\) and
Thus, in terms of Theorem 3.1, we obtain the desired result. □
Theorem 4.4
Let \(\nu_{1}\in(0,1-\zeta)\). Let us suppose that \({\varOmega }=\bigcap^{N}_{i=1}{\operatorname{Fix}}(S_{i})\cap{\operatorname{Fix}}(S) \cap{\operatorname{GMEP}}({\varTheta }, h)\cap{ \varGamma }\neq\emptyset\). Let \(\{\alpha_{n}\}\), \(\{\beta_{n,i}\}\), \(i=1,\ldots,N\), be sequences in \((0,1)\) such that \(\beta_{n,i}\to\beta_{i}\) for all i as \(n\to\infty\). Suppose that there exists \(k\in\{1,\ldots,N\}\) for which \(\beta_{n,k}\to0\) as \(n\to\infty\). Let \(k_{0}\in\{1,\ldots,N\}\) be the largest index for which \(\beta_{n,k_{0}}\to0\). Moreover, let us suppose that there hold (H0), (H7) and (H8) with \(\gamma _{n}=0\), \(\forall n\geq0\) and
-
(i)
\(\frac{\alpha_{n}+\epsilon_{n}}{\beta_{n,k_{0}}}\to0\) as \(n\to\infty\);
-
(ii)
if \(i\leq k_{0}\) and \(\beta_{n,i}\to0\), then \(\frac{\beta _{n,k_{0}}}{\beta_{n,i}}\to0\) as \(n\to\infty\);
-
(iii)
if \(\beta_{n,i}\to\beta_{i}\neq0\), then \(\beta_{i}\) lies in \((0,1)\).
Then the sequences \(\{x_{n}\}\), \(\{y_{n}\}\) and \(\{u_{n}\}\) generated explicitly by (4.5) all converge strongly to \(x^{*}=P_{\varOmega }(I-(\mu F-\gamma V))x^{*}\), provided \(\|u_{n}-u_{n-1}\|=o(\epsilon _{n}\beta_{n,k_{0}})\), which is the unique solution of the hierarchical VIP
References
Lions, JL: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)
Cottle, RW, Giannessi, F, Lions, JL: Variational Inequalities and Complementarity Problems: Theory and Applications. Wiley, New York (1980)
Facchinei, F, Pang, J-S: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, Berlin (2003)
Facchinei, F, Pang, J-S: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, Berlin (2003)
Giannessi, F, Maugeri, A: Variational Inequalities and Network Equilibrium Problems. Plenum, New York (1995)
Kinderlehrer, D, Stampacchia, G: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)
Moudafi, A: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241(1), 46-55 (2000)
Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
Marino, G, Xu, HK: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318(1), 43-52 (2006)
Yao, Y, Liou, YC, Marino, G: Two-step iterative algorithms for hierarchical fixed point problems and variational inequality problems. J. Appl. Math. Comput. 31(1-2), 433-445 (2009)
Ceng, LC, Ansari, QH, Wong, MM, Yao, JC: Mann type hybrid extragradient method for variational inequalities, variational inclusions and fixed point problems. Fixed Point Theory 13(2), 403-422 (2012)
Korpelevich, GM: The extragradient method for finding saddle points and other problems. Matecon 12, 747-756 (1976)
Ceng, LC, Petrusel, A, Yao, JC: Relaxed extragradient methods with regularization for general system of variational inequalities with constraints of split feasibility and fixed point problems. Abstr. Appl. Anal. 2013, Article ID 891232 (2013)
Nadezhkina, N, Takahashi, W: Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 128, 191-201 (2006)
Ceng, LC, Wong, MM, Yao, JC: A hybrid extragradient-like approximation method with regularization for solving split feasibility and fixed point problems. J. Nonlinear Convex Anal. 14(1), 1-20 (2013)
Ceng, LC, Yao, JC: A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem. Nonlinear Anal. 72, 1922-1937 (2010)
Yao, Y, Liou, YC, Kang, SM: Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. Comput. Math. Appl. 59, 3472-3480 (2010)
Ceng, LC, Ansari, QH, Yao, JC: An extragradient method for solving split feasibility and fixed point problems. Comput. Math. Appl. 64(4), 633-642 (2012)
Ceng, LC, Ansari, QH, Yao, JC: Relaxed extragradient methods for finding minimum-norm solutions of the split feasibility problem. Nonlinear Anal. 75(4), 2116-2125 (2012)
Ceng, LC, Ansari, QH, Yao, JC: Relaxed extragradient iterative methods for variational inequalities. Appl. Math. Comput. 218, 1112-1123 (2011)
Ceng, LC, Wang, CY, Yao, JC: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67(3), 375-390 (2008)
Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2-4), 221-239 (1994)
Byrne, C: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441-453 (2002)
Censor, Y, Motova, A, Segal, A: Perturbed projections and subgradient projections for the multi-sets split feasibility problem. J. Math. Anal. Appl. 327(2), 1244-1256 (2007)
Censor, Y, Bortfeld, T, Martin, B, Trofimov, A: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353-2365 (2006)
Xu, HK: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)
Byrne, C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103-120 (2004)
Ceng, LC, Yao, JC: Relaxed and hybrid viscosity methods for general system of variational inequalities with split feasibility problem constraint. Fixed Point Theory Appl. 2013, 43 (2013)
Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63(1-4), 123-145 (1994)
Oettli, W: A remark on vector-valued equilibria and generalized monotonicity. Acta Math. Vietnam. 22, 215-221 (1997)
Moudafi, A: Weak convergence theorems for nonexpansive mappings and equilibrium problems. J. Nonlinear Convex Anal. 9(1), 37-43 (2008)
Takahashi, S, Takahashi, W: Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 69, 1025-1033 (2008)
Ceng, LC, Yao, JC: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. J. Comput. Appl. Math. 214, 186-201 (2008)
Mainge, P-E, Moudafi, A: Strong convergence of an iterative method for hierarchical fixed point problems. Pac. J. Optim. 3(3), 529-538 (2007)
Ceng, LC, Petrusel, A, Yao, JC: Iterative approaches to solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. J. Optim. Theory Appl. 143, 37-58 (2009)
Moudafi, A, Mainge, P-E: Towards viscosity approximations of hierarchical fixed point problems. Fixed Point Theory Appl. 2006, Article ID 95453 (2006)
Atsushiba, S, Takahashi, W: Strong convergence theorems for a finite family of nonexpansive mappings and applications (BN Prasad birth centenary commemoration volume) Indian J. Math., 41, 435-453 (1999)
Cianciaruso, F, Marino, G, Muglia, L, Yao, Y: A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem. Fixed Point Theory Appl. 2010, Article ID 383740 (2010)
Yamada, I: The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed-point sets of nonexpansive mappings. In: Butnariu, D, Censor, Y, Reich, S (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, pp. 473-504. North-Holland, Amsterdam (2001)
Xu, HK, Kim, TH: Convergence of hybrid steepest-descent methods for variational inequalities. J. Optim. Theory Appl. 119(1), 185-201 (2003)
Verma, RU: On a new system of nonlinear variational inequalities and associated iterative algorithms. Math. Sci. Res. Hot-Line 3(8), 65-68 (1999)
Marino, G, Muglia, L, Yao, Y: Viscosity methods for common solutions of equilibrium and variational inequality problems via multi-step iterative algorithms and common fixed points. Nonlinear Anal. 75, 1787-1798 (2012)
Ceng, LC, Kong, ZR, Wen, CF: On general systems of variational inequalities. Comput. Math. Appl. 66, 1514-1532 (2013)
Colao, V, Marino, G, Xu, HK: An iterative method for finding common solutions of equilibrium and fixed point problems. J. Math. Anal. Appl. 344, 340-352 (2008)
Takahashi, W, Toyoda, M: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118(2), 417-428 (2003)
Ceng, LC, Petruşel, A, Yao, JC: Composite viscosity approximation methods for equilibrium problem, variational inequality and common fixed points. J. Nonlinear Convex Anal. 15, 219-240 (2014)
Takahashi, W, Wong, NC, Yao, JC: Weak and strong convergence theorems for commutative families of positively homogeneous nonexpansive mappings in Banach spaces. J. Nonlinear Convex Anal. 15, 557-572 (2014)
Al-Mazrooei, AE, Bin Dehaish, BA, Latif, A, Yao, JC: Hybrid viscosity approximation methods for general systems of variational inequalities in Banach spaces. Fixed Point Theory Appl. 2013, 258 (2013)
Al-Mazrooei, AE, Latif, A, Yao, JC: Solving generalized mixed equilibria, variational inequalities and constrained convex minimization. Abstr. Appl. Anal. 2014, Article ID 587865 (2014)
Ceng, LC, Petruşel, A, Wong, MM, Yao, JC: Hybrid algorithms for solving variational inequalities, variational inclusions, mixed equilibria and fixed point problems. Abstr. Appl. Anal. 2014, Article ID 208717 (2014)
Ceng, LC, Yao, JC: On the triple hierarchical variational inequalities with constraints of mixed equilibria, variational inclusions and systems of generalized equilibria. Tamkang J. Math. 45(3), 297-334 (2014)
Al-Mazrooei, AE, Alofi, ASM, Latif, A, Yao, JC: Generalized mixed equilibria, variational inclusions, and fixed point problems. Abstr. Appl. Anal. 2014, Article ID 251065 (2014)
Ceng, LC, Latif, A, Ansari, QH, Yao, JC: Hybrid extragradient method for hierarchical variational inequalities. Fixed Point Theory Appl. 2014, 222 (2014)
Ceng, LC, Sahu, DR, Yao, JC: A unified extragradient method for systems of hierarchical variational inequalities in a Hilbert space. J. Inequal. Appl. 2014, 460 (2014)
Byrne, C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103-120 (2004)
Combettes, PL: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5-6), 475-504 (2004)
Marino, G, Xu, HK: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 329, 336-346 (2007)
Goebel, K, Kirk, WA: Topics on Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)
Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66(2), 240-256 (2002)
Rockafellar, RT: Monotone operators and the proximal point algorithms. SIAM J. Control Optim. 14, 877-898 (1976)
Acknowledgements
LC Ceng was partially supported by the National Science Foundation of China (11071169), Innovation Program of Shanghai Municipal Education Commission (09ZZ133) and PhD Program Foundation of Ministry of Education of China (20123127110002). CF Wen was partially supported by grants from MOST. YC Liou was supported in part by grants from MOST NSC 101-2628-E-230-001-MY3 and NSC 103-2923-E-037-001-MY3. This research is supported partially by Kaohsiung Medical University ‘Aim for the Top Universities Grant, grant No. KMU-TP103F00’.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ceng, LC., Liou, YC., Wen, CF. et al. Hybrid extragradient viscosity method for general system of variational inequalities. J Inequal Appl 2015, 150 (2015). https://doi.org/10.1186/s13660-015-0646-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-015-0646-z
MSC
- 49J30
- 47H09
- 47J20
- 49M05
Keywords
- Mann-type hybrid steepest-descent method
- general mixed equilibrium
- general system of variational inequalities
- nonexpansive mapping
- strict pseudocontraction
- inverse-strongly monotone mapping