# Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces

## Abstract

Let X be a non-empty set. We say that an element $x\in X$ is a φ-fixed point of T, where $\phi :X\to \left[0,\mathrm{\infty }\right)$ and $T:X\to X$, if x is a fixed point of T and $\phi \left(x\right)=0$. In this paper, we establish some existence results of φ-fixed points for various classes of operators in the case, where X is endowed with a metric d. The obtained results are used to deduce some fixed point theorems in the case where X is endowed with a partial metric p.

MSC:54H25, 47H10.

## 1 Introduction and preliminaries

In 1994, Matthews [1] introduced the concept of partial metric spaces as a part of the study of denotational semantics of dataflow networks and showed that the Banach contraction principle can be generalized to the partial metric context for applications in program verification.

We start by recalling some basic definitions and properties of partial metric spaces (see [1, 2] for more details).

A partial metric on a non-empty set X is a function $p:X\to X\to \left[0,\mathrm{\infty }\right)$ such that for all $x,y,z\in X$, we have

• (P1) $p\left(x,x\right)=p\left(y,y\right)=p\left(x,y\right)?x=y$;

• (P2) $p\left(x,x\right)=p\left(x,y\right)$;

• (P3) $p\left(x,y\right)=p\left(y,x\right)$;

• (P4) $p\left(x,y\right)=p\left(x,z\right)+p\left(z,y\right)-p\left(z,z\right)$.

A partial metric space is a pair $\left(X,p\right)$ such that X is a non-empty set and p is a partial metric on X. It is clear that, if $p\left(x,y\right)=0$, then from (P1) and (P2), $x=y$; but if $x=y$, $p\left(x,y\right)$ may not be 0. A basic example of a partial metric space is the pair $\left(\left[0,\mathrm{\infty }\right),p\right)$, where $p\left(x,y\right)=max\left\{x,y\right\}$. Other examples of partial metric spaces which are interesting from a computational point of view may be found in [1].

Each partial metric p on X generates a ${T}_{0}$ topology ${\tau }_{p}$ on X which has as a base the family of open p-balls $\left\{{B}_{p}\left(x,\epsilon \right):x\in X,\epsilon >0\right\}$, where

${B}_{p}\left(x,\epsilon \right):=\left\{y\in X:p\left(x,y\right)

Let $\left(X,p\right)$ be a partial metric space. A sequence $\left\{{x}_{n}\right\}\subset X$ converges to some $x\in X$ with respect to p if and only if

$\underset{n\to \mathrm{\infty }}{lim}p\left({x}_{n},x\right)=p\left(x,x\right).$

A sequence $\left\{{x}_{n}\right\}\subset X$ is said to be a Cauchy sequence if and only if ${lim}_{m,n\to \mathrm{\infty }}p\left({x}_{n},{x}_{m}\right)$ exists and is finite. The partial metric space $\left(X,p\right)$ is said to be complete if and only if every Cauchy sequence $\left\{{x}_{n}\right\}$ in X converges to some $x\in X$ such that ${lim}_{n,m\to \mathrm{\infty }}p\left({x}_{n},{x}_{m}\right)=p\left(x,x\right)$.

If p is a partial metric on X, then the function ${d}_{p}:X\to X\to \left[0,\mathrm{\infty }\right)$ defined by

${d}_{p}\left(x,y\right)=2p\left(x,y\right)-p\left(x,x\right)-p\left(y,y\right),\phantom{\rule{1em}{0ex}}\left(x,y\right)\in {X}^{2}$
(1)

is a metric on X.

Lemma 1.1 Let $\left(X,p\right)$ be a partial metric space. Then

1. (i)

$\left\{{x}_{n}\right\}$ is a Cauchy sequence in $\left(X,p\right)$ if and only if $\left\{{x}_{n}\right\}$ is a Cauchy sequence in the metric space $\left(X,{d}_{p}\right)$;

2. (ii)

the partial metric space $\left(X,p\right)$ is complete if and only if the metric space $\left(X,{d}_{p}\right)$ is complete.

Recently, many works on fixed point theory in the partial metric context have been published. For more details, we refer to [222]. On the other hand, Haghi et al. [10] observed that some fixed point theorems for certain classes of operators can be deuced easily from the same theorems in metric spaces. The idea presented in [10] is interesting, however it cannot be applied for a large class of operators, as, for example, in the case of an implicit contraction.

In [23], Rus presented three interesting open problems in the context of a complete partial metric space $\left(X,p\right)$.

Problem 1. If $T:\left(X,p\right)\to \left(X,p\right)$ is an operator satisfying a certain contractive condition with respect to p, which condition satisfies T with respect to the metric ${d}_{p}$ defined by (1)?

Problem 2. The problem is to give fixed point theorems for these new classes of operators on a metric space.

Problem 3. Use the results for the above problems to give fixed point theorems in a partial metric space.

In [18], Samet answered to the above problems by considering Boyd-Wong contraction mappings. Other types of contractions were considered in [11, 19].

In this paper, we introduce the concept of a φ-fixed point, and we establish some φ-fixed point results for various classes of operators defined on a metric space $\left(X,d\right)$. The obtained results are then used to obtain some fixed point theorems, in the case where X is endowed with a partial metric p.

## 2 φ-Fixed point results

Let $\left(X,d\right)$ be a metric space, $\phi :X\to \left[0,\mathrm{\infty }\right)$ be a given function, and $T:X\to X$ be an operator.

We denote by

${T}^{0}:={1}_{X},\phantom{\rule{2em}{0ex}}{T}^{1}:=T,\phantom{\rule{2em}{0ex}}{T}^{n+1}:=T\circ {T}^{n},\phantom{\rule{1em}{0ex}}n\in \mathbb{N}$

the iterate operators of T. The set of all fixed points of the operator T will be denoted by

${F}_{T}:=\left\{x\in X:Tx=x\right\}.$

The set of all zeros of the function φ will be denoted by

${Z}_{\phi }:=\left\{x\in X:\phi \left(x\right)=0\right\}.$

We introduce the notion of φ-fixed point as follows.

Definition 2.1 An element $z\in X$ is said to be a φ-fixed point of the operator T if and only if $z\in {F}_{T}\cap {Z}_{\phi }$.

Definition 2.2 We say that the operator T is a φ-Picard operator if and only if

1. (i)

${F}_{T}\cap {Z}_{\phi }=\left\{z\right\}$;

2. (ii)

${T}^{n}x\to z$ as $n\to \mathrm{\infty }$, for each $x\in X$.

Definition 2.3 We say that the operator T is a weakly φ-Picard operator if and only if

1. (i)

${F}_{T}\cap {Z}_{\phi }\ne \mathrm{\varnothing }$;

2. (ii)

the sequence $\left\{{T}^{n}x\right\}$ converges for each $x\in X$, and the limit is a φ-fixed point of T.

We denote by the set of functions $F:{\left[0,\mathrm{\infty }\right)}^{3}\to \left[0,\mathrm{\infty }\right)$ satisfying the following conditions:

• $max\left\{a,b\right\}\le F\left(a,b,c\right)$, for all $a,b,c\in \left[0,\mathrm{\infty }\right)$;

• $F\left(0,0,0\right)=0$;

• F is continuous.

As examples, the following functions belong to :

1. (i)

$F\left(a,b,c\right)=a+b+c$;

2. (ii)

$F\left(a,b,c\right)=max\left\{a,b\right\}+c$;

3. (iii)

$F\left(a,b,c\right)=a+{a}^{2}+b+c$.

In this section, we study the existence and uniqueness of φ-fixed points for various classes of operators.

### 2.1 $\left(F,\phi \right)$-Contraction mappings

Definition 2.4 Let $\left(X,d\right)$ be a metric space, $\phi :X\to \left[0,\mathrm{\infty }\right)$ be a given function, and $F\in \mathcal{F}$. We say that the operator $T:X\to X$ is an $\left(F,\phi \right)$-contraction with respect to the metric d if and only if

$F\left(d\left(Tx,Ty\right),\phi \left(Tx\right),\phi \left(Ty\right)\right)\le kF\left(d\left(x,y\right),\phi \left(x\right),\phi \left(y\right)\right),\phantom{\rule{1em}{0ex}}\left(x,y\right)\in {X}^{2},$
(2)

for some constant $k\in \left(0,1\right)$.

Our first main result is the following.

Theorem 2.1 Let $\left(X,d\right)$ be a complete metric space, $\phi :X\to \left[0,\mathrm{\infty }\right)$ be a given function, and $F\in \mathcal{F}$. Suppose that the following conditions hold:

(H1) φ is lower semi-continuous;

(H2) $T:X\to X$ is an $\left(F,\phi \right)$-contraction with respect to the metric d.

Then

1. (i)

${F}_{T}\subseteq {Z}_{\phi }$;

2. (ii)

T is a φ-Picard operator;

3. (iii)

for all $x\in X$, for all $n\in \mathbb{N}$, we have

$d\left({T}^{n}x,z\right)\le \frac{{k}^{n}}{1-k}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),$

where $\left\{z\right\}={F}_{T}\cap {Z}_{\phi }={F}_{T}$.

Proof Suppose that $\xi \in X$ is a fixed point of T. Applying (2) with $x=y=\xi$, we obtain

$F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)\le kF\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right),$

which implies (since $k\in \left(0,1\right)$) that

$F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)=0.$
(3)

On the other hand, from (F1), we have

$\phi \left(\xi \right)\le F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right).$
(4)

Using (3) and (4), we obtain $\phi \left(\xi \right)=0$, which proves (i).

Let $x\in X$ be an arbitrary point. Using (2), we have

$\begin{array}{c}F\left(d\left({T}^{n+1}x,{T}^{n}x\right),\phi \left({T}^{n+1}x\right),\phi \left({T}^{n}x\right)\right)\hfill \\ \phantom{\rule{1em}{0ex}}\le kF\left(d\left({T}^{n}x,{T}^{n-1}x\right),\phi \left({T}^{n}x\right),\phi \left({T}^{n-1}x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}.\hfill \end{array}$

By induction, we obtain easily

$F\left(d\left({T}^{n+1}x,{T}^{n}x\right),\phi \left({T}^{n+1}x\right),\phi \left({T}^{n}x\right)\right)\le {k}^{n}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}\cup \left\{0\right\},$

which implies by property (F1) that

$max\left\{d\left({T}^{n+1}x,{T}^{n}x\right),\phi \left({T}^{n+1}x\right)\right\}\le {k}^{n}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}\cup \left\{0\right\}.$
(5)

From (5), we have

$d\left({T}^{n+1}x,{T}^{n}x\right)\le {k}^{n}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}\cup \left\{0\right\},$

which implies (since $k\in \left(0,1\right)$) that $\left\{{T}^{n}x\right\}$ is a Cauchy sequence. Since $\left(X,d\right)$ is complete, there is some $z\in X$ such that

$\underset{n\to \mathrm{\infty }}{lim}d\left({T}^{n}x,z\right)=0.$
(6)

Now, we shall prove that z is a φ-fixed point of T. Observe that from (5), we have

$\underset{n\to \mathrm{\infty }}{lim}\phi \left({T}^{n+1}x\right)=0.$
(7)

Since φ is lower semi-continuous, from (6) and (7), we obtain

$\phi \left(z\right)=0.$
(8)

Using (2), we have

$F\left(d\left({T}^{n+1}x,Tz\right),\phi \left({T}^{n+1}x\right),\phi \left(Tz\right)\right)\le kF\left(d\left({T}^{n}x,z\right),\phi \left({T}^{n}x\right),\phi \left(z\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}\cup \left\{0\right\}.$

Letting $n\to \mathrm{\infty }$ in the above inequality, using (6), (7), (8), (F2), and the continuity of F, we get

$F\left(d\left(z,Tz\right),0,\phi \left(Tz\right)\right)\le kF\left(0,0,0\right)=0,$

which implies from condition (F1) that

$d\left(z,Tz\right)=0.$
(9)

It follows from (8) and (9) that z is a φ-fixed point of T.

Suppose now that ${z}^{\prime }\in X$ is another φ-fixed point of T. Applying (2) with $x=z$ and $y={z}^{\prime }$, we obtain

$F\left(d\left(z,{z}^{\prime }\right),0,0\right)\le kF\left(d\left(z,{z}^{\prime }\right),0,0\right),$

which implies that $d\left(z,{z}^{\prime }\right)=0$, that is, $z={z}^{\prime }$. So we get (ii).

Finally, using (5) and the triangle inequality, we get

$d\left({T}^{n}x,{T}^{n+m}x\right)\le \frac{{k}^{n}\left(1-{k}^{m}\right)}{1-k}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n,m\in \mathbb{N}\cup \left\{0\right\}.$

Letting $m\to \mathrm{\infty }$ in the above inequality, from (6), we obtain

$d\left({T}^{n}x,z\right)\le \frac{{k}^{n}}{1-k}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}\cup \left\{0\right\},$

which proves (iii). □

### 2.2 Graphic $\left(F,\phi \right)$-contraction mappings

Definition 2.5 Let $\left(X,d\right)$ be a metric space, $\phi :X\to \left[0,\mathrm{\infty }\right)$ be a given function, and $F\in \mathcal{F}$. We say that the operator $T:X\to X$ is a graphic $\left(F,\phi \right)$-contraction with respect to the metric d if and only if

$F\left(d\left({T}^{2}x,Tx\right),\phi \left({T}^{2}x\right),\phi \left(Tx\right)\right)\le kF\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}x\in X,$
(10)

for some constant $k\in \left(0,1\right)$.

Theorem 2.2 Let $\left(X,d\right)$ be a complete metric space, $\phi :X\to \left[0,\mathrm{\infty }\right)$ be a given function, and $F\in \mathcal{F}$. Suppose that the following conditions hold:

(H1) φ is lower semi-continuous;

(H2) $T:X\to X$ is a graphic $\left(F,\phi \right)$-contraction with respect to the metric d;

(H3) T is continuous.

Then

1. (i)

${F}_{T}\subseteq {Z}_{\phi }$;

2. (ii)

T is a weakly φ-Picard operator;

3. (iii)

for all $x\in X$, if ${T}^{n}x\to z$ as $n\to \mathrm{\infty }$, then

$d\left({T}^{n}x,z\right)\le \frac{{k}^{n}}{1-k}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}.$

Proof Suppose that $\xi \in X$ is a fixed point of T. Applying (10) with $x=\xi$, we obtain

$F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)\le kF\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right),$

which implies (since $k\in \left(0,1\right)$) that

$F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)=0.$
(11)

On the other hand, from (F1), we have

$\phi \left(\xi \right)\le F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right).$
(12)

Using (11) and (12), we obtain $\phi \left(\xi \right)=0$, which proves (i).

Let $x\in X$ be an arbitrary point. Using (10), we have

$\begin{array}{c}F\left(d\left({T}^{n+1}x,{T}^{n}x\right),\phi \left({T}^{n+1}x\right),\phi \left({T}^{n}x\right)\right)\hfill \\ \phantom{\rule{1em}{0ex}}\le kF\left(d\left({T}^{n}x,{T}^{n-1}x\right),\phi \left({T}^{n}x\right),\phi \left({T}^{n-1}x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}.\hfill \end{array}$

By induction, we obtain easily

$F\left(d\left({T}^{n+1}x,{T}^{n}x\right),\phi \left({T}^{n+1}x\right),\phi \left({T}^{n}x\right)\right)\le {k}^{n}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}\cup \left\{0\right\},$

which implies by property (F1) that

$max\left\{d\left({T}^{n+1}x,{T}^{n}x\right),\phi \left({T}^{n+1}x\right)\right\}\le {k}^{n}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}\cup \left\{0\right\}.$
(13)

From (13), we have

$d\left({T}^{n+1}x,{T}^{n}x\right)\le {k}^{n}F\left(d\left(Tx,x\right),\phi \left(Tx\right),\phi \left(x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}\cup \left\{0\right\},$

which implies that $\left\{{T}^{n}x\right\}$ is a Cauchy sequence. Since $\left(X,d\right)$ is complete, there is some $z\in X$ such that

$\underset{n\to \mathrm{\infty }}{lim}d\left({T}^{n}x,z\right)=0.$
(14)

Now, we shall prove that z is a φ-fixed point of T. Observe that from (13), we have

$\underset{n\to \mathrm{\infty }}{lim}\phi \left({T}^{n+1}x\right)=0.$
(15)

Since φ is lower semi-continuous, from (14) and (15), we obtain $\phi \left(z\right)=0$. On the other hand, using the continuity of T and (14), we get $z=Tz$. Then z is a φ-fixed point of T. So T is a weakly φ-Picard operator.

Finally, the proof of (iii) follows by using similar arguments as in the proof of (iii), Theorem 2.1. □

### 2.3 $\left(F,\phi \right)$-Weak contraction mappings

Definition 2.6 Let $\left(X,d\right)$ be a metric space, $\phi :X\to \left[0,\mathrm{\infty }\right)$ be a given function, and $F\in \mathcal{F}$. We say that the operator $T:X\to X$ is an $\left(F,\phi \right)$-weak contraction with respect to the metric d if and only if

$\begin{array}{rcl}F\left(d\left(Tx,Ty\right),\phi \left(Tx\right),\phi \left(Ty\right)\right)& \le & kF\left(d\left(x,y\right),\phi \left(x\right),\phi \left(y\right)\right)\\ +L\left(F\left(d\left(y,Tx\right),\phi \left(y\right),\phi \left(Tx\right)\right)-F\left(0,\phi \left(y\right),\phi \left(Tx\right)\right)\right),\end{array}$
(16)

for all $\left(x,y\right)\in {X}^{2}$, for some constants $k\in \left(0,1\right)$ and $L\ge 0$.

For this class of operators, we have the following result.

Theorem 2.3 Let $\left(X,d\right)$ be a complete metric space, $\phi :X\to \left[0,\mathrm{\infty }\right)$ be a given function, and $F\in \mathcal{F}$. Suppose that the following conditions hold:

(H1) φ is lower semi-continuous;

(H2) $T:X\to X$ is an $\left(F,\phi \right)$-weak contraction with respect to the metric d.

Then

1. (i)

${F}_{T}\subseteq {Z}_{\phi }$;

2. (ii)

T is a weakly φ-Picard operator;

3. (iii)

for all $x\in X$, if ${T}^{n}x\to z$ as $n\to \mathrm{\infty }$, then

$d\left({T}^{n}x,z\right)\le \frac{{k}^{n}}{1-k}F\left(d\left(x,Tx\right),\phi \left(x\right),\phi \left(Tx\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}.$

Proof Let $\xi \in X$ be a fixed point of T. Applying (16) with $x=y=\xi$, we get

$\begin{array}{rcl}F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)& \le & kF\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)\\ +L\left(F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)-F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)\right)\\ =& kF\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right),\end{array}$

which implies that $F\left(0,\phi \left(\xi \right),\phi \left(\xi \right)\right)=0$. Using property (F1), we obtain $\phi \left(\xi \right)=0$, that is, $\xi \in {Z}_{\phi }$. Then (i) is proved.

Let $x\in X$ be an arbitrary point. Applying (16), we obtain

$\begin{array}{c}F\left(d\left({T}^{n}x,{T}^{n+1}x\right),\phi \left({T}^{n}x\right),\phi \left({T}^{n+1}x\right)\right)\hfill \\ \phantom{\rule{1em}{0ex}}\le kF\left(d\left({T}^{n-1}x,{T}^{n}x\right),\phi \left({T}^{n-1}x\right),\phi \left({T}^{n}x\right)\right)\hfill \\ \phantom{\rule{2em}{0ex}}+L\left(F\left(0,\phi \left({T}^{n}x\right),\phi \left({T}^{n}x\right)\right)-F\left(0,\phi \left({T}^{n}x\right),\phi \left({T}^{n}x\right)\right)\right)\hfill \\ \phantom{\rule{1em}{0ex}}=kF\left(d\left({T}^{n-1}x,{T}^{n}x\right),\phi \left({T}^{n-1}x\right),\phi \left({T}^{n}x\right)\right),\phantom{\rule{1em}{0ex}}n\in \mathbb{N}.\hfill \end{array}$

By induction, we get

$F\left(d\left({T}^{n}x,{T}^{n+1}x\right),\phi \left({T}^{n}x\right),\phi \left({T}^{n+1}x\right)\right)\le {k}^{n}F\left(d\left(x,Tx\right),\phi \left(x\right),\phi \left(Tx\right)\right),\phantom{\rule{1em}{0ex}}n\ge 0.$

The rest of the proof follows using similar arguments to the proof of Theorem 2.2. □

## 3 Links with partial metric spaces

From the previous obtained results in metric spaces, we deduce in this section some fixed point theorems in partial metric spaces; see also [21].

We start by the Matthews fixed point theorem [1].

Corollary 3.1 Let $\left(X,p\right)$ be a complete partial metric space and let $T:X\to X$ be a mapping such that

$p\left(Tx,Ty\right)\le kp\left(x,y\right),\phantom{\rule{1em}{0ex}}\left(x,y\right)\in {X}^{2},$

for some constant $k\in \left(0,1\right)$. Then T has a unique fixed point $z\in X$. Moreover, we have $p\left(z,z\right)=0$.

Proof Consider the metric ${d}_{p}$ on X defined by (1) and the function $\phi :X\to \left[0,\mathrm{\infty }\right)$ defined by $\phi \left(x\right)=p\left(x,x\right)$. Applying Theorem 2.1 with $F\left(a,b,c\right)=a+b+c$, and using Lemma 1.1, we obtain the desired result. □

Similarly, from Theorem 2.2, we obtain the following result.

Corollary 3.2 Let $\left(X,p\right)$ be a complete partial metric space and let $T:X\to X$ be a mapping such that

$p\left({T}^{2}x,Tx\right)\le kp\left(Tx,x\right),\phantom{\rule{1em}{0ex}}x\in X,$

for some constant $k\in \left(0,1\right)$. Then T has a fixed point $z\in X$. Moreover, we have $p\left(z,z\right)=0$.

Finally, from Theorem 2.3, we obtain the following result.

Corollary 3.3 Let $\left(X,p\right)$ be a complete partial metric space and let $T:X\to X$ be a mapping such that

$p\left(Tx,Ty\right)\le kp\left(x,y\right)+L\left(p\left(y,Tx\right)-\frac{p\left(y,y\right)+p\left(Tx,Tx\right)}{2}\right),\phantom{\rule{1em}{0ex}}\left(x,y\right)\in {X}^{2},$

for some constants $k\in \left(0,1\right)$ and $L\ge 0$. Then T has a fixed point $z\in X$. Moreover, we have $p\left(z,z\right)=0$.

Observe that if p is a metric on X, we obtain from Corollary 3.3 the Berinde fixed point theorem for $\left(k,L\right)$-weak contractions [24].

## References

1. Matthews SG: Partial metric topology. Annals of the New York Academy of Sciences 728. Proceedings of the 8th Summer Conference on General Topology and Applications 1994, 183–197.

2. Oltra S, Valero O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36: 17–26.

3. Abdeljawad T, Karapinar E, Taş K: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 2012,63(3):716–719. 10.1016/j.camwa.2011.11.035

4. Altun I, Acar O: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol. Appl. 2012, 159: 2642–2648. 10.1016/j.topol.2012.04.004

5. Altun I, Erduran A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 508730

6. Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010,157(18):2778–2785. 10.1016/j.topol.2010.08.017

7. Argarwal RP, Alghamdi MA, Shahzad N: Fixed point theory for cyclic generalized contractions in partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 40

8. Aydi H, Abbas M, Vetro C: Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 2012, 159: 3234–3242. 10.1016/j.topol.2012.06.012

9. Ćirić L, Samet B, Aydi H, Vetro C: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218: 2398–2406. 10.1016/j.amc.2011.07.005

10. Haghi RH, Rezapour S, Shahzad N: Be careful on partial metric fixed point results. Topol. Appl. 2013,160(3):450–454. 10.1016/j.topol.2012.11.004

11. Jleli M, Karapinar E, Samet B: Further remarks on fixed point theorems in the context of partial metric spaces. Abstr. Appl. Anal. 2013., 2013: Article ID 715456 10.1155/2013/715456

12. Karapinar E: Weak ϕ -contraction on partial metric spaces and existence of fixed points in partially ordered sets. Math. Æterna 2011, 1: 237–244.

13. Karapinar E, Erhan IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24: 1894–1899. 10.1016/j.aml.2011.05.013

14. Kumam P, Vetro C, Vetro F: Fixed points for weak α - ψ -contractions in partial metric spaces. Abstr. Appl. Anal. 2013., 2013: Article ID 986028 10.1155/2013/986028

15. Paesano D, Vetro P: Suzuki’s type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces. Topol. Appl. 2012,159(3):911–920. 10.1016/j.topol.2011.12.008

16. Romaguera S: Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces. Appl. Gen. Topol. 2011, 12: 213–220.

17. Romaguera S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 2012,159(1):194–199. 10.1016/j.topol.2011.08.026

18. Samet B: Existence and uniqueness of solutions to a system of functional equations and applications to partial metric spaces. Fixed Point Theory 2013,14(2):473–481.

19. Samet B, Vetro C, Vetro F: From metric spaces to partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 5 10.1186/1687-1812-2013-5

20. Shahzad N, Valero O: On 0-complete partial metric spaces and quantitative fixed point techniques in denotational semantics. Abstr. Appl. Anal. 2013., 2013: Article ID 985095

21. Vetro C, Vetro F: Metric or partial metric spaces endowed with a finite number of graphs: a tool to obtain fixed point results. Topol. Appl. 2014, 164: 125–137.

22. Vetro F, Radenović S: Nonlinear ψ -quasi-contractions of Ćirić-type in partial metric spaces. Appl. Math. Comput. 2012, 219: 1594–1600. 10.1016/j.amc.2012.07.061

23. Rus IA: Fixed point theory in partial metric spaces. An. Univ. Vest. Timiş., Ser. Mat.-Inform. 2008,46(2):141–160.

24. Berinde V: Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004,9(1):43–53.

## Acknowledgements

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the International Research Group Project No. IRG14-04.

## Author information

Authors

### Corresponding author

Correspondence to Bessem Samet.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

## Rights and permissions

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

Jleli, M., Samet, B. & Vetro, C. Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces. J Inequal Appl 2014, 426 (2014). https://doi.org/10.1186/1029-242X-2014-426