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Abstract
In this paper, we introduce a hybrid extragradient viscosity iterative algorithm for
finding a common element of the set of solutions of a general mixed equilibrium
problem, the set of solutions of a general system of variational inequalities, the set of
solutions of a split feasibility problem (SFP), and the set of common fixed points of
finitely many nonexpansive mappings and a strict pseudocontraction in a real Hilbert
space. The iterative algorithm is based on Korpelevich’s extragradient method,
viscosity approximation method, Mann’s iteration method, hybrid steepest-descent
method and gradient-projection method (GPM) with regularization. We derive the
strong convergence of the iterative algorithm to a common element of these sets,
which also solves some hierarchical variational inequality.
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, C be a
nonempty closed convex subset of H and PC be the metric projection of H onto C. Let
S : C → C be a self-mapping on C. We denote by Fix(S) the set of fixed points of S and
by R the set of all real numbers. A mapping A : C → H is called L-Lipschitz continuous if
there exists a constant L ≥  such that

‖Ax – Ay‖ ≤ L‖x – y‖, ∀x, y ∈ C.

In particular, if L =  then A is called a nonexpansive mapping; if L ∈ [, ) then A is called
a contraction. A mapping T : C → C is called ξ -strictly pseudocontractive if there exists
a constant ξ ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + ξ
∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C.

In particular, if ξ = , then T is a nonexpansive mapping.
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Let A : C → H be a nonlinear mapping on C. We consider the following variational
inequality problem (VIP): find a point x̄ ∈ C such that

〈Ax̄, y – x̄〉 ≥ , ∀y ∈ C. (.)

The solution set of VIP (.) is denoted by VI(C,A).
VIP (.) was first discussed by Lions [] and now it is well known. Variational inequal-

ities have extensively been investigated; see the monographs [–]. It is well known that
if A is a strongly monotone and Lipschitz continuous mapping on C, then VIP (.) has
a unique solution. In the literature, the recent research work shows that variational in-
equalities like VIP (.) cover several topics, for example, monotone inclusions, convex
optimization and quadratic minimization over fixed point sets; see [–] for more de-
tails.

In , Korpelevich [] proposed an iterative algorithm for solving VIP (.) in the
Euclidean space Rn:

{

yn = PC(xn – τAxn),
xn+ = PC(xn – τAyn), ∀n ≥ ,

with τ >  a given number, which is known as the extragradient method. The literature on
the VIP is vast, and Korpelevich’s extragradient method has received great attention given
by many authors who improved it in various ways; see, e.g., [, –] and the references
therein, to name but a few.

On the other hand, let C and Q be nonempty closed convex subsets of infinite-
dimensional real Hilbert spaces H and H, respectively. The split feasibility problem (SFP)
is to find a point x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q, (.)

where A ∈ B(H ,H) and B(H ,H) denotes the family of all bounded linear operators from
H to H. We denote by Γ the solution set of the SFP.

In , the SFP was first introduced by Censor and Elfving [], in finite-dimensional
Hilbert spaces, for modeling inverse problems which arise from phase retrievals and in
medical image reconstruction. A number of image reconstruction problems can be for-
mulated as the SFP; see, e.g., [] and the references therein. Recently, it has been found
that the SFP can also be applied to study intensity-modulated radiation therapy (IMRT);
see, e.g., [, ] and the references therein. In the recent past, a wide variety of iterative
methods have been used in signal processing and image reconstruction and for solving the
SFP; see, e.g., [, , , , –] and the references therein. A seemingly more popular
algorithm that solves the SFP is the CQ algorithm of Byrne [, ] which is found to be a
gradient-projection method (GPM) in convex minimization. However, it remains a chal-
lenge how to implement the CQ algorithm in the case where the projections PC and/or PQ

fail to have closed-form expressions, though theoretically we can prove the (weak) con-
vergence of the algorithm.

Very recently, Xu [] gave a continuation of the study on the CQ algorithm and its
convergence. He applied Mann’s algorithm to the SFP and proposed an averaged CQ algo-
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rithm which was proved to be weakly convergent to a solution of the SFP. He also estab-
lished the strong convergence result, which shows that the minimum-norm solution can
be obtained.

Throughout this paper, assume that the SFP is consistent, that is, the solution set Γ of the
SFP is nonempty. Let f : H → R be a continuous differentiable function. The minimization
problem

min
x∈C

f (x) :=


‖Ax – PQAx‖

is ill-posed. Therefore, Xu [] considered the following Tikhonov regularization problem:

min
x∈C

fα(x) :=


‖Ax – PQAx‖ +



α‖x‖,

where α >  is the regularization parameter.
Very recently, by combining the gradient-projection method with regularization and

extragradient method due to Nadezhkina and Takahashi [], Ceng et al. [] proposed
a Mann-type extragradient-like algorithm, and proved that the sequences generated by
the proposed algorithm converge weakly to a common solution of SFP (.) and the fixed
point problem of a nonexpansive mapping.

Theorem CAY (see Theorem . in []) Let T : C → C be a nonexpansive mapping such
that Fix(T) ∩ Γ �= ∅. Assume that  < λ < 

‖A‖ , and let {xn} and {yn} be the sequences in C
generated by the following Mann-type extragradient-like algorithm:

⎧

⎪⎨

⎪⎩

x = x ∈ C chosen arbitrarily,
yn = ( – βn)xn + βnPC(xn – λ∇fαn (xn)),
xn+ = γnxn + ( – γn)TPC(yn – λ∇fαn (yn)), ∀n ≥ ,

where the sequences of parameters {αn}, {βn} and {γn} satisfy the following conditions:
(i)
∑∞

n= αn < ∞;
(ii) {βn} ⊂ [, ] and  < lim infn→∞ βn ≤ lim supn→∞ βn < ;

(iii) {γn} ⊂ [, ] and  < lim infn→∞ γn ≤ lim supn→∞ γn < .
Then both the sequences {xn} and {yn} converge weakly to an element z ∈ Fix(T) ∩ Γ .

In this paper, we consider the following general mixed equilibrium problem (GMEP)
(see also [, ]) of finding x ∈ C such that

Θ(x, y) + h(x, y) ≥ , ∀y ∈ C, (.)

where Θ , h : C × C → R are two bi-functions. We denote the set of solutions of GMEP
(.) by GMEP(Θ , h). GMEP (.) is very general; for example, it includes the following
equilibrium problems as special cases.

As an example, in [, , ] the authors considered and studied the generalized equi-
librium problem (GEP) which is to find x ∈ C such that

Θ(x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C.

The set of solutions of GEP is denoted by GEP(Θ ,A).



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:150 Page 4 of 43

In [, , ], the authors considered and studied the mixed equilibrium problem
(MEP) which is to find x ∈ C such that

Θ(x, y) + ϕ(y) – ϕ(x) ≥ , ∀y ∈ C.

The set of solutions of MEP is denoted by MEP(Θ ,ϕ).
In [–], the authors considered and studied the equilibrium problem (EP) which is

to find x ∈ C such that

Θ(x, y) ≥ , ∀y ∈ C.

The set of solutions of EP is denoted by EP(Θ). It is worth to mention that the EP is a
unified model of several problems, namely, variational inequality problems, optimization
problems, saddle point problems, complementarity problems, fixed point problems, Nash
equilibrium problems, etc.

Throughout this paper, it is assumed as in [] that Θ : C × C → R is a bi-function
satisfying conditions (θ)-(θ) and h : C × C → R is a bi-function with restrictions (h)-
(h), where

(θ) Θ(x, x) =  for all x ∈ C;
(θ) Θ is monotone (i.e., Θ(x, y) +Θ(y, x) ≤ , ∀x, y ∈ C) and upper hemicontinuous in the

first variable, i.e., for each x, y, z ∈ C,

lim sup
t→+

Θ
(

tz + ( – t)x, y
)≤ Θ(x, y);

(θ) Θ is lower semicontinuous and convex in the second variable;
(h) h(x, x) =  for all x ∈ C;
(h) h is monotone and weakly upper semicontinuous in the first variable;
(h) h is convex in the second variable.

For r >  and x ∈ H , let Tr : H → C be a mapping defined by

Trx =
{

z ∈ C : Θ(z, y) + h(z, y) +

r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

called the resolvent of Θ and h.
Assume that C is the fixed point set of a nonexpansive mapping T : H → H , i.e., C =

Fix(T). Let F : H → H be η-strongly monotone and κ-Lipschitzian with positive constants
η,κ > . Let u ∈ H be given arbitrarily and {λn}∞n= be a sequence in [, ]. The hybrid
steepest-descent method introduced by Yamada [] is the algorithm

un+ := Tλn+ un = (I – λn+μF)Tun, ∀n ≥ , (.)

where I is the identity mapping on H .
In , Xu and Kim [] proved the following strong convergence result.

Theorem XK (see Theorem . in []) Assume that  < μ < η/κ. Assume also that the
control conditions hold for {λn}∞n=: limn→∞ λn = ,

∑∞
n= λn = ∞ and limn→∞ λn/λn+ = 



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:150 Page 5 of 43

(or equivalently, limn→∞(λn – λn+)/λn+ = ). Then the sequence {un} generated by algo-
rithm (.) converges strongly to the unique solution u∗ in Fix(T) to the hierarchical VIP:

〈

Fu∗, v – u∗〉≥ , ∀v ∈ Fix(T). (.)

Let F, F : C → H be two mappings. Consider the following general system of varia-
tional inequalities (GSVI) of finding (x∗, y∗) ∈ C × C such that

{

〈νFy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
〈νFx∗ + y∗ – x∗, x – y∗〉 ≥ , ∀x ∈ C,

(.)

where ν >  and ν >  are two constants. The solution set of GSVI (.) is denoted by
GSVI(C, F, F).

In particular, if F = F = A, then the GSVI (.) reduces to the following problem of
finding (x∗, y∗) ∈ C × C such that

{

〈νAy∗ + x∗ – y∗, x – x∗〉 ≥ , ∀x ∈ C,
〈νAx∗ + y∗ – x∗, x – y∗〉 ≥ , ∀x ∈ C,

which is defined by Verma [] and it is called a new system of variational inequalities
(NSVI). Further, if x∗ = y∗ additionally, then the NSVI reduces to the classical VIP (.). In
, Ceng et al. [] transformed GSVI (.) into the fixed point problem of the mapping
G = PC(I – νF)PC(I – νF), that is, Gx∗ = x∗, where y∗ = PC(I – νF)x∗. Throughout this
paper, the fixed point set of the mapping G is denoted by Ξ .

On the other hand, if C is the fixed point set Fix(T) of a nonexpansive mapping T and S is
another nonexpansive mapping (not necessarily with fixed points), then VIP (.) becomes
the variational inequality problem of finding x∗ ∈ Fix(T) such that

〈

(I – S)x∗, x – x∗〉≥ , ∀x ∈ Fix(T). (.)

This problem, introduced by Mainge and Moudafi [, ], is called the hierarchical fixed
point problem. It is clear that if S has fixed points, then they are solutions of VIP (.).

If S is a ρ-contraction (i.e., ‖Sx – Sy‖ ≤ ρ‖x – y‖ for some  ≤ ρ < ), the solution set of
VIP (.) is a singleton and it is well known as the viscosity problem. This was previously
introduced by Moudafi [] and also developed by Xu []. In this case, it is easy to see
that solving VIP (.) is equivalent to finding a fixed point of the nonexpansive mapping
PFix(T)S, where PFix(T) is the metric projection on the closed and convex set Fix(T).

In , Marino et al. [] introduced a multi-step iterative scheme

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
xn+ = αnf (xn) + ( – αn)Tyn,N ,

(.)

with f : C → C a ρ-contraction and {αn}, {βn,i} ⊂ (, ), {rn} ⊂ (,∞), that generalizes the
two-step iterative scheme in [] for two nonexpansive mappings to a finite family of non-
expansive mappings T , Si : C → C, i = , . . . , N , and proved that the proposed scheme (.)



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:150 Page 6 of 43

converges strongly to a common fixed point of the mappings that is also an equilibrium
point of GMEP (.).

More recently, Marino, Muglia and Yao’s multi-step iterative scheme (.) was extended
to develop the following relaxed viscosity iterative algorithm.

Algorithm CKW (see (.) in []) Let f : C → C be a ρ-contraction and T : C → C
be a ξ -strict pseudocontraction. Let Si : C → C be a nonexpansive mapping for each i =
, . . . , N . Let Fj : C → H be ζj-inverse strongly monotone with  < νj < ζj for each j = , .
Let Θ : C × C → R be a bi-function satisfying conditions (θ)-(θ) and h : C × C → R be
a bi-function with restrictions (h)-(h). Let {xn} be the sequence generated by

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
yn = αnf (yn,N ) + ( – αn)Gyn,N ,
xn+ = βnxn + γnyn + δnTyn, ∀n ≥ ,

(.)

where G = PC(I – νF)PC(I – νF), {αn}, {βn} are sequences in (, ) with  <
lim infn→∞ βn ≤ lim supn→∞ βn < , {γn}, {δn} are sequences in [, ] with lim infn→∞ δn > 
and βn +γn +δn = , ∀n ≥ , {βn,i} is a sequence in (, ) for each i = , . . . , N , (γn +δn)ξ ≤ γn,
∀n ≥ , and {rn} is a sequence in (,∞) with lim infn→∞ rn > .

The authors [] proved that the proposed scheme (.) converges strongly to a common
fixed point of the mappings T , Si : C → C, i = , . . . , N , that is also an equilibrium point of
GMEP (.) and a solution of GSVI (.).

In this paper, we introduce a hybrid extragradient viscosity iterative algorithm for find-
ing a common element of the solution set GMEP(Θ , h) of GMEP (.), the solution set
GSVI(C, F, F) (i.e., Ξ ) of GSVI (.), the solution set Γ of SFP (.), and the common
fixed point set

⋂N
i= Fix(Si) ∩ Fix(T) of finitely many nonexpansive mappings Si : C → C,

i = , . . . , N , and a strictly pseudocontractive mapping T : C → C, in the setting of the
infinite-dimensional Hilbert space. The iterative algorithm is based on Korpelevich’s ex-
tragradient method, viscosity approximation method [] (see also []), Mann’s iteration
method, hybrid steepest-descent method [] and gradient-projection method (GPM)
with regularization. Our aim is to prove that the iterative algorithm converges strongly
to a common element of these sets, which also solves some hierarchical variational in-
equality. We observe that related results have been derived say in [, , , , , ,
–].

2 Preliminaries
Throughout this paper, we assume that H is a real Hilbert space whose inner product
and norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex
subset of H . We write xn ⇀ x to indicate that the sequence {xn} converges weakly to x
and xn → x to indicate that the sequence {xn} converges strongly to x. Moreover, we use
ωw(xn) to denote the weak ω-limit set of the sequence {xn} and ωs(xn) to denote the strong
ω-limit set of the sequence {xn}, i.e.,

ωw(xn) :=
{

x ∈ H : xni ⇀ x for some subsequence {xni} of {xn}
}
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and

ωs(xn) :=
{

x ∈ H : xni → x for some subsequence {xni} of {xn}
}

.

The metric (or nearest point) projection from H onto C is the mapping PC : H → C
which assigns to each point x ∈ H the unique point PCx ∈ C satisfying the property

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

The following properties of projections are useful and pertinent to our purpose.

Proposition . Given any x ∈ H and z ∈ C, one has
(i) z = PCx ⇔ 〈x – z, y – z〉 ≤ , ∀y ∈ C;

(ii) z = PCx ⇔ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
(iii) 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖, ∀y ∈ H , which hence implies that PC is

nonexpansive and monotone.

Definition . A mapping T : H → H is said to be
(a) nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H ;

(b) firmly nonexpansive if T – I is nonexpansive, or equivalently, if T is -inverse
strongly monotone (-ism),

〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖, ∀x, y ∈ H ;

alternatively, T is firmly nonexpansive if and only if T can be expressed as

T =



(I + S),

where S : H → H is nonexpansive; projections are firmly nonexpansive.

Definition . A mapping A : C → H is said to be
(i) monotone if

〈Ax – Ay, x – y〉 ≥ , ∀x, y ∈ C;

(ii) η-strongly monotone if there exists a constant η >  such that

〈Ax – Ay, x – y〉 ≥ η‖x – y‖, ∀x, y ∈ C;

(iii) α-inverse-strongly monotone if there exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.
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It can be easily seen that if T is nonexpansive, then I –T is monotone. It is also easy to see
that the projection PC is -ism. Inverse strongly monotone (also referred to as co-coercive)
operators have been applied widely in solving practical problems in various fields.

On the other hand, it is obvious that if A : C → H is α-inverse-strongly monotone, then
A is monotone and 

α
-Lipschitz continuous. Moreover, we also have that, for all u, v ∈ C

and λ > ,

∥
∥(I – λA)u – (I – λA)v

∥
∥

 ≤ ‖u – v‖ + λ(λ – α)‖Au – Av‖. (.)

So, if λ ≤ α, then I – λA is a nonexpansive mapping from C to H .
In , Ceng et al. [] transformed problem (.) into a fixed point problem in the

following way.

Proposition . (see []) For given x̄, ȳ ∈ C, (x̄, ȳ) is a solution of GSVI (.) if and only if
x̄ is a fixed point of the mapping G : C → C defined by

Gx = PC(I – νF)PC(I – νF)x, ∀x ∈ C,

where ȳ = PC(I – νF)x̄.

In particular, if the mapping Fj : C → H is ζj-inverse-strongly monotone for j = , , then
the mapping G is nonexpansive provided νj ∈ (, ζj] for j = , . We denote by Ξ the fixed
point set of the mapping G.

The following result is easy to prove.

Proposition . (see []) Given x∗ ∈ H , the following statements are equivalent:
(i) x∗ solves the SFP;

(ii) x∗ solves the fixed point equation

PC(I – λ∇f )x∗ = x∗,

where λ > , ∇f = A∗(I – PQ)A and A∗ is the adjoint of A;
(iii) x∗ solves the variational inequality problem (VIP) of finding x∗ ∈ C such that

〈∇f
(

x∗), x – x∗〉≥ , ∀x ∈ C.

It is clear from Proposition . that

Γ = Fix
(

PC(I – λ∇f )
)

= VI(C,∇f ), ∀λ > .

Definition . A mapping T : H → H is said to be an averaged mapping if it can be writ-
ten as the average of the identity I and a nonexpansive mapping, that is,

T ≡ ( – α)I + αS,

where α ∈ (, ) and S : H → H is nonexpansive. More precisely, when the last equality
holds, we say that T is α-averaged. Thus firmly nonexpansive mappings (in particular,
projections) are 

 -averaged mappings.
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Proposition . (see []) Let T : H → H be a given mapping.
(i) T is nonexpansive if and only if the complement I – T is 

 -ism.
(ii) If T is ν-ism, then for γ > , γ T is ν

γ
-ism.

(iii) T is averaged if and only if the complement I – T is ν-ism for some ν > /. Indeed,
for α ∈ (, ), T is α-averaged if and only if I – T is 

α
-ism.

Proposition . (see [, ]) Let S, T , V : H → H be given operators.
(i) If T = ( – α)S + αV for some α ∈ (, ) and if S is averaged and V is nonexpansive,

then T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I – T is firmly nonexpansive.

(iii) If T = ( – α)S + αV for some α ∈ (, ) and if S is firmly nonexpansive and V is
nonexpansive, then T is averaged.

(iv) The composite of finitely many averaged mappings is averaged. That is, if each of the
mappings {Ti}N

i= is averaged, then so is the composite T · · ·TN . In particular, if T is
α-averaged and T is α-averaged, where α,α ∈ (, ), then the composite TT is
α-averaged, where α = α + α – αα.

(v) If the mappings {Ti}N
i= are averaged and have a common fixed point, then

N
⋂

i=

Fix(Ti) = Fix(T · · ·TN ).

The notation Fix(T) denotes the set of all fixed points of the mapping T , that is,
Fix(T) = {x ∈ H : Tx = x}.

We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma . Let X be a real inner product space. Then there holds the following inequality:

‖x + y‖ ≤ ‖x‖ + 〈y, x + y〉, ∀x, y ∈ X.

Lemma . Let H be a real Hilbert space. Then the following hold:
(a) ‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉 for all x, y ∈ H ;
(b) ‖λx + μy‖ = λ‖x‖ + μ‖y‖ – λμ‖x – y‖ for all x, y ∈ H and λ,μ ∈ [, ] with

λ + μ = ;
(c) if {xn} is a sequence in H such that xn ⇀ x, it follows that

lim sup
n→∞

‖xn – y‖ = lim sup
n→∞

‖xn – x‖ + ‖x – y‖, ∀y ∈ H .

It is clear that, in a real Hilbert space H , T : C → C is ξ -strictly pseudocontractive if and
only if the following inequality holds:

〈Tx – Ty, x – y〉 ≤ ‖x – y‖ –
 – ξ


∥
∥(I – T)x – (I – T)y

∥
∥

, ∀x, y ∈ C.

This immediately implies that if T is a ξ -strictly pseudocontractive mapping, then I – T
is –ξ

 -inverse strongly monotone; for further details, we refer to [] and the references
therein. It is well known that the class of strict pseudocontractions strictly includes the



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:150 Page 10 of 43

class of nonexpansive mappings and that the class of pseudocontractions strictly includes
the class of strict pseudocontractions.

Lemma . (see Proposition . in []) Let C be a nonempty closed convex subset of a
real Hilbert space H and T : C → C be a mapping.

(i) If T is a ξ -strictly pseudocontractive mapping, then T satisfies the Lipschitzian
condition

‖Tx – Ty‖ ≤  + ξ

 – ξ
‖x – y‖, ∀x, y ∈ C.

(ii) If T is a ξ -strictly pseudocontractive mapping, then the mapping I – T is semiclosed
at , that is, if {xn} is a sequence in C such that xn ⇀ x̃ and (I – T)xn → , then
(I – T)x̃ = .

(iii) If T is ξ -(quasi-)strict pseudocontraction, then the fixed-point set Fix(T) of T is
closed and convex so that the projection PFix(T) is well defined.

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let T : C → C be a ξ -strictly pseudocontractive mapping. Let γ and δ be two nonnegative
real numbers such that (γ + δ)ξ ≤ γ . Then

∥
∥γ (x – y) + δ(Tx – Ty)

∥
∥≤ (γ + δ)‖x – y‖, ∀x, y ∈ C.

Lemma . (see Demiclosedness principle in []) Let C be a nonempty closed convex
subset of a real Hilbert space H . Let S be a nonexpansive self-mapping on C with Fix(S) �= ∅.
Then I –S is demiclosed. That is, whenever {xn} is a sequence in C weakly converging to some
x ∈ C and the sequence {(I – S)xn} strongly converges to some y, it follows that (I – S)x = y.
Here I is the identity operator of H .

Lemma . Let A : C → H be a monotone mapping. In the context of the variational
inequality problem, the characterization of the projection (see Proposition .(i)) implies

u ∈ VI(C,A) ⇔ u = PC(u – λAu), λ > .

Let C be a nonempty closed convex subset of a real Hilbert space H . We introduce some
notations. Let λ be a number in (, ] and let μ > . Associating with a nonexpansive map-
ping T : C → C, we define the mapping Tλ : C → H by

Tλx := Tx – λμF(Tx), ∀x ∈ C,

where F : C → H is an operator such that, for some positive constants κ ,η > , F is
κ-Lipschitzian and η-strongly monotone on C; that is, F satisfies the conditions

‖Fx – Fy‖ ≤ κ‖x – y‖ and 〈Fx – Fy, x – y〉 ≥ η‖x – y‖

for all x, y ∈ C.
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Lemma . (see Lemma . in []) Tλ is a contraction provided  < μ < η

κ ; that is,

∥
∥Tλx – Tλy

∥
∥≤ ( – λτ )‖x – y‖, ∀x, y ∈ C,

where τ =  –
√

 – μ(η – μκ) ∈ (, ].

Lemma . (see Lemma . in []) Let {an} be a sequence of nonnegative real numbers
satisfying

an+ ≤ ( – βn)an + βnγn + δn, ∀n ≥ ,

where {βn}, {γn} and {δn} satisfy the following conditions:
(i) {βn} ⊂ [, ] and

∑∞
n= βn = ∞;

(ii) either lim supn→∞ γn ≤  or
∑∞

n= βn|γn| < ∞;
(iii) δn ≥  for all n ≥ , and

∑∞
n= δn < ∞.

Then limn→∞ an = .

In the sequel, we will indicate with GMEP(Θ , h) the solution set of GMEP (.).

Lemma . (see []) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let Θ : C × C → R be a bi-function satisfying conditions (θ)-(θ) and h : C × C → R be
a bi-function with restrictions (h)-(h). Moreover, let us suppose that

(H) for fixed r >  and x ∈ C, there exist bounded K ⊂ C and x̂ ∈ K such that for all
z ∈ C \ K , –Θ(x̂, z) + h(z, x̂) + 

r 〈x̂ – z, z – x〉 < .
For r >  and x ∈ H , the mapping Tr : H → C (i.e., the resolvent of Θ and h) has the

following properties:
(i) Trx �= ∅;

(ii) Trx is a singleton;
(iii) Tr is firmly nonexpansive;
(iv) GMEP(Θ , h) = Fix(Tr) and it is closed and convex.

Lemma . (see []) Let us suppose that (θ)-(θ), (h)-(h) and (H) hold. Let x, y ∈ H ,
r, r > . Then

‖Tr y – Tr x‖ ≤ ‖y – x‖ +
∣
∣
∣
∣

r – r

r

∣
∣
∣
∣
‖Tr y – y‖.

Lemma . (see []) Suppose that the hypotheses of Lemma . are satisfied. Let {rn} be
a sequence in (,∞) with lim infn→∞ rn > . Suppose that {xn} is a bounded sequence. Then
the following statements are equivalent and true:

(a) if ‖xn – Trn xn‖ →  as n → ∞, each weak cluster point of {xn} satisfies the problem

Θ(x, y) + h(x, y) ≥ , ∀y ∈ C,

i.e., ωw(xn) ⊆ GMEP(Θ , h);
(b) the demiclosedness principle holds in the sense that if xn ⇀ x∗ and ‖xn – Trn xn‖ → 

as n → ∞, then (I – Trk )x∗ =  for all k ≥ .
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Recall that a set-valued mapping T : D(T) ⊂ H → H is called monotone if for all x, y ∈
D(T), f ∈ Tx and g ∈ Ty imply

〈f – g, x – y〉 ≥ .

A set-valued mapping T is called maximal monotone if T is monotone and (I +λT)D(T) =
H for each λ > , where I is the identity mapping of H . We denote by G(T) the graph of T .
It is known that a monotone mapping T is maximal if and only if, for (x, f ) ∈ H × H ,
〈f – g, x – y〉 ≥  for every (y, g) ∈ G(T) implies f ∈ Tx. Next we provide an example to
illustrate the concept of maximal monotone mapping.

Let A : C → H be a monotone, k-Lipschitz-continuous mapping, and let NCv be the
normal cone to C at v ∈ C, i.e.,

NCv =
{

u ∈ H : 〈v – p, u〉 ≥ ,∀p ∈ C
}

.

Define

T̃v =

{

Av + NCv, if v ∈ C,
∅, if v /∈ C.

Then it is known in [] that T̃ is maximal monotone and

 ∈ T̃v ⇔ v ∈ VI(C,A). (.)

3 Main results
We now propose the following hybrid extragradient viscosity iterative scheme:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
ỹn,N = PC(yn,N – λn∇fαn (yn,N )),
yn = PC[εnγ Vyn,N + (I – εnμF)GPC(yn,N – λn∇fαn (ỹn,N ))],
xn+ = βnyn + γnPC(yn,N – λn∇fαn (ỹn,N )) + δnTPC(yn,N – λn∇fαn (ỹn,N ))

(.)

for all n ≥ , where
F : C → H is a κ-Lipschitzian and η-strongly monotone operator with positive
constants κ ,η >  and V : C → C is an l-Lipschitzian mapping with constant l ≥ ;
Fj : C → H is ζj-inverse strongly monotone and G := PC(I – νF)PC(I – νF) with
νj ∈ (, ζj) for j = , ;
T : C → C is a ξ -strict pseudocontraction and Si : C → C is a nonexpansive mapping
for each i = , . . . , N ;
Θ , h : C × C → R are two bi-functions satisfying the hypotheses of Lemma .;
{λn} is a sequence in (, 

‖A‖ ) with  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ ;

 < μ < η/κ and  ≤ γ l < τ with τ :=  –
√

 – μ(η – μκ);
{αn} is a sequence in (,∞) with

∑∞
n= αn < ∞;

{εn}, {βn} are sequences in (, ) with  < lim infn→∞ βn ≤ lim supn→∞ βn < ;
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{γn}, {δn} are sequences in [, ] with βn + γn + δn = , ∀n ≥ ;
{βn,i}N

i= are sequences in (, ) and (γn + δn)ξ ≤ γn, ∀n ≥ ;
{rn} is a sequence in (,∞) with lim infn→∞ rn >  and lim infn→∞ δn > .

We start our main result from the following series of propositions.

Proposition . Let us suppose that Ω = Fix(T)∩⋂N
i= Fix(Si)∩GMEP(Θ , h)∩Ξ ∩Γ �= ∅.

Then the sequences {xn}, {yn}, {yn,i} for all i, {un} are bounded.

Proof Since  < lim infn→∞ λn ≤ lim supn→∞ λn < 
‖A‖ and  < lim infn→∞ βn ≤

lim supn→∞ βn < , we may assume, without loss of generality, that {λn} ⊂ [a, b] ⊂ (, 
‖A‖ )

and {βn} ⊂ [c, d] ⊂ (, ). Now, let us show that PC(I – λ∇fα) is σ -averaged for each
λ ∈ (, 

α+‖A‖ ), where

σ =
 + λ(α + ‖A‖)


∈ (, ). (.)

Indeed, it is easy to see that ∇f = A∗(I – PQ)A is 
‖A‖ -ism, that is,

〈∇f (x) – ∇f (y), x – y
〉≥ 

‖A‖

∥
∥∇f (x) – ∇f (y)

∥
∥

. (.)

Observe that

(

α + ‖A‖)〈∇fα(x) – ∇fα(y), x – y
〉

=
(

α + ‖A‖)[α‖x – y‖ +
〈∇f (x) – ∇f (y), x – y

〉]

= α‖x – y‖ + α
〈∇f (x) – ∇f (y), x – y

〉

+ α‖A‖‖x – y‖

+ ‖A‖〈∇f (x) – ∇f (y), x – y
〉

≥ α‖x – y‖ + α
〈∇f (x) – ∇f (y), x – y

〉

+
∥
∥∇f (x) – ∇f (y)

∥
∥



=
∥
∥α(x – y) + ∇f (x) – ∇f (y)

∥
∥



=
∥
∥∇fα(x) – ∇fα(y)

∥
∥

. (.)

Hence, it follows that ∇fα = αI + A∗(I – PQ)A is 
α+‖A‖ -ism. Thus, λ∇fα is 

λ(α+‖A‖) -ism ac-

cording to Proposition .(ii). By Proposition .(iii), the complement I –λ∇fα is λ(α+‖A‖)
 -

averaged. Therefore, noting that PC is 
 -averaged and utilizing Proposition .(iv), we

know that for each λ ∈ (, 
α+‖A‖ ), PC(I – λ∇fα) is σ -averaged with

σ =



+
λ(α + ‖A‖)


–




· λ(α + ‖A‖)


=
 + λ(α + ‖A‖)


∈ (, ). (.)

This shows that PC(I – λ∇fα) is nonexpansive. Furthermore, for {λn} ⊂ [a, b] ⊂ (, 
‖A‖ ),

we have

a ≤ inf
n≥

λn ≤ sup
n≥

λn ≤ b <


‖A‖ = lim
n→∞


αn + ‖A‖ . (.)
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Without loss of generality, we may assume that

a ≤ inf
n≥

λn ≤ sup
n≥

λn ≤ b <


αn + ‖A‖ , ∀n ≥ . (.)

Consequently, it follows that for each integer n ≥ , PC(I – λn∇fαn ) is σn-averaged with

σn =



+
λn(αn + ‖A‖)


–




· λn(αn + ‖A‖)


=
 + λn(αn + ‖A‖)


∈ (, ). (.)

This immediately implies that PC(I – λn∇fαn ) is nonexpansive for all n ≥ .
For simplicity, we write tn = PC(yn,N – λn∇fαn (ỹn,N )) and

vn = εnγ Vyn,N + (I – εnμF)Gtn

for all n ≥ . Then yn = PCvn and xn+ = βnyn + γntn + δnTtn.
First of all, take a fixed p ∈ Ω arbitrarily. We observe that

‖yn, – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖.

For all from i =  to i = N , by induction, one proves that

‖yn,i – p‖ ≤ βn,i‖un – p‖ + ( – βn,i)‖yn,i– – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖.

Thus we obtain that for every i = , . . . , N ,

‖yn,i – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖. (.)

For simplicity, we write p̃ = PC(p – νFp), t̃n = PC(tn – νFtn) and zn = PC(t̃n – νF t̃n)
for each n ≥ . Then zn = Gtn and

p = PC(I – νF)p̃ = PC(I – νF)PC(I – νF)p = Gp.

Since Fj : C → H is ζj-inverse strongly monotone and  < νj < ζj for each j = , , we know
that for all n ≥ ,

‖zn – p‖ = ‖Gtn – p‖

=
∥
∥PC(I – νF)PC(I – νF)tn – PC(I – νF)PC(I – νF)p

∥
∥



≤ ∥∥(I – νF)PC(I – νF)tn – (I – νF)PC(I – νF)p
∥
∥



=
∥
∥
[

PC(I – νF)tn – PC(I – νF)p
]

– ν
[

FPC(I – νF)tn – FPC(I – νF)p
]∥
∥

≤ ∥∥PC(I – νF)tn – PC(I – νF)p
∥
∥



+ ν(ν – ζ)
∥
∥FPC(I – νF)tn – FPC(I – νF)p

∥
∥



≤ ∥∥(I – νF)tn – (I – νF)p
∥
∥

 + ν(ν – ζ)‖F t̃n – Fp̃‖
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=
∥
∥(tn – p) – ν(Ftn – Fp)

∥
∥

 + ν(ν – ζ)‖F t̃n – Fp̃‖

≤ ‖tn – p‖ + ν(ν – ζ)‖Ftn – Fp‖ + ν(ν – ζ)‖F t̃n – Fp̃‖

≤ ‖tn – p‖. (.)

From (.), (.) and the nonexpansivity of PC(I – λn∇fαn ), it follows that

‖ỹn,N – p‖ =
∥
∥PC(I – λn∇fαn )yn,N – PC(I – λn∇f )p

∥
∥

≤ ∥∥PC(I – λn∇fαn )yn,N – PC(I – λn∇fαn )p
∥
∥

+
∥
∥PC(I – λn∇fαn )p – PC(I – λn∇f )p

∥
∥

≤ ‖yn,N – p‖ +
∥
∥(I – λn∇fαn )p – (I – λn∇f )p

∥
∥

≤ ‖xn – p‖ + λnαn‖p‖. (.)

Utilizing Lemma ., we also have

‖ỹn,N – p‖ =
∥
∥PC(I – λn∇fαn )yn,N – PC(I – λn∇f )p

∥
∥



=
∥
∥PC(I – λn∇fαn )yn,N – PC(I – λn∇fαn )p

+ PC(I – λn∇fαn )p – PC(I – λn∇f )p
∥
∥

≤ ∥∥PC(I – λn∇fαn )yn,N – PC(I – λn∇fαn )p
∥
∥



+ 
〈

PC(I – λn∇fαn )p – PC(I – λn∇f )p, ỹn,N – p
〉

≤ ‖yn,N – p‖ + 
∥
∥PC(I – λn∇fαn )p – PC(I – λn∇f )p

∥
∥‖ỹn,N – p‖

≤ ‖xn – p‖ + 
∥
∥(I – λn∇fαn )p – (I – λn∇f )p

∥
∥‖ỹn,N – p‖

≤ ‖xn – p‖ + λnαn‖p‖‖ỹn,N – p‖. (.)

Furthermore, utilizing Proposition .(ii), we have

‖tn – p‖ ≤ ∥∥yn,N – λn∇fαn (ỹn,N ) – p
∥
∥

 –
∥
∥yn,N – λn∇fαn (ỹn,N ) – tn

∥
∥



= ‖yn,N – p‖ – ‖yn,N – tn‖ + λn
〈∇fαn (ỹn,N ), p – tn

〉

= ‖yn,N – p‖ – ‖yn,N – tn‖ + λn
(〈∇fαn (ỹn,N ) – ∇fαn (p), p – ỹn,N

〉

+
〈∇fαn (p), p – ỹn,N

〉

+
〈∇fαn (ỹn,N ), ỹn,N – tn

〉)

≤ ‖yn,N – p‖ – ‖yn,N – tn‖

+ λn
(〈∇fαn (p), p – ỹn,N

〉

+
〈∇fαn (ỹn,N ), ỹn,N – tn

〉)

= ‖yn,N – p‖ – ‖yn,N – tn‖

+ λn
[〈

(αnI + ∇f )p, p – ỹn,N
〉

+
〈∇fαn (ỹn,N ), ỹn,N – tn

〉]

≤ ‖yn,N – p‖ – ‖yn,N – tn‖ + λn
[

αn〈p, p – ỹn,N 〉 +
〈∇fαn (ỹn,N ), ỹn,N – tn

〉]

= ‖yn,N – p‖ – ‖yn,N – ỹn,N‖ – 〈yn,N – ỹn,N , ỹn,N – tn〉 – ‖ỹn,N – tn‖

+ λn
[

αn〈p, p – ỹn,N 〉 +
〈∇fαn (ỹn,N ), ỹn,N – tn

〉]
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= ‖yn,N – p‖ – ‖yn,N – ỹn,N‖ – ‖ỹn,N – tn‖

+ 
〈

yn,N – λn∇fαn (ỹn,N ) – ỹn,N , tn – ỹn,N
〉

+ λnαn〈p, p – ỹn,N 〉. (.)

In the meantime, by Proposition .(i), we have

〈

yn,N – λn∇fαn (ỹn,N ) – ỹn,N , tn – ỹn,N
〉

=
〈

yn,N – λn∇fαn (yn,N ) – ỹn,N , tn – ỹn,N
〉

+
〈

λn∇fαn (yn,N ) – λn∇fαn (ỹn,N ), tn – ỹn,N
〉

≤ 〈λn∇fαn (yn,N ) – λn∇fαn (ỹn,N ), tn – ỹn,N
〉

≤ λn
∥
∥∇fαn (yn,N ) – ∇fαn (ỹn,N )

∥
∥‖tn – ỹn,N‖

≤ λn
(

αn + ‖A‖)‖yn,N – ỹn,N‖‖tn – ỹn,N‖. (.)

So, from (.) and (.), we obtain

‖tn – p‖ ≤ ‖yn,N – p‖ – ‖yn,N – ỹn,N‖ – ‖ỹn,N – tn‖

+ 
〈

yn,N – λn∇fαn (ỹn,N ) – ỹn,N , tn – ỹn,N
〉

+ λnαn〈p, p – ỹn,N 〉
≤ ‖yn,N – p‖ – ‖yn,N – ỹn,N‖ – ‖ỹn,N – tn‖

+ λn
(

αn + ‖A‖)‖yn,N – ỹn,N‖‖tn – ỹn,N‖ + λnαn〈p, p – ỹn,N 〉
≤ ‖yn,N – p‖ – ‖yn,N – ỹn,N‖ – ‖ỹn,N – tn‖

+ λ
n
(

αn + ‖A‖)‖yn,N – ỹn,N‖ + ‖ỹn,N – tn‖ + λnαn〈p, p – ỹn,N 〉
= ‖yn,N – p‖ + λnαn‖p‖‖p – ỹn,N‖

+
(

λ
n
(

αn + ‖A‖) – 
)‖yn,N – ỹn,N‖

≤ ‖yn,N – p‖ + λnαn‖p‖‖ỹn,N – p‖
≤ ‖yn,N – p‖ + λnαn‖p‖[‖yn,N – p‖ + λnαn‖p‖]

≤ ‖yn,N – p‖ + 
√

λnαn‖p‖‖yn,N – p‖ + λ
nα


n‖p‖

=
(‖yn,N – p‖ +

√
λnαn‖p‖)

≤ (‖xn – p‖ +
√

λnαn‖p‖). (.)

Hence, utilizing Lemma . we deduce from (.) and (.) that

‖yn – p‖ = ‖PCvn – p‖
≤ ∥∥εnγ (Vyn,N – Vp) + (I – εnμF)Gtn – (I – εnμF)p + εn(γ V – μF)p

∥
∥

≤ εnγ ‖Vyn,N – Vp‖ +
∥
∥(I – εnμF)Gtn – (I – εnμF)p

∥
∥ + εn
∥
∥(γ V – μF)p

∥
∥

≤ εnγ l‖yn,N – p‖ + ( – εnτ )‖tn – p‖ + εn
∥
∥(γ V – μF)p

∥
∥

≤ εnγ l‖yn,N – p‖ + ( – εnτ )
[‖yn,N – p‖ +

√
λnαn‖p‖] + εn

∥
∥(γ V – μF)p

∥
∥

≤ ( – εn(τ – γ l)
)‖yn,N – p‖ + εn

∥
∥(γ V – μF)p

∥
∥ +

√
λnαn‖p‖

≤ ( – εn(τ – γ l)
)‖xn – p‖ + εn

∥
∥(γ V – μF)p

∥
∥ +

√
λnαn‖p‖
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=
(

 – εn(τ – γ l)
)‖xn – p‖ + εn(τ – γ l)

‖(γ V – μF)p‖
τ – γ l

+
√

λnαn‖p‖

≤ max

{

‖xn – p‖,
‖(γ V – μF)p‖

τ – γ l

}

+
√

λnαn‖p‖. (.)

Since (γn + δn)ξ ≤ γn for all n ≥ , utilizing Lemma ., we obtain from (.) and (.)
that

‖xn+ – p‖ =
∥
∥βn(yn – p) + γn(tn – p) + δn(Ttn – p)

∥
∥

=
∥
∥
∥
∥
βn(yn – p) + (γn + δn)


γn + δn

[

γn(tn – p) + δn(Ttn – p)
]
∥
∥
∥
∥

≤ βn‖yn – p‖ + (γn + δn)
∥
∥
∥
∥


γn + δn

[

γn(tn – p) + δn(Ttn – p)
]
∥
∥
∥
∥

≤ βn‖yn – p‖ + (γn + δn)‖tn – p‖

≤ βn

[

max

{

‖xn – p‖,
‖(γ V – μF)p‖

τ – γ l

}

+
√

λnαn‖p‖
]

+ ( – βn)
(‖xn – p‖ +

√
λnαn‖p‖)

= βn max

{

‖xn – p‖,
‖(γ V – μF)p‖

τ – γ l

}

+ ( – βn)‖xn – p‖ +
√

λnαn‖p‖

≤ max

{

‖xn – p‖,
‖(γ V – μF)p‖

τ – γ l

}

+
√

λnαn‖p‖.

By induction, we can prove

‖xn+ – p‖ ≤ max

{

‖x – p‖,
‖(γ V – μF)p‖

τ – γ l

}

+
n
∑

k=

√
λkαk‖p‖, ∀n ≥ .

Since {λn} ⊂ [a, b] ⊂ (, 
‖A‖ ) and

∑∞
n= αn < ∞, we know that {xn} is bounded, and so are

the sequences {un}, {vn}, {tn}, {t̃n}, {yn}, {ỹn,N }, {yn,i} for each i = , . . . , N . Since ‖Ttn – p‖ ≤
+ξ

–ξ
‖tn – p‖, {Ttn} is also bounded. �

Proposition . Let us suppose that Ω �= ∅. Moreover, let us suppose that the following
hold:

(H) limn→∞ εn =  and
∑∞

n= εn = ∞;
(H) limn→∞ |αn–αn–|

εn
=  and limn→∞ |λn–λn–|

εn
= ;

(H) limn→∞
|βn,i–βn–,i|

εn
=  for each i = , . . . , N ;

(H)
∑∞

n= |εn – εn–| < ∞ or limn→∞ |εn–εn–|
εn

= ;
(H)
∑∞

n= |rn – rn–| < ∞ or limn→∞ |rn–rn–|
εn

= 
(H)
∑∞

n= |βn – βn–| < ∞ or limn→∞ |βn–βn–|
εn

= ;
(H)
∑∞

n= | γn
–βn

– γn–
–βn–

| < ∞ or limn→∞ 
εn

| γn
–βn

– γn–
–βn–

| = .
If ‖un – un–‖ = o(εn), then limn→∞ ‖xn+ – xn‖ = , i.e., {xn} is asymptotically regular.

Proof First, it is known that {λn} ⊂ [a, b] ⊂ (, 
‖A‖ ) and {βn} ⊂ [c, d] ⊂ (, ) as in the

proof of Proposition .. Taking into account lim infn→∞ rn > , we may assume, without
loss of generality, that {rn} ⊂ [r̄,∞) for some r̄ > . First, we write xn = βn–yn– + ( –
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βn–)wn–, ∀n ≥ , where wn– = xn–βn–yn–
–βn–

. It follows that for all n ≥ ,

wn – wn– =
xn+ – βnyn

 – βn
–

xn – βn–yn–

 – βn–

=
γntn + δnTtn

 – βn
–

γn–tn– + δn–Ttn–

 – βn–

=
γn(tn – tn–) + δn(Ttn – Ttn–)

 – βn
+
(

γn

 – βn
–

γn–

 – βn–

)

tn–

+
(

δn

 – βn
–

δn–

 – βn–

)

Ttn–. (.)

Since (γn + δn)ξ ≤ γn for all n ≥ , utilizing Lemma . we have

∥
∥γn(tn – tn–) + δn(Ttn – Ttn–)

∥
∥≤ (γn + δn)‖tn – tn–‖. (.)

Next, we estimate ‖yn – yn–‖. Indeed, according to λn(αn + ‖A‖) < ,

‖tn – tn–‖ ≤ ∥∥(yn,N – λn∇fαn (ỹn,N )
)

–
(

yn–,N – λn–∇fαn– (ỹn–,N )
)∥
∥

≤ ‖yn,N – yn–,N‖ +
∥
∥λn∇fαn (ỹn,N ) – λn–∇fαn– (ỹn–,N )

∥
∥

≤ ‖yn,N – yn–,N‖ + |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–
∥
∥∇fαn (ỹn,N ) – ∇fαn– (ỹn–,N )

∥
∥

≤ ‖yn,N – yn–,N‖ + |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–
(∥
∥∇fαn (ỹn,N ) – ∇fαn– (ỹn,N )

∥
∥ +
∥
∥∇fαn– (ỹn,N ) – ∇fαn– (ỹn–,N )

∥
∥
)

≤ ‖yn,N – yn–,N‖ + |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–
[|αn – αn–|‖ỹn,N‖ +

(

αn– + ‖A‖)‖ỹn,N – ỹn–,N‖]

= ‖yn,N – yn–,N‖ + |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–|αn – αn–|‖ỹn,N‖ + λn–
(

αn– + ‖A‖)‖ỹn,N – ỹn–,N‖
≤ ‖yn,N – yn–,N‖ + |λn – λn–|

∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–|αn – αn–|‖ỹn,N‖ + ‖ỹn,N – ỹn–,N‖ (.)

and

‖ỹn,N – ỹn–,N‖ =
∥
∥PC
(

yn,N – λn∇fαn (yn,N )
)

– PC
(

yn–,N – λn–∇fαn– (yn–,N )
)∥
∥

≤ ∥∥PC
(

yn,N – λn∇fαn (yn,N )
)

– PC
(

yn–,N – λn∇fαn (yn–,N )
)∥
∥

+
∥
∥PC
(

yn–,N – λn∇fαn (yn–,N )
)

– PC
(

yn–,N – λn–∇fαn– (yn–,N )
)∥
∥

≤ ‖yn,N – yn–,N‖
+
∥
∥
(

yn–,N – λn∇fαn (yn–,N )
)

–
(

yn–,N – λn–∇fαn– (yn–,N )
)∥
∥

= ‖yn,N – yn–,N‖ +
∥
∥λn∇fαn (yn–,N ) – λn–∇fαn– (yn–,N )

∥
∥

≤ ‖yn,N – yn–,N‖ + |λnαn – λn–αn–|‖yn–,N‖ + |λn – λn–|
∥
∥∇f (yn–,N )

∥
∥
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≤ ‖yn,N – yn–,N‖ +
(

αn|λn – λn–| + λn–|αn – αn–|
)‖yn–,N‖

+ |λn – λn–|
∥
∥∇f (yn–,N )

∥
∥. (.)

In the meantime, by the definition of yn,i one obtains that, for all i = N , . . . , ,

‖yn,i – yn–,i‖ ≤ βn,i‖un – un–‖ + ‖Siun– – yn–,i–‖|βn,i – βn–,i|
+ ( – βn,i)‖yn,i– – yn–,i–‖. (.)

In the case i = , we have

‖yn, – yn–,‖ ≤ βn,‖un – un–‖ + ‖Sun– – un–‖|βn, – βn–,|
+ ( – βn,)‖un – un–‖

= ‖un – un–‖ + ‖Sun– – un–‖|βn, – βn–,|. (.)

Substituting (.) in all (.)-type one obtains, for i = , . . . , N ,

‖yn,i – yn–,i‖ ≤ ‖un – un–‖ +
i
∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,|, (.)

which together with (.) implies that

‖ỹn,N – ỹn–,N‖
εn

≤ ‖yn,N – yn–,N‖
εn

+
(

αn
|λn – λn–|

εn
+ λn–

|αn – αn–|
εn

)

‖yn–,N‖

+
|λn – λn–|

εn

∥
∥∇f (yn–,N )

∥
∥

≤ ‖un – un–‖
εn

+
N
∑

k=

‖Skun– – yn–,k–‖ |βn,k – βn–,k|
εn

+ ‖Sun– – un–‖ |βn, – βn–,|
εn

+
(

αn
|λn – λn–|

εn
+ λn–

|αn – αn–|
εn

)

‖yn–,N‖

+
|λn – λn–|

εn

∥
∥∇f (yn–,N )

∥
∥. (.)

Since ‖un – un–‖ = o(εn) and the sequences {un}, {yn,i}N
i= are bounded, we know that

lim
n→∞

‖ỹn,N – ỹn–,N‖
εn

= .

On the other hand, we observe that

{

vn = εnγ Vyn,N + (I – εnμF)zn,
vn– = εn–γ Vyn–,N + (I – εn–μF)zn–, ∀n ≥ .
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Simple calculations show that

vn – vn– = (I – εnμF)zn – (I – εnμF)zn–

+ (εn – εn–)(γ Vyn–,N – μFzn–)

+ εnγ (Vyn,N – Vyn–,N ).

Then, passing to the norm and using the nonexpansivity of G, we get

‖yn – yn–‖ ≤ ‖vn – vn–‖
≤ ∥∥(I – εnμF)zn – (I – εnμF)zn–

∥
∥ + |εn – εn–|‖γ Vyn–,N – μFzn–‖

+ εnγ ‖Vyn,N – Vyn–,N‖
≤ ( – εnτ )‖zn – zn–‖ + M̃|εn – εn–| + εnγ l‖yn,N – yn–,N‖
≤ ( – εnτ )‖tn – tn–‖ + M̃|εn – εn–| + εnγ l‖yn,N – yn–,N‖, (.)

where supn≥ ‖γ Vyn,N – μFzn‖ ≤ M̃ for some M̃ > . Also, it is easy to see from (.) and
(.) that

‖wn – wn–‖ ≤ ‖γn(tn – tn–) + δn(Ttn – Ttn–)‖
 – βn

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣
‖tn–‖

+
∣
∣
∣
∣

δn

 – βn
–

δn–

 – βn–

∣
∣
∣
∣
‖Ttn–‖

≤ (γn + δn)‖tn – tn–‖
 – βn

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣
‖tn–‖

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣
‖Ttn–‖

= ‖tn – tn–‖ +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖tn–‖ + ‖Ttn–‖
)

. (.)

Moreover, by Lemma ., we know that

‖un – un–‖ ≤ ‖xn – xn–‖ + L
∣
∣
∣
∣
 –

rn–

rn

∣
∣
∣
∣
,

where L = supn≥ ‖un – xn‖.
Further, we observe that

{

xn+ = βnyn + ( – βn)wn,
xn = βn–yn– + ( – βn–)wn–, ∀n ≥ .

Simple calculations show that

xn+ – xn = ( – βn)(wn – wn–) + (βn – βn–)(yn– – wn–) + βn(yn – yn–).
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Consequently, passing to the norm we get from (.), (.) and (.)-(.)

‖xn+ – xn‖
≤ ( – βn)‖wn – wn–‖ + |βn – βn–|‖yn– – wn–‖ + βn‖yn – yn–‖

≤ ( – βn)
[

‖tn – tn–‖ +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖tn–‖ + ‖Ttn–‖
)
]

+ |βn – βn–|‖yn– – wn–‖ + βn
[

( – εnτ )‖tn – tn–‖
+ M̃|εn – εn–| + εnγ l‖yn,N – yn–,N‖]

≤ ( – βnεnτ )‖tn – tn–‖ +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖tn–‖ + ‖Ttn–‖
)

+ |βn – βn–|‖yn– – wn–‖ + M̃|εn – εn–| + βnεnγ l‖yn,N – yn–,N‖
≤ ( – βnεnτ )

[‖yn,N – yn–,N‖ + |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–|αn – αn–|‖ỹn,N‖ + ‖ỹn,N – ỹn–,N‖]

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖tn–‖ + ‖Ttn–‖
)

+ |βn – βn–|‖yn– – wn–‖ + M̃|εn – εn–| + βnεnγ l‖yn,N – yn–,N‖
≤ ( – βnεn(τ – γ l)

)‖yn,N – yn–,N‖ + |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–|αn – αn–|‖ỹn,N‖ + ‖ỹn,N – ỹn–,N‖

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖tn–‖ + ‖Ttn–‖
)

+ |βn – βn–|‖yn– – wn–‖ + M̃|εn – εn–|

≤ ( – βnεn(τ – γ l)
)

[

‖un – un–‖ +
N
∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,|
]

+ |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–|αn – αn–|‖ỹn,N‖ + ‖ỹn,N – ỹn–,N‖

+
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖tn–‖ + ‖Ttn–‖
)

+ |βn – βn–|‖yn– – wn–‖ + M̃|εn – εn–|

≤ ( – βnεn(τ – γ l)
)

[

‖xn – xn–‖ + L
∣
∣
∣
∣
 –

rn–

rn

∣
∣
∣
∣

+
N
∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,|
]

+ |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–|αn – αn–|‖ỹn,N‖ + ‖ỹn,N – ỹn–,N‖ +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖tn–‖ + ‖Ttn–‖
)
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+ |βn – βn–|‖yn– – wn–‖ + M̃|εn – εn–|

≤ ( – cεn(τ – γ l)
)‖xn – xn–‖ + L

|rn – rn–|
r̄

+
N
∑

k=

‖Skun– – yn–,k–‖|βn,k – βn–,k|

+ ‖Sun– – un–‖|βn, – βn–,| + |λn – λn–|
∥
∥∇fαn (ỹn,N )

∥
∥

+ λn–|αn – αn–|‖ỹn,N‖ + ‖ỹn,N – ỹn–,N‖ +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

(‖tn–‖ + ‖Ttn–‖
)

+ |βn – βn–|‖yn– – wn–‖ + M̃|εn – εn–|

≤ ( – εn(τ – γ l)c
)‖xn – xn–‖ + M̃

|rn – rn–|
r̄

+ M̃

N
∑

k=

|βn,k – βn–,k| + M̃|βn, – βn–,|

+ M̃|λn – λn–| + M̃|αn – αn–| + M̃‖ỹn,N – ỹn–,N‖ + M̃

∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

+ M̃|βn – βn–| + M̃|εn – εn–|

=
(

 – εn(τ – γ l)c
)‖xn – xn–‖ + M̃

{

|rn – rn–|
r̄

+
N
∑

k=

|βn,k – βn–,k|

+ |λn – λn–| + |αn – αn–| + ‖ỹn,N – ỹn–,N‖ +
∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

+ |βn – βn–| + |εn – εn–|
}

=
(

 – εn(τ – γ l)c
)‖xn – xn–‖

+ εn(τ – γ l)c · M̃

(τ – γ l)c

{

|rn – rn–|
εnr̄

+
N
∑

k=

|βn,k – βn–,k|
εn

+
|λn – λn–|

εn
+

|αn – αn–|
εn

+
|βn – βn–|

εn

+
| γn

–βn
– γn–

–βn–
|

εn
+

|εn – εn–|
εn

+
‖ỹn,N – ỹn–,N‖

εn

}

, (.)

where

sup
n≥

{

 + L + M̃ +
N
∑

k=

‖Skun – yn,k–‖ + ‖Sun – un‖

+
∥
∥∇fαn (ỹn,N )

∥
∥ + b‖ỹn,N‖ + ‖tn‖ + ‖Ttn‖ + ‖yn – wn‖

}

≤ M̃

for some M̃ > . Noticing limn→∞
‖ỹn,N –ỹn–,N ‖

εn
=  and using hypotheses (H)-(H) and

Lemma ., we obtain the claim. �

Proposition . Let us suppose that Ω �= ∅. Let us suppose that {xn} is asymptotically
regular. Then ‖xn – un‖ = ‖xn – Trn xn‖ →  and ‖yn,N – ỹn,N‖ →  as n → ∞.
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Proof Take fixed p ∈ Ω arbitrarily. We recall that, by the firm nonexpansivity of Trn , a stan-
dard calculation (see []) shows that for p ∈ GMEP(Θ , h),

‖un – p‖ ≤ ‖xn – p‖ – ‖xn – un‖. (.)

Utilizing Lemmas . and ., we obtain from  ≤ γ l < τ , (.) and (.) that

‖yn – p‖

=
∥
∥εnγ (Vyn,N – Vp) + (I – εnμF)zn – (I – εnμF)p + εn(γ V – μF)p

∥
∥



≤ ∥∥εnγ (Vyn,N – Vp) + (I – εnμF)zn – (I – εnμF)p
∥
∥

 + εn
〈

(γ V – μF)p, yn – p
〉

≤ [εnγ ‖Vyn,N – Vp‖ +
∥
∥(I – εnμF)zn – (I – εnμF)p

∥
∥
] + εn

〈

(γ V – μF)p, yn – p
〉

≤ [εnγ l‖yn,N – p‖ + ( – εnτ )‖zn – p‖] + εn
〈

(γ V – μF)p, yn – p
〉

=
[

εnτ
γ l
τ

‖yn,N – p‖ + ( – εnτ )‖zn – p‖
]

+ εn
〈

(γ V – μF)p, yn – p
〉

≤ εnτ
(γ l)

τ  ‖yn,N – p‖ + ( – εnτ )‖zn – p‖ + εn
〈

(γ V – μF)p, yn – p
〉

≤ εnτ‖yn,N – p‖ + ‖zn – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ εnτ‖yn,N – p‖ + ‖tn – p‖ – ν(ζ – ν)‖Ftn – Fp‖

– ν(ζ – ν)‖F t̃n – Fp̃‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖. (.)

Since (γn + δn)ξ ≤ γn for all n ≥ , utilizing Lemma . we have from (.), (.), (.),
(.) and (.) that

‖xn+ – p‖

=
∥
∥βn(yn – p) + γn(tn – p) + δn(Ttn – p)

∥
∥



=
∥
∥
∥
∥
βn(yn – p) + (γn + δn)


γn + δn

[

γn(tn – p) + δn(Ttn – p)
]
∥
∥
∥
∥



≤ βn‖yn – p‖ + (γn + δn)
∥
∥
∥
∥


γn + δn

[

γn(tn – p) + δn(Ttn – p)
]
∥
∥
∥
∥



≤ βn‖yn – p‖ + (γn + δn)‖tn – p‖

= βn‖yn – p‖ + ( – βn)‖tn – p‖

≤ βn
[

εnτ‖yn,N – p‖ + ‖tn – p‖ – ν(ζ – ν)‖Ftn – Fp‖

– ν(ζ – ν)‖F t̃n – Fp̃‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖] + ( – βn)‖tn – p‖

≤ ‖tn – p‖ – βn
[

ν(ζ – ν)‖Ftn – Fp‖ + ν(ζ – ν)‖F t̃n – Fp̃‖]

+ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ ‖yn,N – p‖ + λnαn‖p‖‖p – ỹn,N‖ +
(

λ
n
(

αn + ‖A‖) – 
)‖yn,N – ỹn,N‖

– βn
[

ν(ζ – ν)‖Ftn – Fp‖ + ν(ζ – ν)‖F t̃n – Fp̃‖]

+ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖
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≤ ‖un – p‖ + λnαn‖p‖‖p – ỹn,N‖ +
(

λ
n
(

αn + ‖A‖) – 
)‖yn,N – ỹn,N‖

– βn
[

ν(ζ – ν)‖Ftn – Fp‖ + ν(ζ – ν)‖F t̃n – Fp̃‖]

+ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ ‖xn – p‖ – ‖xn – un‖ + λnαn‖p‖‖p – ỹn,N‖
+
(

λ
n
(

αn + ‖A‖) – 
)‖yn,N – ỹn,N‖

– βn
[

ν(ζ – ν)‖Ftn – Fp‖ + ν(ζ – ν)‖F t̃n – Fp̃‖]

+ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖. (.)

So, we deduce from {βn} ⊂ [c, d] ⊂ (, ) and {λn} ⊂ [a, b] ⊂ (, 
‖A‖ ) that

‖xn – un‖ +
(

 – b(αn + ‖A‖))‖yn,N – ỹn,N‖

+ c
[

ν(ζ – ν)‖Ftn – Fp‖ + ν(ζ – ν)‖F t̃n – Fp̃‖]

≤ ‖xn – un‖ +
(

 – λ
n
(

αn + ‖A‖))‖yn,N – ỹn,N‖

+ βn
[

ν(ζ – ν)‖Ftn – Fp‖ + ν(ζ – ν)‖F t̃n – Fp̃‖]

≤ ‖xn – p‖ – ‖xn+ – p‖ + λnαn‖p‖‖p – ỹn,N‖
+ εnτ‖yn,N – p‖ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ ‖xn – xn+‖
(‖xn – p‖ + ‖xn+ – p‖) + αnb‖p‖‖p – ỹn,N‖

+ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖.

By Propositions . and . we know that the sequences {xn}, {yn}, {yn,N } and {ỹn,N } are
bounded and that {xn} is asymptotically regular. Therefore, from αn →  and εn →  we
obtain that

lim
n→∞‖xn – un‖ = lim

n→∞‖Ftn – Fp‖ = lim
n→∞‖F t̃n – Fp̃‖ = lim

n→∞‖yn,N – ỹn,N‖ = . (.)
�

Remark . By the last proposition we have ωw(xn) = ωw(un) and ωs(xn) = ωs(un), i.e., the
sets of strong/weak cluster points of {xn} and {un} coincide.

Of course, if βn,i → βi �=  as n → ∞, for all indices i, the assumptions of Proposition .
are enough to assure that

lim
n→∞

‖xn+ – xn‖
βn,i

= , ∀i ∈ {, . . . , N}.

In the next proposition, we estimate the case in which at least one sequence {βn,k} is a
null sequence.

Proposition . Let us suppose that Ω �= ∅. Let us suppose that (H) holds. Moreover, for
an index k ∈ {, . . . , N}, limn→∞ βn,k =  and the following hold:
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(H) for each index i ∈ {, . . . , N},

lim
n→∞

|βn,i – βn–,i|
εnβn,k

= lim
n→∞

|αn – αn–|
εnβn,k

= lim
n→∞

|βn – βn–|
εnβn,k

= lim
n→∞

|rn – rn–|
εnβn,k

= lim
n→∞

|εn – εn–|
εnβn,k

= lim
n→∞


εnβn,k

∣
∣
∣
∣

γn

 – βn
–

γn–

 – βn–

∣
∣
∣
∣

= lim
n→∞

|λn – λn–|
εnβn,k

= ;

(H) there exists a constant δ >  such that 
εn

| 
βn,k

– 
βn–,k

| < δ for all n ≥ .
If ‖un – un–‖ = o(εnβn,k ), then

lim
n→∞

‖xn+ – xn‖
βn,k

= .

Proof It is clear from (.) that

‖ỹn,N – ỹn–,N‖
εnβn,k

≤ ‖un – un–‖
εnβn,k

+
N
∑

k=

‖Skun– – yn–,k–‖ |βn,k – βn–,k|
εnβn,k

+ ‖Sun– – un–‖ |βn, – βn–,|
εnβn,k

+
(

αn
|λn – λn–|

εnβn,k
+ λn–

|αn – αn–|
εnβn,k

)

‖yn–,N‖

+
|λn – λn–|

εnβn,k

∥
∥∇f (yn–,N )

∥
∥.

According to (H) and ‖un – un–‖ = o(εnβn,k ), we get

lim
n→∞

‖ỹn,N – ỹn–,N‖
εnβn,k

= . (.)

Consider (.). Dividing both the terms by βn,k , we have

‖xn+ – xn‖
βn,k

≤ ( – εn(τ – γ l)c
)‖xn – xn–‖

βn,k

+ εn(τ – γ l)c · M̃

(τ – γ l)c

{

|rn – rn–|
εnβn,k r̄

+
N
∑

k=

|βn,k – βn–,k|
εnβn,k

+
|λn – λn–|

εnβn,k
+

|αn – αn–|
εnβn,k

+
|βn – βn–|

εnβn,k

+
| γn

–βn
– γn–

–βn–
|

εnβn,k
+

|εn – εn–|
εnβn,k

+
‖ỹn,N – ỹn–,N‖

εnβn,k

}

.

So, by (H) we have

‖xn+ – xn‖
βn,k

≤ ( – εn(τ – γ l)c
)‖xn – xn–‖

βn–,k

+
(

 – εn(τ – γ l)c
)‖xn – xn–‖

∣
∣
∣
∣


βn,k

–


βn–,k

∣
∣
∣
∣
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+ εn(τ – γ l)c · M̃

(τ – γ l)c

{

|rn – rn–|
εnβn,k r̄

+
N
∑

k=

|βn,k – βn–,k|
εnβn,k

+
|λn – λn–|

εnβn,k
+

|αn – αn–|
εnβn,k

+
|βn – βn–|

εnβn,k
+

| γn
–βn

– γn–
–βn–

|
εnβn,k

+
|εn – εn–|
εnβn,k

+
‖ỹn,N – ỹn–,N‖

εnβn,k

}

≤ ( – εn(τ – γ l)c
)‖xn – xn–‖

βn–,k
+ ‖xn – xn–‖

∣
∣
∣
∣


βn,k

–


βn–,k

∣
∣
∣
∣

+ εn(τ – γ l)c · M̃

(τ – γ l)c

{

|rn – rn–|
εnβn,k r̄

+
N
∑

k=

|βn,k – βn–,k|
εnβn,k

+
|λn – λn–|

εnβn,k
+

|αn – αn–|
εnβn,k

+
|βn – βn–|

εnβn,k
+

| γn
–βn

– γn–
–βn–

|
εnβn,k

+
|εn – εn–|
εnβn,k

+
‖ỹn,N – ỹn–,N‖

εnβn,k

}

≤ ( – εn(τ – γ l)c
)‖xn – xn–‖

βn–,k
+ εnδ‖xn – xn–‖

+ εn(τ – γ l)c · M̃

(τ – γ l)c

{

|rn – rn–|
εnβn,k r̄

+
N
∑

k=

|βn,k – βn–,k|
εnβn,k

+
|λn – λn–|

εnβn,k
+

|αn – αn–|
εnβn,k

+
|βn – βn–|

εnβn,k
+

| γn
–βn

– γn–
–βn–

|
εnβn,k

+
|εn – εn–|
εnβn,k

+
‖ỹn,N – ỹn–,N‖

εnβn,k

}

=
(

 – εn(τ – γ l)c
)‖xn – xn–‖

βn–,k

+ εn(τ – γ l)c · 
(τ – γ l)c

{

δ‖xn – xn–‖

+ M̃

[

|rn – rn–|
εnβn,k r̄

+
N
∑

k=

|βn,k – βn–,k|
εnβn,k

+
|λn – λn–|

εnβn,k
+

|αn – αn–|
εnβn,k

+
|βn – βn–|

εnβn,k
+

| γn
–βn

– γn–
–βn–

|
εnβn,k

+
|εn – εn–|
εnβn,k

+
‖ỹn,N – ỹn–,N‖

εnβn,k

]}

.

Therefore, utilizing Lemma ., from (.), (H), (H) and the asymptotical regularity of
{xn} (due to Proposition .), we deduce that

lim
n→∞

‖xn+ – xn‖
βn,k

= . �

Proposition . Let us suppose that Ω �= ∅. Let us suppose that (H)-(H) hold. If ‖un –
un–‖ = o(εn), then ‖zn – tn‖ →  as n → ∞.
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Proof Let p ∈ Ω . In terms of the firm nonexpansivity of PC and the ζj-inverse strong
monotonicity of Fj for j = , , we obtain from νj ∈ (, ζj), j = ,  and (.) that

‖t̃n – p̃‖ =
∥
∥PC(I – νF)tn – PC(I – νF)p

∥
∥



≤ 〈(I – νF)tn – (I – νF)p, t̃n – p̃
〉

=


[∥
∥(I – νF)tn – (I – νF)p

∥
∥

 + ‖t̃n – p̃‖

–
∥
∥(I – νF)tn – (I – νF)p – (t̃n – p̃)

∥
∥

]

≤ 

[‖tn – p‖ + ‖t̃n – p̃‖ –

∥
∥(tn – t̃n) – ν(Ftn – Fp) – (p – p̃)

∥
∥

]

=


[‖tn – p‖ + ‖t̃n – p̃‖ –

∥
∥(tn – t̃n) – (p – p̃)

∥
∥



+ ν
〈

(tn – t̃n) – (p – p̃), Ftn – Fp
〉

– ν
‖Ftn – Fp‖]

and

‖zn – p‖ =
∥
∥PC(I – νF)t̃n – PC(I – νF)p̃

∥
∥



≤ 〈(I – νF)t̃n – (I – νF)p̃, zn – p
〉

=


[∥
∥(I – νF)t̃n – (I – νF)p̃

∥
∥

 + ‖zn – p‖

–
∥
∥(I – νF)t̃n – (I – νF)p̃ – (zn – p)

∥
∥

]

≤ 

[‖t̃n – p̃‖ + ‖zn – p‖ –

∥
∥(t̃n – zn) + (p – p̃)

∥
∥



+ ν
〈

F t̃n – Fp̃, (t̃n – zn) + (p – p̃)
〉

– ν
 ‖F t̃n – Fp̃‖]

≤ 

[‖tn – p‖ + ‖zn – p‖ –

∥
∥(t̃n – zn) + (p – p̃)

∥
∥



+ ν
〈

F t̃n – Fp̃, (t̃n – zn) + (p – p̃)
〉]

.

Thus, we have

‖t̃n – p̃‖ ≤ ‖tn – p‖ –
∥
∥(tn – t̃n) – (p – p̃)

∥
∥



+ ν
〈

(tn – t̃n) – (p – p̃), Ftn – Fp
〉

– ν
‖Ftn – Fp‖ (.)

and

‖zn – p‖ ≤ ‖tn – p‖ –
∥
∥(t̃n – zn) + (p – p̃)

∥
∥



+ ν‖F t̃n – Fp̃‖∥∥(t̃n – zn) + (p – p̃)
∥
∥. (.)

Consequently, from (.), (.), (.), (.) and (.), it follows that

‖xn+ – p‖

≤ βn‖yn – p‖ + ( – βn)‖tn – p‖
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≤ βn
[

εnτ‖yn,N – p‖ + ‖zn – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖] + ( – βn)‖tn – p‖

≤ βn
[

εnτ‖yn,N – p‖ + ‖t̃n – p̃‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖] + ( – βn)‖tn – p‖

≤ βn
[

εnτ‖yn,N – p‖ + ‖tn – p‖ –
∥
∥(tn – t̃n) – (p – p̃)

∥
∥



+ ν
∥
∥(tn – t̃n) – (p – p̃)

∥
∥‖Ftn – Fp‖ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖]

+ ( – βn)‖tn – p‖

≤ ‖tn – p‖ + εnτ‖yn,N – p‖ – βn
∥
∥(tn – t̃n) – (p – p̃)

∥
∥



+ ν
∥
∥(tn – t̃n) – (p – p̃)

∥
∥‖Ftn – Fp‖ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ (‖xn – p‖ +
√

λnαn‖p‖) + εnτ‖yn,N – p‖ – βn
∥
∥(tn – t̃n) – (p – p̃)

∥
∥



+ ν
∥
∥(tn – t̃n) – (p – p̃)

∥
∥‖Ftn – Fp‖ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖,

which yields

c
∥
∥(tn – t̃n) – (p – p̃)

∥
∥



≤ βn
∥
∥(tn – t̃n) – (p – p̃)

∥
∥



≤ (‖xn – p‖ +
√

λnαn‖p‖) – ‖xn+ – p‖ + εnτ‖yn,N – p‖

+ ν
∥
∥(tn – t̃n) – (p – p̃)

∥
∥‖Ftn – Fp‖ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ (‖xn – xn+‖ +
√

λnαn‖p‖)(‖xn – p‖ + ‖xn+ – p‖ +
√

λnαn‖p‖)

+ εnτ‖yn,N – p‖ + ν
∥
∥(tn – t̃n) – (p – p̃)

∥
∥‖Ftn – Fp‖

+ εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖.

Since limn→∞ αn = , limn→∞ εn = , limn→∞ ‖xn+ – xn‖ = , and {xn}, {yn}, {yn,N }, {tn} and
{t̃n} are bounded, we deduce from (.) that

lim
n→∞
∥
∥(tn – t̃n) – (p – p̃)

∥
∥ = . (.)

Furthermore, from (.), (.), (.) and (.), it follows that

‖xn+ – p‖

≤ βn‖yn – p‖ + ( – βn)‖tn – p‖

≤ βn
[

εnτ‖yn,N – p‖ + ‖zn – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖] + ( – βn)‖tn – p‖

≤ βn
[

εnτ‖yn,N – p‖ + ‖tn – p‖ –
∥
∥(t̃n – zn) + (p – p̃)

∥
∥



+ ν‖F t̃n – Fp̃‖∥∥(t̃n – zn) + (p – p̃)
∥
∥ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖]

+ ( – βn)‖tn – p‖

≤ ‖tn – p‖ + εnτ‖yn,N – p‖ – βn
∥
∥(t̃n – zn) + (p – p̃)

∥
∥



+ ν‖F t̃n – Fp̃‖∥∥(t̃n – zn) + (p – p̃)
∥
∥ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ (‖xn – p‖ +
√

λnαn‖p‖) + εnτ‖yn,N – p‖ – βn
∥
∥(t̃n – zn) + (p – p̃)

∥
∥



+ ν‖F t̃n – Fp̃‖∥∥(t̃n – zn) + (p – p̃)
∥
∥ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖,
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which leads to

c
∥
∥(t̃n – zn) + (p – p̃)

∥
∥



≤ βn
∥
∥(t̃n – zn) + (p – p̃)

∥
∥



≤ (‖xn – p‖ +
√

λnαn‖p‖) – ‖xn+ – p‖ + εnτ‖yn,N – p‖

+ ν‖F t̃n – Fp̃‖∥∥(t̃n – zn) + (p – p̃)
∥
∥ + εn

∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ (‖xn – xn+‖ +
√

λnαn‖p‖)(‖xn – p‖ + ‖xn+ – p‖ +
√

λnαn‖p‖)

+ εnτ‖yn,N – p‖ + ν‖F t̃n – Fp̃‖∥∥(t̃n – zn) + (p – p̃)
∥
∥

+ εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖.

Since limn→∞ αn = , limn→∞ εn = , limn→∞ ‖xn+ – xn‖ = , and {xn}, {yn}, {yn,N }, {zn} and
{t̃n} are bounded, we deduce from (.) that

lim
n→∞
∥
∥(t̃n – zn) + (p – p̃)

∥
∥ = . (.)

Note that

‖tn – zn‖ ≤ ∥∥(tn – t̃n) – (p – p̃)
∥
∥ +
∥
∥(t̃n – zn) + (p – p̃)

∥
∥.

Hence from (.) and (.) we get

lim
n→∞‖tn – zn‖ = lim

n→∞‖tn – Gtn‖ = . (.)
�

Proposition . Let us suppose that Ω �= ∅. Let us suppose that  < lim infn→∞ βn,i ≤
lim supn→∞ βn,i <  for each i = , . . . , N . Moreover, suppose that ‖un – un–‖ = o(εn) and
(H)-(H) are satisfied. Then limn→∞ ‖Siun – un‖ =  for each i = , . . . , N provided ‖Tyn –
yn‖ →  as n → ∞.

Proof First of all, it is clear that

‖tn – ỹn,N‖ =
∥
∥PC
(

yn,N – λn∇fαn (ỹn,N )
)

– PC
(

yn,N – λn∇fαn (yn,N )
)∥
∥

≤ ∥∥(yn,N – λn∇fαn (ỹn,N )
)

–
(

yn,N – λn∇fαn (yn,N )
)∥
∥

= λn
∥
∥∇fαn (ỹn,N ) – ∇fαn (yn,N )

∥
∥

≤ λn
(

αn + ‖A‖)‖ỹn,N – yn,N‖
≤ ‖ỹn,N – yn,N‖.

By Proposition ., we get

lim
n→∞‖tn – ỹn,N‖ = ,

which together with (.) implies that

lim
n→∞‖tn – yn,N‖ = . (.)
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Note that

‖yn – tn‖ ≤ ∥∥εnγ Vyn,N + (I – εnμF)zn – tn
∥
∥

≤ εn‖γ Vyn,N – μFzn‖ + ‖zn – tn‖.

From Proposition . and εn → , we obtain

lim
n→∞‖yn – tn‖ = . (.)

Also, observe that

xn+ – xn + xn – yn = xn+ – yn

= γn(tn – yn) + δn(Ttn – yn)

= γn(tn – yn) + δn(Ttn – Tyn) + δn(Tyn – yn).

By Proposition . we know that {xn} is asymptotically regular. Utilizing Lemma . we
have from (γn + δn)ξ ≤ γn that

‖yn – xn‖ =
∥
∥xn+ – xn – γn(tn – yn) – δn(Ttn – Tyn) – δn(Tyn – yn)

∥
∥

≤ ‖xn+ – xn‖ +
∥
∥γn(tn – yn) – δn(Ttn – Tyn)

∥
∥ + δn‖Tyn – yn‖

≤ ‖xn+ – xn‖ + (γn + δn)‖tn – yn‖ + δn‖Tyn – yn‖
≤ ‖xn+ – xn‖ + ‖tn – yn‖ + ‖Tyn – yn‖,

which together with (.) and ‖Tyn – yn‖ →  leads to

lim
n→∞‖xn – yn‖ = . (.)

Let us show that for each i ∈ {, . . . , N}, one has ‖Siun – yn,i–‖ →  as n → ∞. Let p ∈ Ω .
When i = N , by Lemma .(b) we have from (.), (.), (.) and (.)

‖yn – p‖

≤ εnτ‖yn,N – p‖ + ‖zn – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ εnτ‖yn,N – p‖ + ‖tn – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖ + ‖yn,N – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ βn,N‖SN un – p‖ + ( – βn,N )‖yn,N– – p‖ – βn,N ( – βn,N )‖SN un – yn,N–‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ βn,N‖un – p‖ + ( – βn,N )‖un – p‖ – βn,N ( – βn,N )‖SN un – yn,N–‖

= εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ ‖un – p‖ – βn,N ( – βn,N )‖SN un – yn,N–‖
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≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ ‖xn – p‖ – βn,N ( – βn,N )‖SN un – yn,N–‖.

So, we have

βn,N ( – βn,N )‖SN un – yn,N–‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ ‖xn – p‖ – ‖yn – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).

Since αn → , εn → ,  < lim infn→∞ βn,N ≤ lim supn→∞ βn,N <  and limn→∞ ‖xn –yn‖ = 
(due to (.)), it is known that {‖SN un – yn,N–‖} is a null sequence.

Let i ∈ {, . . . , N – }. Then one has

‖yn – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖ + ‖yn,N – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ βn,N‖SN un – p‖ + ( – βn,N )‖yn,N– – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ βn,N‖xn – p‖ + ( – βn,N )‖yn,N– – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ βn,N‖xn – p‖ + ( – βn,N )
[

βn,N–‖SN–un – p‖ + ( – βn,N–)‖yn,N– – p‖]

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+
(

βn,N + ( – βn,N )βn,N–
)‖xn – p‖ +

N
∏

k=N–

( – βn,k)‖yn,N– – p‖,

and so, after (N – i + )-iterations,

‖yn – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+

(

βn,N +
N
∑

j=i+

( N
∏

l=j

( – βn,l)

)

βn,j–

)

‖xn – p‖ +
N
∏

k=i+

( – βn,k)‖yn,i – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+

(

βn,N +
N
∑

j=i+

( N
∏

l=j

( – βn,l)

)

βn,j–

)

‖xn – p‖ +
N
∏

k=i+

( – βn,k)
[

βn,i‖Siun – p‖

+ ( – βn,i)‖yn,i– – p‖ – βn,i( – βn,i)‖Siun – yn,i–‖]
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≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ ‖xn – p‖ – βn,i

N
∏

k=i

( – βn,k)‖Siun – yn,i–‖. (.)

Again we obtain that

βn,i

N
∏

k=i

( – βn,k)‖Siun – yn,i–‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖

+ λnαn‖p‖‖ỹn,N – p‖ + ‖xn – p‖ – ‖yn – p‖

≤ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖

+ λnαn‖p‖‖ỹn,N – p‖ + ‖xn – yn‖
(‖xn – p‖ + ‖yn – p‖).

Since αn → , εn → ,  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for each i = , . . . , N – ,
and limn→∞ ‖xn – yn‖ =  (due to (.)), it is known that

lim
n→∞‖Siun – yn,i–‖ = .

Obviously for i = , we have ‖Sun – un‖ → .
To conclude, we have that

‖Sun – un‖ ≤ ‖Sun – yn,‖ + ‖yn, – un‖ = ‖Sun – yn,‖ + βn,‖Sun – un‖

from which ‖Sun – un‖ → . Thus by induction ‖Siun – un‖ →  for all i = , . . . , N since
it is enough to observe that

‖Siun – un‖ ≤ ‖Siun – yn,i–‖ + ‖yn,i– – Si–un‖ + ‖Si–un – un‖
≤ ‖Siun – yn,i–‖ + ( – βn,i–)‖Si–un – yn,i–‖ + ‖Si–un – un‖. �

Remark . As an example, we consider N =  and the sequences:
(a) βn = 

 + 
n , γn = δn = 

 – 
n , ∀n > ;

(b) λn = 
‖A‖ – 

n , ∀n > ‖A‖;
(c) αn = 

n , εn = √
n , rn =  – 

n , ∀n > ;
(d) βn, = 

 – 
n , βn, = 

 – 
n , ∀n > .

Then they satisfy the hypotheses on the parameter sequences in Proposition ..

Proposition . Let us suppose that Ω �= ∅ and βn,i → βi for all i as n → ∞. Suppose that
there exists k ∈ {, . . . , N} such that βn,k →  as n → ∞. Let k ∈ {, . . . , N} be the largest
index such that βn,k →  as n → ∞. Suppose that

(i) αn+εn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i → , then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi �= , then βi lies in (, ).

Moreover, suppose that ‖un – un–‖ = o(εnβn,k ) and (H), (H) and (H) hold. Then
limn→∞ ‖Siun – un‖ =  for each i = , . . . , N provided ‖Tyn – yn‖ →  as n → ∞.
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Proof First of all we note that if (H) holds then also (H)-(H) are satisfied. So {xn} is
asymptotically regular.

Let k be as in the hypotheses. As in Proposition ., for every index i ∈ {, . . . , N} such
that βn,i → βi �=  (which leads to  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i < ), one has ‖Siun –
yn,i–‖ →  as n → ∞.

For all the other indices i ≤ k, we can prove that ‖Siun – yn,i–‖ →  as n → ∞ in a
similar manner. By the relation (due to (.), (.) and (.))

‖xn+ – p‖

≤ βn‖yn – p‖ + ( – βn)‖tn – p‖

≤ βn

[

εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

+ ‖xn – p‖ – βn,i

N
∏

k=i

( – βn,k)‖Siun – yn,i–‖

]

+ ( – βn)
(‖xn – p‖ +

√
λnαn‖p‖)

≤ (‖xn – p‖ +
√

λnαn‖p‖) + εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖

+ λnαn‖p‖‖ỹn,N – p‖ – βnβn,i

N
∏

k=i

( – βn,k)‖Siun – yn,i–‖,

we immediately obtain that

c
N
∏

k=i

( – βn,k)‖Siun – yn,i–‖

≤ βn

N
∏

k=i

( – βn,k)‖Siun – yn,i–‖

≤ (‖xn – p‖ +
√

λnαn‖p‖) – ‖xn+ – p‖ + εnτ‖yn,N – p‖

+ εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖

≤ ‖xn – xn+‖ +
√

λnαn‖p‖
βn,i

(‖xn – p‖ + ‖xn+ – p‖ +
√

λnαn‖p‖)

+ εnτ‖yn,N – p‖ + εn
∥
∥(γ V – μF)p

∥
∥‖yn – p‖ + λnαn‖p‖‖ỹn,N – p‖.

By Proposition . or by hypothesis (ii) on the sequences, we have

‖xn – xn+‖
βn,i

=
‖xn – xn+‖

βn,k
· βn,k

βn,i
→ .

So, the conclusion follows. �

Remark . Let us consider N =  and the following sequences:
(a) βn = 

 + 
n , γn = δn = 

 – 
n , ∀n > ;

(b) λn = 
‖A‖ – 

n , ∀n > ‖A‖;
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(c) αn = 
n , αn = 

n/ , rn =  – 
n , ∀n > ;

(d) βn, = 
n/ , βn, = 

 – 
n , βn, = 

n/ , ∀n > .
It is easy to see that all hypotheses (i)-(iii), (H), (H) and (H) of Proposition . are
satisfied.

Remark . Under the hypotheses of Proposition ., analogously to Proposition ., one
can see that

lim
n→∞‖Siun – yn,i–‖ = , ∀i ∈ {, . . . , N}.

Corollary . Let us suppose that the hypotheses of either Proposition . or Propo-
sition . are satisfied. Then ωw(xn) = ωw(un) = ωw(yn,), ωs(xn) = ωs(un) = ωs(yn,) and
ωw(xn) ⊂ Ω .

Proof By Remark ., we have ωw(xn) = ωw(un) and ωs(xn) = ωs(un). Note that by Re-
mark .,

lim
n→∞‖SN un – yn,N–‖ = .

In the meantime, it is known that

lim
n→∞‖SN un – un‖ = lim

n→∞‖un – xn‖ = lim
n→∞‖xn – yn‖ = .

Hence we have

lim
n→∞‖SN un – yn‖ = . (.)

Furthermore, it follows from (.) that

lim
n→∞‖yn,N – yn,N–‖ = lim

n→∞βn,N‖SN un – yn,N–‖ = ,

which together with limn→∞ ‖SN un – yn,N–‖ =  yields

lim
n→∞‖SN un – yn,N‖ = . (.)

Combining (.) and (.), we conclude that

lim
n→∞‖yn – yn,N‖ = , (.)

which together with limn→∞ ‖xn – yn‖ =  leads to

lim
n→∞‖xn – yn,N‖ = . (.)

Now we observe that

‖xn – yn,‖ ≤ ‖xn – un‖ + ‖yn, – un‖ = ‖xn – un‖ + βn,‖Sun – un‖.



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:150 Page 35 of 43

By Propositions . and ., ‖xn – un‖ →  and ‖Sun – un‖ →  as n → ∞, and hence

lim
n→∞‖xn – yn,‖ = .

So we get ωw(xn) = ωw(yn,) and ωs(xn) = ωs(yn,).
Let p ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such that xni ⇀ p. Since

p ∈ ωw(un), by Proposition . and Lemma . (demiclosedness principle), we have p ∈
Fix(Si) for each i = , . . . , N , i.e., p ∈⋂N

i= Fix(Si). Combining (.) and (.), we obtain
‖xn – tn‖ →  as n → ∞. Taking into account p ∈ ωw(tn) and ‖tn – Gtn‖ →  (due to
(.)), by Lemma . (demiclosedness principle) we know that p ∈ Fix(G) =: Ξ . Also,
since p ∈ ωw(yn) (due to (.)), in terms of ‖Tyn – yn‖ →  and Lemma . (demiclosed-
ness principle), we get p ∈ Fix(T). Moreover, by Lemma . and Proposition . we know
that p ∈ GMEP(Θ , h). Next we prove that p ∈ Γ . As a matter of fact, from (.) and (.)
we know that yni ⇀ p and ỹni ,N ⇀ p. Let

T̃v =

{

∇f (v) + NCv, v ∈ C,
∅, v /∈ C,

where NCv = {u ∈ H : 〈v – p, u〉 ≥ ,∀p ∈ C}. Then T̃ is maximal monotone and  ∈ T̃v if
and only if v ∈ VI(C,∇f ); see [] for more details. Let (v, u) ∈ G(T̃). Since u–∇f (v) ∈ NCv
and ỹn,N ∈ C, we have

〈

v – ỹn,N , u – ∇f (v)
〉≥ .

On the other hand, from ỹn,N = PC(I – λn∇fαn )yn,N and v ∈ C, we have

〈

v – ỹn,N , ỹn,N –
(

yn,N – λn∇fαn (yn,N )
)〉≥ ,

and hence
〈

v – ỹn,N ,
ỹn,N – yn,N

λn
+ ∇fαn (yn,N )

〉

≥ .

Therefore we have

〈v – ỹni ,N , u〉
≥ 〈v – ỹni ,N ,∇f (v)

〉

≥ 〈v – ỹni ,N ,∇f (v)
〉

–
〈

v – ỹni ,N ,
ỹni ,N – yni ,N

λni

+ ∇fαni
(yni ,N )
〉

=
〈

v – ỹni ,N ,∇f (v)
〉

–
〈

v – ỹni ,N ,
ỹni ,N – yni ,N

λni

+ ∇f (yni ,N )
〉

– αni〈v – ỹni ,N , yni ,N 〉

=
〈

v – ỹni ,N ,∇f (v) – ∇f (ỹni ,N )
〉

+
〈

v – ỹni ,N ,∇f (ỹni ,N ) – ∇f (yni ,N )
〉

–
〈

v – ỹni ,N ,
ỹni ,N – yni ,N

λni

〉

– αni〈v – ỹni ,N , yni ,N 〉

≥ 〈v – ỹni ,N ,∇f (ỹni ,N ) – ∇f (yni ,N )
〉

–
〈

v – ỹni ,N ,
ỹni ,N – yni ,N

λni

〉

– αni〈v – ỹni ,N , yni ,N 〉.
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From (.) and since ∇f is Lipschitz continuous, we obtain that limn→∞ ‖∇f (ỹni ,N ) –
∇f (yni ,N )‖ = . From ỹni ,N ⇀ p, {λn} ⊂ [a, b] ⊂ (, 

‖A‖ ) and (.), we have

〈v – p, u〉 ≥ .

Since T̃ is maximal monotone, we have p ∈ T̃– and hence p ∈ VI(C,∇f ), which im-
plies p ∈ Γ . Consequently, it is known that p ∈ Fix(T) ∩⋂N

i= Fix(Si) ∩ GMEP(Θ , h) ∩ Ξ ∩
Γ =: Ω . �

Theorem . Let us suppose that Ω �= ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, )
such that  < lim infn→∞ βn,i ≤ lim supn→∞ βn,i <  for each index i. Moreover, let us suppose
that (H)-(H) hold. Then the sequences {xn}, {yn} and {un} defined by scheme (.) all
converge strongly to x∗ = PΩ (I – (μF –γ f ))x∗ if and only if limn→∞ ‖yn – Tyn‖ = , provided
‖un – un–‖ = o(εn), where x∗ = PΩ (I – (μF –γ f ))x∗ is the unique solution of the hierarchical
VIP

〈

(γ f – μF)x∗, x – x∗〉≤ , ∀x ∈ Ω . (.)

Proof First of all, we note that F : C → H is η-strongly monotone and κ-Lipschitzian on
C and f : C → C is an l-Lipschitz continuous mapping with  ≤ γ l < τ . Observe that

μη ≥ τ ⇔ μη ≥  –
√

 – μ
(

η – μκ
)

⇔
√

 – μ
(

η – μκ
)≥  – μη

⇔  – μη + μκ ≥  – μη + μη

⇔ κ ≥ η

⇔ κ ≥ η.

It is clear that

〈

(μF – γ f )x – (μF – γ f )y, x – y
〉≥ (μη – γ l)‖x – y‖, ∀x, y ∈ C.

Hence we deduce that μF – γ f is (μη – γ l)-strongly monotone. In the meantime, it is easy
to see that μF – γ f is (μκ + γ l)-Lipschitz continuous with constant μκ + γ l > . Thus,
there exists a unique solution x∗ in Ω to VIP (.).

Now, observe that there exists a subsequence {xni} of {xn} such that

lim sup
n→∞

〈

(γ f – μF)x∗, xn – x∗〉 = lim
i→∞
〈

(γ f – μF)x∗, xni – x∗〉. (.)

Since {xni} is bounded, there exists a subsequence {xnij
} of {xni} which converges weakly

to some p ∈ H . Without loss of generality, we may assume that xni ⇀ p. Then, by Corol-
lary ., we get p ∈ ωw(xn) ⊂ Ω . Hence, from (.) and (.), we have

lim sup
n→∞

〈

(γ f – μF)x∗, xn – x∗〉 =
〈

(γ f – μF)x∗, p – x∗〉≤ . (.)
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Since (H)-(H) hold, the sequence {xn} is asymptotically regular (according to Propo-
sition .). In terms of (.) and Proposition ., ‖xn – yn‖ →  and ‖xn – un‖ →  as
n → ∞.

Let us show that ‖xn – x∗‖ →  as n → ∞. Indeed, putting p = x∗, we deduce from (.),
(.), (.), (.) and (.) that

∥
∥xn+ – x∗∥∥

≤ βn
∥
∥yn – x∗∥∥ + ( – βn)

∥
∥tn – x∗∥∥

≤ βn

[

εnτ
(γ l)

τ 

∥
∥yn,N – x∗∥∥ + ( – εnτ )

∥
∥zn – x∗∥∥ + εn

〈

(γ V – μF)x∗, yn – x∗〉
]

+ ( – βn)
∥
∥tn – x∗∥∥

≤ βn

[

εn
(γ l)

τ

∥
∥yn,N – x∗∥∥ + ( – εnτ )

∥
∥tn – x∗∥∥ + εn

〈

(γ V – μF)x∗, yn – x∗〉
]

+ ( – βn)
∥
∥tn – x∗∥∥

= ( – βnεnτ )
∥
∥tn – x∗∥∥ + βnεn

(γ l)

τ

∥
∥yn,N – x∗∥∥ + βnεn

〈

(γ V – μF)x∗, yn – x∗〉

≤ ( – βnεnτ )
(∥
∥xn – x∗∥∥ +

√
λnαn
∥
∥x∗∥∥) + βnεn

(γ l)

τ

∥
∥xn – x∗∥∥

+ βnεn
〈

(γ V – μF)x∗, yn – x∗〉

= ( – βnεnτ )
[∥
∥xn – x∗∥∥ + λnαn

∥
∥x∗∥∥(√

∥
∥xn – x∗∥∥ + λnαn

∥
∥x∗∥∥)]

+ βnεn
(γ l)

τ

∥
∥xn – x∗∥∥ + βnεn

〈

(γ V – μF)x∗, yn – x∗〉

≤
(

 – βnεn
τ  – (γ l)

τ

)
∥
∥xn – x∗∥∥ + βnεn

〈

(γ V – μF)x∗, yn – x∗〉

+ λnαn
∥
∥x∗∥∥(√

∥
∥xn – x∗∥∥ + λnαn

∥
∥x∗∥∥)

=
(

 – βnεn
τ  – (γ l)

τ

)
∥
∥xn – x∗∥∥

+ βnεn
τ  – (γ l)

τ
· τ

τ  – (γ l)

〈

(γ V – μF)x∗, yn – x∗〉

+ λnαn
∥
∥x∗∥∥(√

∥
∥xn – x∗∥∥ + λnαn

∥
∥x∗∥∥). (.)

Since
∑∞

n= αn < ∞,
∑∞

n= εn = ∞, {λn} ⊂ [a, b] ⊂ (, 
‖A‖ ) and {βn} ⊂ [c, d] ⊂ (, ), we

conclude from (.) that
∑∞

n= λnαn‖x∗‖(
√

‖xn – x∗‖ + λnαn‖x∗‖) < ∞,

∞
∑

n=

βnεn
τ  – (γ l)

τ
≥

∞
∑

n=

cεn
τ  – (γ l)

τ
= ∞

and

lim sup
n→∞

τ

τ  – (γ l)

〈

(γ V – μF)x∗, yn – x∗〉

= lim sup
n→∞

τ

τ  – (γ l)

(〈

(γ V – μF)x∗, xn – x∗〉 +
〈

(γ V – μF)x∗, yn – xn
〉)
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= lim sup
n→∞

τ

τ  – (γ l)

〈

(γ V – μF)x∗, xn – x∗〉

≤ .

Applying Lemma . to (.), we infer that the sequence {xn} converges strongly to x∗.
This completes the proof. �

In a similar way, we can conclude another theorem as follows.

Theorem . Let us suppose that Ω �= ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, )
such that βn,i → βi for each index i as n → ∞. Suppose that there exists k ∈ {, . . . , N} for
which βn,k →  as n → ∞. Let k ∈ {, . . . , N} be the largest index for which βn,k → .
Moreover, let us suppose that (H), (H) and (H) hold and

(i) αn+εn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i → βi, then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi �= , then βi lies in (, ).

Then the sequences {xn}, {yn} and {un} defined by scheme (.) all converge strongly to x∗ =
PΩ (I – (μF – γ f ))x∗ if and only if limn→∞ ‖yn – Tyn‖ = , provided ‖un – un–‖ = o(εnβn,k ),
where x∗ = PΩ (I – (μF – γ f ))x∗ is the unique solution of the hierarchical VIP

〈

(γ f – μF)x∗, x – x∗〉≤ , ∀x ∈ Ω .

Remark . According to the above argument process for Theorems . and ., we can
readily see that if in scheme (.) the iterative step yn = PC[εnγ Vyn,N +(I –εnμF)GPC(yn,N –
λn∇fαn (ỹn,N ))] is replaced by the iterative one yn = PC[εnγ Vxn + (I – εnμF)GPC(yn,N –
λn∇fαn (ỹn,N ))], then Theorems . and . remain valid.

Remark . Theorems . and . improve, extend, supplement and develop Theo-
rems . and . in [] and Theorems . and . in [] in the following aspects.

(i) The multi-step iterative scheme (.) of [] is extended to develop a hybrid extra-
gradient viscosity iterative scheme (.) by virtue of Korpelevich’s extragradient method,
hybrid steepest-descent method [] and gradient-projection method (GPM) with regu-
larization. The iterative scheme (.) is based on Korpelevich’s extragradient method, vis-
cosity approximation method [] (see also []), Mann’s iteration method, hybrid steepest-
descent method [] and gradient-projection method (GPM) with regularization.

(ii) The argument techniques in our Theorems . and . are very different from those
techniques in Theorems . and . in [] and Theorems . and . in [] because
we make use of the properties of strict pseudocontractions (see Lemmas . and .),
the ones of the resolvent operator associated with Θ and h (see Lemmas .-.), the
fixed point problem x∗ = Gx∗ (⇔ GSVI (.)) (see Proposition .), the equivalence of
inclusion problem  ∈ T̃v to the VIP v ∈ VI(C,∇f ) for maximal monotone operator T̃
(see (.)) and the contractive coefficient estimates for the contractions Tλ associating
with nonexpansive mappings (see Lemma .).

(iii) The problem of finding an element of Fix(T) ∩⋂N
i= Fix(Si) ∩ GMEP(Θ , h) ∩ Ξ ∩ Γ

in our Theorems . and . is more general and more subtle than the one of finding an
element of Fix(T) ∩⋂N

i= Fix(Si) ∩ GMEP(Θ , h) in Theorems . and . in [] (where
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T is a nonexpansive mapping) and the one of finding an element of Fix(T) ∩⋂N
i= Fix(Si) ∩

GMEP(Θ , h) ∩ Ξ in Theorems . and . in [] (where T is a strict pseudocontraction).
(iv) Our Theorems . and . generalize Theorems . and . in [] from the non-

expansive mapping T to the strict pseudocontraction T and extend them to the setting of
GSVI (.), hierarchical VIP (.) and SFP (.). In the meantime, our Theorems . and
. extend Theorems . and . in [] to the setting of hierarchical VIP (.) and SFP
(.).

4 Applications
For a given nonlinear mapping A : C → H , we consider the variational inequality problem
(VIP) of finding x̄ ∈ C such that

〈Ax̄, y – x̄〉 ≥ , ∀y ∈ C. (.)

We will indicate with VI(C,A) the set of solutions of VIP (.).
Recall that if u is a point in C, then the following relation holds:

u ∈ VI(C,A) ⇔ u = PC(I – λA)u, ∀λ > .

In the meantime, it is easy to see that the following relation holds:

GSVI (.) with F =  ⇔ VIP (.) with A = F. (.)

An operator A : C → H is said to be an α-inverse strongly monotone operator if there
exists a constant α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖, ∀x, y ∈ C.

As an example, we recall that the α-inverse strongly monotone operators are firmly non-
expansive mappings if α ≥  and that every α-inverse strongly monotone operator is also

α

-Lipschitz continuous (see []).
Let us observe also that if A is α-inverse strongly monotone, the mappings PC(I – λA)

are nonexpansive for all λ ∈ (, α] since they are compositions of nonexpansive mappings
(see p. in []).

Let us consider S̃, . . . , S̃M be a finite number of nonexpansive self-mappings on C and
A, . . . , AN be a finite number of α-inverse strongly monotone operators. Let T : C → C
be a ξ -strict pseudocontraction with fixed points. Let us consider the following mixed
problem of finding x∗ ∈ Fix(T) ∩ GMEP(Θ , h) ∩ Ξ ∩ Γ such that

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈(I – S̃)x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T) ∩ GMEP(Θ , h) ∩ Ξ ∩ Γ ,
〈(I – S̃)x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T) ∩ GMEP(Θ , h) ∩ Ξ ∩ Γ ,
. . . ,
〈(I – S̃M)x∗, y – x∗〉 ≥ , ∀y ∈ Fix(T) ∩ GMEP(Θ , h) ∩ Ξ ∩ Γ ,
〈Ax∗, y – x∗〉 ≥ , ∀y ∈ C,
〈Ax∗, y – x∗〉 ≥ , ∀y ∈ C,
. . . ,
〈AN x∗, y – x∗〉 ≥ , ∀y ∈ C.

(.)
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Let us call (SVI) the set of solutions of the (M + N)-system. This problem is equivalent
to finding a common fixed point of T , {PFix(T)∩GMEP(Θ ,h)∩Ξ∩Γ S̃i}M

i=, {PC(I – λAi)}N
i=. So we

claim that the following holds.

Theorem . Let us suppose that Ω = Fix(T) ∩ (SVI) ∩ GMEP(Θ , h) ∩ Ξ ∩ Γ �= ∅. Fix
λ > . Let {αn}, {βn,i}, i = , . . . , (M + N), be sequences in (, ) such that  < lim infn→∞ βn,i ≤
lim supn→∞ βn,i <  for all indices i. Moreover, let us suppose that (H)-(H) hold. Then the
sequences {xn}, {yn} and {un} explicitly defined by scheme

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,PFix(T)∩GMEP(Θ ,h)∩Ξ∩Γ S̃un + ( – βn,)un,
yn,i = βn,iPFix(T)∩GMEP(Θ ,h)∩Ξ∩Γ S̃iun + ( – βn,i)yn,i–, i = , . . . , M,
yn,M+j = βn,M+jPC(I – λAj)un + ( – βn,M+j)yn,M+j–, j = , . . . , N ,
ỹn,M+N = PC(yn,M+N – λn∇fαn (yn,M+N )),
yn = PC[εnγ Vyn,M+N + (I – εnμF)GPC(yn,M+N – λn∇fαn (ỹn,M+N ))],
xn+ = βnyn + γnPC(yn,M+N – λn∇fαn (ỹn,M+N )) + δnTPC(yn,M+N – λn∇fαn (ỹn,M+N )),

(.)

all converge strongly to x∗ = PΩ (I – (μF – γ V ))x∗ if and only if limn→∞ ‖yn – Tyn‖ = ,
provided ‖un – un–‖ = o(εn), where x∗ = PΩ (I – (μF – γ V ))x∗ is the unique solution of the
hierarchical VIP

〈

(γ V – μF)x∗, x – x∗〉≤ , ∀x ∈ Ω .

Theorem . Let us suppose that Ω �= ∅. Fix λ > . Let {αn}, {βn,i}, i = , . . . , (M + N), be
sequences in (, ) and βn,i → βi for all i as n → ∞. Suppose that there exists k ∈ {, . . . , M +
N} such that βn,k →  as n → ∞. Let k ∈ {, . . . , M + N} be the largest index for which
βn,k → . Moreover, let us suppose that (H), (H) and (H) hold and

(i) αn+εn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i → , then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi �= , then βi lies in (, ).

Then the sequences {xn}, {yn} and {un} explicitly defined by scheme (.) all converge
strongly to x∗ = PΩ (I – (μF – γ V ))x∗ if and only if limn→∞ ‖yn – Tyn‖ = , provided
‖un – un–‖ = o(εnβn,k ), where x∗ = PΩ (I – (μF – γ V ))x∗ is the unique solution of the VIP

〈

(γ V – μF)x∗, x – x∗〉≤ , ∀x ∈ Ω .

Remark . If in system (.), F = F = A = · · · = AN =  and T is a nonexpansive map-
ping, we obtain a system of hierarchical fixed point problems introduced by Mainge and
Moudafi [, ].

On the other hand, recall that a mapping S : C → C is called ζ -strictly pseudocontractive
if there exists a constant ζ ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + ζ
∥
∥(I – S)x – (I – S)y

∥
∥

, ∀x, y ∈ C.

If ζ = , then S is nonexpansive. Put A = I – S, where S : C → C is a ζ -strictly pseudocon-
tractive mapping. Then A is –ζ

 -inverse strongly monotone; see [].



Ceng et al. Journal of Inequalities and Applications  (2015) 2015:150 Page 41 of 43

Utilizing Theorems . and ., we also give two strong convergence theorems for find-
ing a common element of the solution set GMEP(Θ , h) of GMEP (.), the solution set Γ

of SFP (.) and the common fixed point set
⋂N

i= Fix(Si) ∩ Fix(S) of finitely many non-
expansive mappings Si : C → C, i = , . . . , N , and a ζ -strictly pseudocontractive mapping
S : C → C.

Theorem . Let ν ∈ (,  – ζ ). Let us suppose that Ω =
⋂N

i= Fix(Si) ∩ Fix(S) ∩ GMEP(Θ ,
h) ∩Γ �= ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, ) such that  < lim infn→∞ βn,i ≤
lim supn→∞ βn,i <  for all indices i. Moreover, let us suppose that there hold (H)-(H) with
γn = , ∀n ≥ . Then the sequences {xn}, {yn} and {un} generated explicitly by

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Θ(un, y) + h(un, y) + 
rn

〈y – un, un – xn〉 ≥ , ∀y ∈ C,
yn, = βn,Sun + ( – βn,)un,
yn,i = βn,iSiun + ( – βn,i)yn,i–, i = , . . . , N ,
ỹn,N = PC(yn,N – λn∇fαn (yn,N )),
tn = PC(yn,N – λn∇fαn (ỹn,N )),
yn = PC[εnγ Vyn,N + (I – εnμF)(( – ν)tn + νStn)],
xn+ = βnyn + ( – βn)tn, ∀n ≥ ,

(.)

all converge strongly to x∗ = PΩ (I – (μF – γ V ))x∗, provided ‖un – un–‖ = o(εn), which is the
unique solution of the VIP

〈

(γ V – μF)x∗, x – x∗〉≤ , ∀x ∈ Ω .

Proof In Theorem ., put F = A = I – S and F = . Then A is –ζ

 -inverse strongly mono-
tone. Hence we deduce that Fix(S) = VI(C,A) = Ξ and

Gtn = PC(I – νF)PC(I – νF)tn

= PC(I – νF)tn

= ( – ν)tn + νStn.

Thus, in terms of Theorem ., we obtain the desired result. �

Theorem . Let ν ∈ (,  – ζ ). Let us suppose that Ω =
⋂N

i= Fix(Si) ∩ Fix(S) ∩ GMEP(Θ ,
h) ∩ Γ �= ∅. Let {αn}, {βn,i}, i = , . . . , N , be sequences in (, ) such that βn,i → βi for all
i as n → ∞. Suppose that there exists k ∈ {, . . . , N} for which βn,k →  as n → ∞. Let
k ∈ {, . . . , N} be the largest index for which βn,k → . Moreover, let us suppose that there
hold (H), (H) and (H) with γn = , ∀n ≥  and

(i) αn+εn
βn,k

→  as n → ∞;

(ii) if i ≤ k and βn,i → , then βn,k
βn,i

→  as n → ∞;
(iii) if βn,i → βi �= , then βi lies in (, ).

Then the sequences {xn}, {yn} and {un} generated explicitly by (.) all converge strongly to
x∗ = PΩ (I – (μF – γ V ))x∗, provided ‖un – un–‖ = o(εnβn,k ), which is the unique solution
of the hierarchical VIP

〈

(γ V – μF)x∗, x – x∗〉≤ , ∀x ∈ Ω .
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