Open Access

Certain unified fractional integrals and derivatives for a product of Aleph function and a general class of multivariable polynomials

Journal of Inequalities and Applications20142014:499

https://doi.org/10.1186/1029-242X-2014-499

Received: 4 September 2014

Accepted: 27 November 2014

Published: 17 December 2014

Abstract

Saigo and Maeda (Transform Methods and Special Functions, Varna, Bulgaria, pp. 386-400, 1996) introduced and investigated certain generalized fractional integral and derivative operators involving the Appell function F 3 . Here we aim at presenting four unified fractional integral and derivative formulas of Saigo and Maeda type, which are involved in a product of -function and a general class of multivariable polynomials. The main results, being of general nature, are shown to be some unification and extension of many known formulas given, for example, by Saigo and Maeda (Transform Methods and Special Functions, Varna, Bulgaria, pp. 386-400, 1996), Saxena et al. (Kuwait J. Sci. Eng. 35(1A):1-20, 2008), Srivastava and Garg (Rev. Roum. Phys. 32:685-692, 1987), Srivastava et al. (J. Math. Anal. Appl.193:373-389, 1995) and so on. Our main results are also shown to be further specialized to yield a large number of known and (presumably) new formulas involving, for instance, Saigo fractional calculus operators, several special functions such as H-function, I-function, Mittag-Leffler function, generalized Wright hypergeometric function, generalized Bessel-Maitland function.

MSC:26A33, 33E20, 33C45, 33C60, 33C70.

Keywords

generalized fractional calculus operatorsa general class of multivariable polynomials-functionH-functionI-functiongeneralized Wright hypergeometric functionMittag-Leffler functiongeneralized Bessel-Maitland function

1 Introduction, definitions, and preliminaries

Fractional calculus deals with the investigations of integrals and derivatives of arbitrary orders. A remarkably large number of works on the subject of fractional calculus have given interesting account of the theory and applications of fractional calculus operators in many different areas of mathematical analysis (see, for very recent works, [18]).

The fractional integral operators, especially, involving various special functions have found significant importance and applications in various fields of applied mathematics. Since last five decades, a number of researchers like Love [9], Srivastava and Saxena [10], Debnath and Bhatta [11], Saxena et al. [1215], Saigo [16], Samko et al. [17], Miller and Ross [18], and Ram and Kumar [19] and so on have studied, in depth, certain properties, applications, and different extensions of various hypergeometric operators of fractional integration.

Throughout this paper, let , , R + , Z 0 , and denote the sets of complex numbers, real numbers, positive real numbers, nonpositive integers and positive integers, respectively, and N 0 : = N { 0 } .

Let α , α , β , β , γ C . Then the fractional integral operators I 0 , x α , α , β , β , γ and I x , α , α , β , β , γ of a function f ( x ) are defined, for ( γ ) > 0 , as follows (see Saigo and Maeda [20]):
( I 0 , x α , α , β , β , γ f ) ( x ) = x α Γ ( γ ) 0 x ( x t ) γ 1 t α F 3 ( α , α , β , β ; γ ; 1 t / x , 1 x / t ) f ( t ) d t
(1.1)
and
( I x , α , α , β , β , γ f ) ( x ) = x α Γ ( γ ) x ( t x ) γ 1 t α F 3 ( α , α , β , β ; γ ; 1 x / t , 1 t / x ) f ( t ) d t ,
(1.2)
where F 3 is one of the Appell series defined by (see, e.g., [[21], p.23, Eq. (4)])
F 3 ( a , a , b , b ; c ; x , y ) = m , n = 0 ( a ) m ( a ) n ( b ) m ( b ) n ( c ) m + n x m m ! y n n ! ( max { | x | , | y | } < 1 )
(1.3)
and ( λ ) n is the Pochhammer symbol defined (for λ C ) by (see [[22], p.2 and pp.4-6]):
( λ ) n : = { 1 ( n = 0 ) , λ ( λ + 1 ) ( λ + n 1 ) ( n N ) = Γ ( λ + n ) Γ ( λ ) ( λ C Z 0 ) .
(1.4)

Here Γ denotes the familiar gamma function.

These operators reduce to the following simpler fractional integral operators (see [16]):
I 0 , x α , 0 , β , β , γ f ( x ) = I 0 , x γ , α γ , β f ( x ) ( γ C )
(1.5)
and
I x , α , 0 , β , β , γ f ( x ) = I x , γ , α γ , β f ( x ) ( γ C ) .
(1.6)
Let α , α , β , β , γ C with ( γ ) > 0 and x R + . Then the generalized fractional differentiation operators involving the Appell function F 3 in the kernel are defined as follows (see [20]):
( D 0 + α , α , β , β , γ f ) ( x ) = ( I 0 + α , α , β , β , γ f ) ( x )
(1.7)
= ( d d x ) n ( I 0 + α , α , β + n , β , γ + n f ) ( x ) ( ( γ ) > 0 ; n : = [ ( γ ) ] + 1 )
(1.8)
= 1 Γ ( n γ ) ( d d x ) n ( x α ) 0 x ( x t ) n γ 1 t α × F 3 ( α , α , n β , β , n γ ; 1 t x , 1 x t ) f ( t ) d t
(1.9)
and
( D α , α , β , β , γ f ) ( x ) = ( I α , α , β , β , γ f ) ( x )
(1.10)
= ( d d x ) n ( I α , α , β , β + n , γ + n f ) ( x ) ( ( γ ) > 0 ; n = [ ( γ ) ] + 1 )
(1.11)
= 1 Γ ( n γ ) ( d d x ) n ( x α ) x ( t x ) n γ 1 t α × F 3 ( α , α , β , n β , n γ ; 1 x t , 1 t x ) f ( t ) d t .
(1.12)
These operators reduce to the Saigo derivative operators as follows (see [16, 20]):
( D 0 + 0 , α , β , β , γ f ) ( x ) = ( D 0 + γ , α γ , β γ f ) ( x ) ( ( γ ) > 0 )
(1.13)
and
( D 0 , α , β , β , γ f ) ( x ) = ( D γ , α γ , β γ f ) ( x ) ( ( γ ) > 0 ) .
(1.14)
Furthermore we also have (see [[20], p.394, Eqs. (4.18) and (4.19)])
I 0 + α , α , β , β , γ x ρ 1 = Γ [ ρ , ρ + γ α α β , ρ + β α ρ + γ α α , ρ + γ α β , ρ + β ] x ρ α α + γ 1 ( ( γ ) > 0 , ( ρ ) > max { 0 , ( α + α + β γ ) , ( α β ) } )
(1.15)
and
I α , α , β , β , γ x ρ 1 = Γ [ 1 + α + α γ ρ , 1 + α + β γ ρ , 1 β ρ 1 ρ , 1 + α + α + β γ ρ , 1 + α β ρ ] x ρ α α + γ 1 ( ( γ ) > 0 , ( ρ ) < 1 + min { ( β ) , ( α + α γ ) , ( α + β γ ) } ) ,
(1.16)
where the notation Γ [ ] represents the fraction of gamma functions, for example,
Γ [ α , β , γ a , b , c ] = Γ ( α ) Γ ( β ) Γ ( γ ) Γ ( a ) Γ ( b ) Γ ( c ) .

Saxena and Saigo [23] presented the generalized fractional integral and derivative formulas of the H-function involving Saigo-Maeda fractional calculus operators. Similarly, generalized fractional calculus formulas of the Aleph function associated with the Appell function F 3 is given by Saxena et al. [14, 15], and Ram and Kumar [19].

Following Saxena and Pogány [24, 25], we define the Aleph function in terms of the Mellin-Barnes type integrals as follows (see also [2628]):
[ z ] = p i , q i , τ i ; r m , n [ z | ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ] : = 1 2 π i L Ω p i , q i , τ i ; r m , n ( ξ ) z ξ d ξ ,
(1.17)
where i = 1 and
Ω p i , q i , τ i ; r m , n ( ξ ) = j = 1 m Γ ( b j + B j ξ ) j = 1 n Γ ( 1 a j A j ξ ) i = 1 r τ i j = m + 1 q i Γ ( 1 b j i B j i ξ ) j = n + 1 p i Γ ( a j i + A j i ξ ) .
(1.18)
The integration path L = L i γ , γ extends from γ i to γ + i , and is such that the poles of Γ ( 1 a j A j ξ ) , j = 1 , n ¯ (the symbol 1 , n ¯ is used for 1 , 2 , , n ) do not coincide with the poles of Γ ( b j + B j ξ ) , j = 1 , m ¯ . The parameters p i , q i N 0 satisfy 0 n p i , 1 m q i , and τ i > 0 for i = 1 , r ¯ . The parameters A j , B j , A j i , B j i > 0 and a j , b j , a j i , b j i C . An empty product in (1.18) is interpreted as unity. The existence conditions for the defining integral (1.17) are given below:
φ l > 0 , | arg ( z ) | < π 2 φ l ( l = 1 , r ¯ )
(1.19)
and
φ l 0 , | arg ( z ) | < π 2 φ l and ( ζ l ) + 1 < 0 ,
(1.20)
where
φ l : = j = 1 n A j + j = 1 m B j τ l ( j = n + 1 p l A j l + j = m + 1 q l B j l )
(1.21)
and
ζ l : = j = 1 m b j j = 1 n a j + τ l ( j = m + 1 q l b j l j = n + 1 p l a j l ) + 1 2 ( p l q l ) ( l = 1 , r ¯ ) .
(1.22)
Remark For τ i = 1 , i = 1 , n ¯ , in (1.17), we get the I-function defined as follows (see Saxena [29]):
I p i , q i ; r m , n [ z ] = p i , q i , 1 ; r m , n [ z ] = p i , q i , 1 ; r m , n [ z | ( b j , B j ) 1 , m , , ( b j , B j ) m + 1 , q i ( a j , A j ) 1 , n , , ( a j , A j ) n + 1 , p i ] : = 1 2 π i L Ω p i , q i , 1 ; r m , n ( ξ ) z ξ d ξ ,
(1.23)

where the kernel Ω p i , q i , 1 ; r m , n ( ξ ) is given in (1.18). The existence conditions for the integral in (1.23) are the same as given in (1.19)-(1.22) with τ i = 1 and i = 1 , r ¯ .

If we set r = 1 , then (1.23) reduces to the familiar H-function as follows (see [30]):
H p , q m , n [ z ] = p i , q i , 1 ; 1 m , n [ z ] = p i , q i , 1 ; 1 m , n [ z | ( b p , B p ) ( a p , A p ) ] : = 1 2 π i L Ω p i , q i , 1 ; 1 m , n ( ξ ) z ξ d ξ ,
(1.24)

where the kernel Ω p i , q i , 1 ; 1 m , n ( ξ ) can be obtained from (1.18).

A general class of multivariable polynomials is defined and studied by Srivastava and Garg [31]:
S L h 1 , , h s = k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) x 1 k 1 k 1 ! x s k s k s ! ( h i N , i = 1 , , s ) ,
(1.25)
where h 1 , , h s are arbitrary positive integers and the coefficients A ( L ; k 1 , , k s ) , ( L , h i N 0 ; i = 1 , , s ) are arbitrary constants, real or complex. Evidently the case s = 1 of the polynomials (1.24) would correspond to the polynomials due to Srivastava [32] as
S l h ( x ) = k = 0 [ l / h ] ( l ) h k k ! A l , k x k ( l N 0 ) .

Some multidimensional fractional integral operators involving the polynomial given as (1.25) are defined and studied by Srivastava et al. [33].

Here, in this paper, we aim at presenting four unified fractional integral and derivative formulas of Saigo and Maeda type [20], which are involved in a product of -function (1.17) and a general class of multivariable polynomials (1.25). The main results, being of general nature, are shown to be some unification and extension of many known formulas given, for example, by Saigo and Maeda [20], Saxena et al. [13], Srivastava and Garg [31], Srivastava et al. [33] and so on. Our main results are also shown to be further specialized to yield a large number of known and (presumably) new formulas involving, for instance, Saigo fractional calculus operators, several special functions such as H-function, I-function, Mittag-Leffler function, generalized Wright hypergeometric function, generalized Bessel-Maitland function.

2 Fractional integral formulas

Here we establish two fractional integration formulas for -function (1.17) and a general class of polynomials defined by (1.25).

Theorem 1 Suppose that α , α , β , β , γ , z , ρ C , ( γ ) > 0 , μ > 0 , λ j + ( j = 1 , , s ), and
( ρ ) + μ min 1 j m ( b j ) B j > max { 0 , ( α + α + β γ ) , ( α β ) } .
Further suppose that the constants a j , b j , a j i , b j i C , A j , B j , A j i , B j i R + ( i = 1 , , p i ; j = 1 , , q i ), and τ i > 0 for i = 1 , r ¯ . If the conditions given in (1.19)-(1.22) are satisfied, then the following relation holds true:
{ I 0 + α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × p i , q i , τ i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ] ) } ( x ) = x ρ α α + γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × p i + 3 , q i + 3 , τ i ; r m , n + 3 [ z x μ | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ + α + α + β γ j = 1 s λ j k j , μ ) , ( b j , B j ) 1 , m , ( 1 ρ + α + α γ j = 1 s λ j k j , μ ) , ( 1 ρ + α β j = 1 s λ j k j , μ ) , ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( 1 ρ + α + β γ j = 1 s λ j k j , μ ) , ( 1 ρ β j = 1 s λ j k j , μ ) , , [ τ j ( b j , B j ) ] m + 1 , q i ] .
(2.1)
Proof In order to prove (2.1), first expressing the general class of multivariable polynomials occurring on its left-hand side as the series given by (1.25), replacing the -function in terms of Mellin-Barnes contour integral with the help of (1.17), interchanging the order of summations, we obtain the following form (say I):
I = k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! × { 1 2 π i L Ω p i , q i , τ i ; r m , n z ξ ( I 0 + α , α , β , β , γ t ρ + j = 1 s λ j k j μ ξ 1 ) ( x ) d ξ } = k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! × 1 2 π i L x ρ α α + γ + j = 1 s λ j k j 1 ( z x μ ) ξ × j = 1 m Γ ( b j + B j ξ ) j = 1 n Γ ( 1 a j A j ξ ) i = 1 r τ i j = m + 1 q i Γ ( 1 b j i B j i ξ ) j = n + 1 p i Γ ( a j i + A j i ξ ) × Γ ( ρ + j = 1 s λ j k j μ ξ ) Γ ( ρ + j = 1 s λ j k j μ ξ + γ α α ) × Γ ( ρ + j = 1 s λ j k j μ ξ + γ α α β ) Γ ( ρ + j = 1 s λ j k j μ ξ + β α ) Γ ( ρ + j = 1 s λ j k j μ ξ + γ α β ) Γ ( ρ + j = 1 s λ j k j μ ξ + β ) d ξ .

Finally, re-interpreting the Mellin-Barnes contour integral in terms of the -function, we are led to the right-hand side of (2.1). This completes proof of Theorem 1. □

In view of the relation (1.5), we obtain a (presumably) new result concerning the Saigo fractional integral operator [16] asserted by the following corollary.

Corollary 1 Let α , β , γ , ρ , z C , ( α ) > 0 , μ > 0 , λ j + ( j = 1 , , s ), and
( ρ ) + μ min 1 j m ( ( b j ) B j ) > max { 0 , ( β γ ) } .
Then the following relation holds true:
{ I 0 + α , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × p i , q i , τ i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ] ) } ( x ) = x ρ β 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × p i + 2 , q i + 2 , τ i ; r m , n + 2 [ z x μ | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ + β γ j = 1 s λ j k j , μ ) , ( b j , B j ) 1 , m , ( 1 ρ + β j = 1 s λ j k j , μ ) , ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( 1 ρ α γ j = 1 s λ j k j , μ ) , , [ τ j ( b j , B j ) ] m + 1 , q i ] ,
(2.2)

where the conditions of the existence of (2.2) follow easily with the help of (2.1).

It is remarked in passing that the corresponding results concerning Riemann-Liouville and Erdélyi-Kober fractional integral operators can be obtained by putting β = α and β = 0 , respectively, in (2.2).

Theorem 2 Suppose that α , α , β , β , γ , z , ρ C , ( γ ) > 0 , μ > 0 , λ j + ( j = 1 , , s ), and
( ρ ) + μ max 1 i n ( ( a i ) 1 A i ) < 1 + min { ( β ) , ( α + α γ ) , ( α + β γ ) } .
Further suppose that the constants a j , b j , a j i , b j i C ,
A j , B j , A j i , B j i R + ( i = 1 , , p i ; j = 1 , , q i ) ,
and τ i > 0 for i = 1 , r ¯ . If the conditions given in (1.19)-(1.22) are satisfied, the following relation holds true:
{ I α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × p i , q i , τ i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ] ) } ( x ) = x ρ α α + γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × p i + 3 , q i + 3 , τ i ; r m + 3 , n [ z x μ | ( a j , A j ) 1 , n , ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 + α β ρ j = 1 s λ j k j , μ ) , ( 1 + α + α γ ρ j = 1 s λ j k j , μ ) , ( 1 β ρ j = 1 s λ j k j , μ ) , ( 1 + α + α + β γ ρ j = 1 s λ j k j , μ ) , , [ τ j ( a j , A j ) ] n + 1 , p i ( 1 + α + β γ ρ j = 1 s λ j k j , μ ) , ( b j , B j ) , , [ τ j ( b j , B j ) ] m + 1 , q i ] .
(2.3)
Proof A similar argument as in proving Theorem 1 will establish the result (2.3). Indeed, first expressing the general class of multivariable polynomials occurring on its left-hand side as a series given by (1.25), replacing the -function in terms of Mellin-Barnes contour integral with the help of (1.17), interchanging the order of summations, we obtain the following form (say I):
I = k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! × { 1 2 π i L Ω p i , q i , τ i ; r m , n z ξ ( I α , α , β , β , γ t ρ + j = 1 s λ j k j μ ξ 1 ) ( x ) d ξ } = k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! × 1 2 π i L x ρ α α + γ + j = 1 s λ j k j 1 ( z x μ ) ξ × j = 1 m Γ ( b j + B j ξ ) j = 1 n Γ ( 1 a j A j ξ ) i = 1 r τ i j = m + 1 q i Γ ( 1 b j i B j i ξ ) j = n + 1 p i Γ ( a j i + A j i ξ ) × Γ ( 1 + α + α γ ρ j = 1 s λ j k j + μ ξ ) Γ ( 1 ρ j = 1 s λ j k j + μ ξ ) × Γ ( 1 + α + β γ ρ j = 1 s λ j k j + μ ξ ) Γ ( 1 β ρ j = 1 s λ j k j + μ ξ ) Γ ( 1 + α + α + β γ ρ j = 1 s λ j k j + μ ξ ) Γ ( 1 + α β ρ j = 1 s λ j k j + μ ξ ) d ξ .

Finally, re-interpreting the Mellin-Barnes contour integral in terms of the -function, we are led to the right-hand side of (2.3). This completes the proof of Theorem 2. □

In view of the relation (1.6), we obtain a (presumably) new result concerning Saigo fractional integral operator [16] asserted by the following corollary.

Corollary 2 Let α , β , γ , ρ , z C , ( α ) > 0 , μ > 0 , λ j + ( j = 1 , , s ), and
( ρ ) + μ max 1 i n ( ( a i ) 1 A i ) < 1 + min { ( β ) , ( γ ) } .
Then the following relation holds true:
{ I α , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × p i , q i , τ i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ] ) } ( x ) = x ρ β 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × p i + 2 , q i + 2 , τ i ; r m + 2 , n [ z x μ | ( a j , A j ) 1 , n , ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 + β ρ j = 1 s λ j k j , μ ) , ( 1 + γ ρ j = 1 s λ j k j , μ ) , ( 1 + α + β + γ ρ j = 1 s λ j k j , μ ) , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) , , [ τ j ( b j , B j ) ] m + 1 , q i ] ,
(2.4)

where the conditions of existence of (2.4) follow easily from Theorem  2.

It is also remarked in passing that the corresponding results concerning Riemann-Liouville and Erdélyi-Kober fractional integral operators can be obtained by putting β = α and β = 0 , respectively, in (2.4).

3 Fractional derivative formulas

Here we establish two fractional derivative formulas for -function (1.17) and a general class of polynomials defined by (1.25).

Theorem 3 Suppose that α , α , β , β , γ , z , ρ C , ( γ ) > 0 , μ > 0 , λ j + ( j = 1 , , s ), and
( ρ ) + μ min 1 j m ( ( b j ) B j ) + max { 0 , ( α β ) , ( α + β + α γ ) } > 0 .
Further suppose that the constants a j , b j , a j i , b j i C , A j , B j , A j i , B j i R + ( i = 1 , , p i ; j = 1 , , q i ), and τ i > 0 for i = 1 , r ¯ . If the conditions given in (1.19)-(1.22) are satisfied, then the following relation holds true:
{ D 0 + α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × p i , q i , τ i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ] ) } ( x ) = x ρ + α + α γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × p i + 3 , q i + 3 , τ i ; r m , n + 3 [ z x μ | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ α + β j = 1 s λ j k j , μ ) , ( b j , B j ) 1 , m , ( 1 ρ α α + γ j = 1 s λ j k j , μ ) , ( 1 ρ α α β + γ j = 1 s λ j k j , μ ) , ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( 1 ρ α β + γ j = 1 s λ j k j , μ ) , ( 1 ρ + β j = 1 s λ j k j , μ ) , , [ τ j ( b j , B j ) ] m + 1 , q i ] .
(3.1)
Proof In order to prove (3.1), first expressing the general class of multivariable polynomials occurring on its left-hand side as a series given by (1.25), replacing the -function in terms of the Mellin-Barnes contour integral with the help of (1.17), and interchanging the order of summations, we obtain the following form (say I):
I = k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! × { 1 2 π i L Ω p i , q i , τ i ; r m , n z ξ ( D 0 + α , α , β , β , γ t ρ + j = 1 s λ j k j μ ξ 1 ) ( x ) d ξ } = ( d d x ) n k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! × 1 2 π i L x ρ + α + α γ + j = 1 s λ j k j + n 1 ( z x μ ) ξ × j = 1 m Γ ( b j + B j ξ ) j = 1 n Γ ( 1 a j A j ξ ) i = 1 r τ i j = m + 1 q i Γ ( 1 b j i B j i ξ ) j = n + 1 p i Γ ( a j i + A j i ξ ) × Γ ( ρ + j = 1 s λ j k j μ ξ ) Γ ( ρ + j = 1 s λ j k j μ ξ + α + α γ ) × Γ ( ρ + j = 1 s λ j k j μ ξ + α + α + β γ ) Γ ( ρ + j = 1 s λ j k j μ ξ + α β ) Γ ( ρ + j = 1 s λ j k j μ ξ + α + β γ ) Γ ( ρ + j = 1 s λ j k j μ ξ β ) d ξ .
Here n : = [ ( γ ) ] + 1 , and by using
d k d x k x m = Γ ( m + 1 ) Γ ( m k + 1 ) x m k ( m , k N 0 ; m k ) ,
(3.2)

and re-interpreting the Mellin-Barnes counter integral in terms of the -function, we are led to the right-hand side of (3.1). This completes the proof of Theorem 3. □

In view of the relation (1.13), we obtain a (presumably) new result concerning Saigo fractional derivative operator [16] asserted by the following corollary.

Corollary 3 Let α , β , γ , ρ , z C , ( α ) > 0 , μ > 0 , λ j + ( j = 1 , , s ), and
( ρ ) + μ min 1 j m ( ( b j ) B j ) + max { 0 , ( β ) , ( β + α + γ ) } > 0 .
Then the following relation holds true:
{ D 0 + α , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × p i , q i , τ i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ] ) } ( x ) = x ρ + β 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × p i + 2 , q i + 2 , τ i ; r m , n + 2 [ z x μ | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ α β γ j = 1 s λ j k j , μ ) , ( b j , B j ) 1 , m , ( 1 ρ β j = 1 s λ j k j , μ ) , ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( 1 ρ γ j = 1 s λ j k j , μ ) , , [ τ j ( b j , B j ) ] m + 1 , q i ] ,
(3.3)

where the conditions of existence of (3.3) follow easily with the help of (3.1).

It is remarked in passing that the corresponding results concerning Riemann-Liouville and Erdélyi-Kober fractional integral operators can be obtained by putting β = α and β = 0 , respectively, in (3.3).

Theorem 4 Suppose that α , α , β , β , γ , z , ρ C , ( γ ) > 0 , μ > 0 , λ j + ( j = 1 , , s ), and
( ρ ) + μ max 1 i n ( ( a i ) 1 A i ) < 1 + min { ( β ) , ( γ α α k ) , ( α β + γ ) } ,
here k = [ ( γ ) ] + 1 . Further suppose that the constants a j , b j , a j i , b j i C ,
A j , B j , A j i , B j i R + ( i = 1 , , p i ; j = 1 , , q i ) ,
and τ i > 0 for i = 1 , r ¯ . If the conditions given in (1.19)-(1.22) are satisfied, the following relation holds true:
{ D α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × p i , q i , τ i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ] ) } ( x ) = ( 1 ) [ ( γ ) ] + 1 x ρ + α + α γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × p i + 3 , q i + 3 , τ i ; r m + 3 , n [ z x μ | ( a j , A j ) 1 , n , ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 α + β ρ j = 1 s λ j k j , μ ) , ( 1 α α + γ ρ j = 1 s λ j k j , μ ) , ( 1 + β ρ j = 1 s λ j k j , μ ) , ( 1 α α β + γ ρ j = 1 s λ j k j , μ ) , , [ τ j ( a j , A j ) ] n + 1 , p i ( 1 α β + γ ρ j = 1 s λ j k j , μ ) , ( b j , B j ) , , [ τ j ( b j , B j ) ] m + 1 , q i ] .
(3.4)
Proof In order to prove (3.4), first expressing the general class of multivariable polynomials occurring on its left-hand side as a series given by (1.25), replacing the -function in terms of Mellin-Barnes contour integral with the help of (1.17), and interchanging the order of summations, we obtain the following form (say I):
I = k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! × { 1 2 π i L Ω p i , q i , τ i ; r m , n z ξ ( D α , α , β , β , γ t ρ + j = 1 s λ j k j μ ξ 1 ) ( x ) d ξ } = ( d d x ) k k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! × 1 2 π i L x ρ + α + α γ + k + j = 1 s λ j k j 1 ( z x μ ) ξ × j = 1 m Γ ( b j + B j ξ ) j = 1 n Γ ( 1 a j A j ξ ) i = 1 r τ i j = m + 1 q i Γ ( 1 b j i B j i ξ ) j = n + 1 p i Γ ( a j i + A j i ξ ) × Γ ( 1 α α + γ k ρ j = 1 s λ j k j + μ ξ ) Γ ( 1 ρ j = 1 s λ j k j + μ ξ ) × Γ ( 1 α β + γ ρ j = 1 s λ j k j + μ ξ ) Γ ( 1 + β ρ j = 1 s λ j k j + μ ξ ) Γ ( 1 α α β + γ ρ j = 1 s λ j k j + μ ξ ) Γ ( 1 α + β ρ j = 1 s λ j k j + μ ξ ) d ξ .

Here k : = [ ( γ ) ] + 1 , and by using (3.2) in the above expression, and re-interpreting the Mellin-Barnes contour integral in terms of the -function, we are led to the right-hand side of (3.4). This completes the proof of Theorem 4. □

In view of the relation (1.14), we obtain a (presumably) new result concerning Saigo fractional derivative operator [16] asserted by the following corollary.

Corollary 4 Let α , β , γ , ρ , z C , ( α ) > 0 , μ > 0 , λ j + ( j = 1 , , s ), and
( ρ ) + μ max 1 i n ( ( a i ) 1 A i ) < 1 + min { 0 , [ ( α ) ] ( β ) 1 , ( α + γ ) } .
Then the following relation holds true:
{ D α , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × p i , q i , τ i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) 1 , m , , [ τ j ( b j , B j ) ] m + 1 , q i ] ) } ( x ) = ( 1 ) [ ( α ) ] + 1 x ρ + β 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × p i + 2 , q i + 2 , τ i ; r m + 2 , n [ z x μ | ( a j , A j ) 1 , n , ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 β ρ j = 1 s λ j k j , μ ) , ( 1 + α + γ ρ j = 1 s λ j k j , μ ) , ( 1 β + γ ρ j = 1 s λ j k j , μ ) , , [ τ j ( a j , A j ) ] n + 1 , p i ( b j , B j ) , , [ τ j ( b j , B j ) ] m + 1 , q i ] ,
(3.5)

where the conditions of existence of (3.5) follow easily from Theorem  4.

It is remarked in passing that the corresponding results concerning Riemann-Liouville and Erdélyi-Kober fractional derivative operators can be obtained by putting β = α and β = 0 , respectively, in (3.5).

4 Special cases and applications

Here we consider further interesting special cases of Theorem 1. Similarly we can present certain interesting special cases of Theorems 2-4, which are omitted.

(i) If we put τ i = 1 , i = 1 , r ¯ in Theorem 1 and take (1.23) into account, then the Aleph function reduces to the I-function as follows (see [29]):
{ I 0 + α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) × I p i , q i ; r m , n [ z t μ | ( a j , A j ) 1 , n , , ( a j , A j ) n + 1 , p i ( b j , B j ) 1 , m , , ( b j , B j ) m + 1 , q i ] ) } ( x ) = x ρ α α + γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × I p i + 3 , q i + 3 ; r m , n + 3 [ z x μ | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ + α + α + β γ j = 1 s λ j k j , μ ) , ( b j , B j ) 1 , m , ( 1 ρ + α + α γ j = 1 s λ j k j , μ ) , ( 1 ρ + α β j = 1 s λ j k j , μ ) , ( a j , A j ) 1 , n , , ( a j , A j ) n + 1 , p i ( 1 ρ + α + β γ j = 1 s λ j k j , μ ) , ( 1 ρ β j = 1 s λ j k j , μ ) , , ( b j , B j ) m + 1 , q i ] .
(4.1)
(ii) If we put τ i = 1 , i = 1 , r ¯ and set r = 1 in Theorem 1 and take (1.24) into account, then the Aleph function reduces to the H-function as follows (see [30]):
{ I 0 + α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) H p , q m , n [ z t μ | ( a p , A p ) ( b q , B q ) ] ) } ( x ) = x ρ α α + γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × H p + 3 , q + 3 m , n + 3 [ z x μ | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ + α + α + β γ j = 1 s λ j k j , μ ) , ( b q , B q ) , ( 1 ρ + α + α γ j = 1 s λ j k j , μ ) , ( 1 ρ + α β j = 1 s λ j k j , μ ) , ( a p , A p ) ( 1 ρ + α + β γ j = 1 s λ j k j , μ ) , ( 1 ρ β j = 1 s λ j k j , μ ) ] .
(4.2)
(iii) If we use a known relation between the Mittag-Leffler function E β , γ δ and the H-function (see Mathai et al. [[30], p.25, Eq. (1.137)]):
E β , γ δ ( z ) = 1 Γ ( δ ) H 1 , 2 1 , 1 [ z | ( 0 , 1 ) , ( 1 γ , β ) ( 1 δ , 1 ) ] ,
(4.3)
in (4.2), we obtain the following interesting formula:
{ I 0 + α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) E υ , η δ [ z t μ ] ) } ( x ) = x ρ α α + γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × 1 Γ ( δ ) H 4 , 5 1 , 4 [ z x μ | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ + α + α + β γ j = 1 s λ j k j , μ ) , ( 0 , 1 ) , ( 1 η , υ ) , ( 1 ρ + α + α γ j = 1 s λ j k j , μ ) , ( 1 ρ + α β j = 1 s λ j k j , μ ) , ( 1 δ , 1 ) ( 1 ρ + α + β γ j = 1 s λ j k j , μ ) , ( 1 ρ β j = 1 s λ j k j , μ ) ] .
(4.4)
(iv) If we use a known relation involving the generalized Wright hypergeometric function ψ q p (see [[30], p.25, Eq. (1.140)] in (4.2), we obtain the following interesting formula:
{ I 0 + α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) p ψ q [ z t μ | ( a p , A p ) ( b q , B q ) ] ) } ( x ) = x ρ α α + γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × H p + 3 , q + 4 1 , p + 3 [ z x μ | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ + α + α + β γ j = 1 s λ j k j , μ ) , ( 0 , 1 ) , ( 1 b q , B q ) , ( 1 ρ + α + α γ j = 1 s λ j k j , μ ) , ( 1 ρ + α β j = 1 s λ j k j , μ ) , ( 1 a p , A p ) ( 1 ρ + α + β γ j = 1 s λ j k j , μ ) , ( 1 ρ β j = 1 s λ j k j , μ ) ] .
(4.5)
(v) If we use the following known relation between the H-function and the generalized Bessel-Maitland function J v , λ μ ( z ) (see Mathai et al. [[30], p.25, Eq. (1.139)]):
H 1 , 3 1 , 1 [ z 2 4 | ( λ + v / 2 , 1 ) ( λ + v / 2 , 1 ) , ( v / 2 , 1 ) , ( μ ( λ + v / 2 ) λ v , μ ) ] = J v , λ μ ( z )
(4.6)
in (4.2), we get the following interesting formula:
{ I 0 + α , α , β , β , γ ( t ρ 1 S L h 1 , , h s ( y 1 t λ 1 , , y s t λ s ) J v , λ η ( z t μ ) ) } ( x ) = x ρ α α + γ 1 k 1 , , k s = 0 h 1 k 1 + + h s k s L ( L ) h 1 k 1 + + h s k s A ( L ; k 1 , , k s ) y 1 k 1 k 1 ! y s k s k s ! x j = 1 s λ j k j × H 4 , 6 1 , 4 [ ( z x μ ) 2 4 | ( 1 ρ j = 1 s λ j k j , μ ) , ( 1 ρ + α + α + β γ j = 1 s λ j k j , μ ) , ( λ + v / 2 , 1 ) , ( v / 2 , 1 ) , ( η ( λ + v / 2 ) λ v , η ) , ( 1 ρ β j = 1 s λ j k j , μ ) , ( 1 ρ + α β j = 1 s λ j k j , μ ) , ( λ + v / 2 , 1 ) ( 1 ρ + α + α γ j = 1 s λ j k j , μ ) , ( 1 ρ + α + β γ j = 1 s λ j k j , μ ) ] .
(4.7)

It is noted that many other relations involving some known special functions can be obtained as special cases of (4.2).

(vi) If we set a general class of multivariable polynomials S L h 1 , , h s to unity, then we easily get the results given by Ram and Kumar [19].

(vii) Further, if we set a general class of multivariable polynomials S L h 1 , , h s to unity, and reduce the -function to Fox’s H-function, then we can easily obtain the known results given by Saxena and Saigo [23].

5 Conclusion

In the present paper, we have given the four theorems of generalized fractional integral and derivative operators given by Saigo-Maeda. The theorems have been developed in terms of the product of -function and a general class of multivariable polynomials in a compact and elegant form with the help of Saigo-Maeda power function formulas. Most of the given results have been put in a compact form, avoiding the occurrence of infinite series and thus making them useful in applications.

In view of the generality of the -function, on specializing the various parameters, we can obtain from our results, several results involving a remarkably wide variety of useful functions, which are expressible in terms of the H-function, the I-function, the G-function of one variable and their various special cases. Secondly, on suitably specializing the various parameters of the general class of multivariable variable polynomials, our results can be reduced to a large number of fractional calculus results involving the general class of polynomials, Jacobi polynomials, Legendre polynomials, Hermite polynomials, Bessel polynomials, Gould-Hopper polynomials, and their various particular cases. Thus, the results presented in this paper would at once yield a very large number of results involving a large variety of special functions occurring in the problems of science, engineering, and mathematical physics etc.

Declarations

Acknowledgements

The authors would like to express their deep gratitude for the reviewers’ helpful comments. One of the authors (Dinesh Kumar) is grateful to NBHM (National Board of Higher Mathematics) for granting a Post-Doctoral Fellowship. This research was, in part, supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology of the Republic of Korea (Grant No. 2010-0011005). This work was supported by Dongguk University Research Fund of 2014.

Authors’ Affiliations

(1)
Department of Mathematics, Dongguk University
(2)
Department of Mathematics and Statistics, Jai Narayan Vyas University

References

  1. Agarwal P, Purohit SD: The unified pathway fractional integral formulae. J. Fract. Calc. Appl. 2013,4(9):1–8.Google Scholar
  2. Choi J, Agarwal P: Some new Saigo type fractional integral inequalities and their q -analogues. Abstr. Appl. Anal. 2014., 2014: Article ID 579260Google Scholar
  3. Choi J, Agarwal P: Certain fractional integral inequalities involving hypergeometric operators. East Asian Math. J. 2014, 30: 283–291. 10.7858/eamj.2014.018View ArticleMATHGoogle Scholar
  4. Choi J, Agarwal P: Certain new pathway type fractional integral inequalities. Honam Math. J. 2014, 36: 437–447.MathSciNetMATHGoogle Scholar
  5. Choi J, Agarwal P: Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions. Abstr. Appl. Anal. 2014., 2014: Article ID 735946Google Scholar
  6. Kumar D, Daiya J:Generalized fractional differentiation of the H ¯ -function involving general class of polynomials. Int. J. Pure Appl. Sci. Technol. 2013,16(1):42–53.Google Scholar
  7. Srivastava HM, Agarwal P: Certain fractional integral operators and the generalized incomplete hypergeometric functions. Appl. Appl. Math. 2013,8(2):333–345.MathSciNetMATHGoogle Scholar
  8. Yang AM, Zhang YZ, Cattani C, Xie GN, Rashidi MM, Zhou YJ, Yang XJ: Application of local fractional series expansion method to solve Klein-Gordon equations on Cantor sets. Abstr. Appl. Anal. 2014., 2014: Article ID 37274Google Scholar
  9. Love ER: Some integral equations involving hypergeometric functions. Proc. Edinb. Math. Soc. 1967,15(3):169–198. 10.1017/S0013091500011706MathSciNetView ArticleMATHGoogle Scholar
  10. Srivastava HM, Saxena RK: Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118: 1–52. 10.1016/S0096-3003(99)00208-8MathSciNetView ArticleMATHGoogle Scholar
  11. Debnath L, Bhatta D: Integral Transforms and Their Applications. Chapman & Hall/CRC, Boca Raton; 2006.View ArticleMATHGoogle Scholar
  12. Saxena RK, Daiya J, Kumar D:Fractional integration of the H ¯ -function and a general class of polynomials via pathway operator. J. Indian Acad. Math. 2013,35(2):261–274.MATHGoogle Scholar
  13. Saxena RK, Ram J, Chandak S, Kalla SL: Unified fractional integral formulae for the Fox-Wright generalized hypergeometric function. Kuwait J. Sci. Eng. 2008,35(1A):1–20.MathSciNetMATHGoogle Scholar
  14. Saxena RK, Ram J, Kumar D: Generalized fractional differentiation for Saigo operators involving Aleph-function. J. Indian Acad. Math. 2012,34(1):109–115.MATHGoogle Scholar
  15. Saxena RK, Ram J, Kumar D:Generalized fractional differentiation of the Aleph-function associated with the Appell function F 3 . Acta Cienc. Indica 2012,38(4):781–792.Google Scholar
  16. Saigo M: A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Educ. Kyushu Univ. 1978, 11: 135–143.MathSciNetMATHGoogle Scholar
  17. Samko SG, Kilbas AA, Marichev OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon; 1993.MATHGoogle Scholar
  18. Miller KS, Ross B: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York; 1993.MATHGoogle Scholar
  19. Ram J, Kumar D: Generalized fractional integration of the -function. J. Rajasthan Acad. Phys. Sci. 2011,10(4):373–382.MathSciNetGoogle Scholar
  20. Saigo M, Maeda N: More generalization of fractional calculus. Transform Methods and Special Functions 1996, 386–400. Varna, BulgariaGoogle Scholar
  21. Srivastava HM, Karlsson PW: Multiple Gaussian Hypergeometric Series. Ellis Horwood, Chichester; 1985.MATHGoogle Scholar
  22. Srivastava HM, Choi J: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam; 2012.MATHGoogle Scholar
  23. Saxena RK, Saigo M: Generalized fractional calculus of the H -function associated with the Appell function F 3 . J. Fract. Calc. 2001, 19: 89–104.MathSciNetMATHGoogle Scholar
  24. Saxena RK, Pogány TK: On fractional integration formulae for Aleph functions. Appl. Math. Comput. 2011, 218: 985–990. 10.1016/j.amc.2011.03.026MathSciNetView ArticleMATHGoogle Scholar
  25. Saxena RK, Pogány TK: Mathieu-type series for the -function occurring in Fokker-Planck equation. Eur. J. Pure Appl. Math. 2010,3(6):980–988.MathSciNetMATHGoogle Scholar
  26. Saxena RK, Ram J, Kumar D: On the two-dimensional Saigo-Maeda fractional calculus associated with two-dimensional Aleph transform. Matematiche 2013, 68: 267–281.MathSciNetMATHGoogle Scholar
  27. Saxena RK, Ram J, Kumar D:Generalized fractional integration of the product of two -functions associated with the Appell function F 3 . ROMAI J. 2013,9(1):147–158.MathSciNetMATHGoogle Scholar
  28. Saxena RK, Ram J, Kumar D: Generalized fractional integral of the product of two Aleph-functions. Appl. Appl. Math. 2013,8(2):631–646.MathSciNetMATHGoogle Scholar
  29. Saxena VP: Formal solution of certain new pair of dual integral equations involving H -functions. Proc. Nat. Acad. Sci. India Sect. A 1982, 51: 366–375.MathSciNetMATHGoogle Scholar
  30. Mathai AM, Saxena RK, Haubold HJ: The H-Function: Theory and Applications. Springer, New York; 2010.View ArticleMATHGoogle Scholar
  31. Srivastava HM, Garg M: Some integrals involving a general class of polynomials and the multivariable H -function. Rev. Roum. Phys. 1987, 32: 685–692.MathSciNetMATHGoogle Scholar
  32. Srivastava HM: A contour integral involving Fox’s H -function. Indian J. Math. 1972, 14: 1–6.MathSciNetMATHGoogle Scholar
  33. Srivastava HM, Saxena RK, Ram J: Some multidimensional fractional integral operations involving a general class of polynomials. J. Math. Anal. Appl. 1995, 193: 373–389. 10.1006/jmaa.1995.1241MathSciNetView ArticleMATHGoogle Scholar

Copyright

© Choi and Kumar; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.