Skip to main content

Weighted boundedness for Toeplitz type operators related to strongly singular integral operators

Abstract

In this paper, we show the sharp maximal function estimates for the Toeplitz type operators related to the strongly singular integral operators. As an application, we obtain the boundedness of the operators on weighted Lebesgue and Triebel-Lizorkin spaces.

MSC:42B20, 42B25.

1 Introduction and Preliminaries

As a development of singular integral operators [1, 2], their commutators have been well studied. In [35], the authors prove that the commutators generated by the singular integral operators and BMO functions are bounded on L p ( R n ) for 1<p<. Chanillo [6] proves a similar result when singular integral operators are replaced by the fractional integral operators. In [79], the boundedness for the commutators generated by the singular integral operators and Lipschitz functions on Triebel-Lizorkin and L p ( R n ) (1<p<) spaces are obtained. In [10, 11], the boundedness for the commutators generated by the singular integral operators and the weighted BMO and Lipschitz functions on L p ( R n ) (1<p<) spaces are obtained. In [12, 13], some Toeplitz type operators related to the singular integral operators and strongly singular integral operators are introduced, and the boundedness for the operators generated by BMO and Lipschitz functions is obtained. In this paper, we will study the Toeplitz type operators related to the strongly singular integral operator and the weighted Lipschitz functions.

First, let us introduce some notation. Throughout this paper, Q will denote a cube of R n with sides parallel to the axes. For any locally integrable function f, the sharp maximal function of f is defined by

M # (f)(x)= sup Q x 1 | Q | Q | f ( y ) f Q | dy,

where we write f Q = | Q | 1 Q f(x)dx. It is well known that [1, 2]

M # (f)(x) sup Q x inf c C 1 | Q | Q | f ( y ) c | dy.

Let

M(f)(x)= sup Q x 1 | Q | Q | f ( y ) | dy.

For η>0, set M η (f)(x)=M ( | f | η ) 1 / η (x).

For 0<η<1 and 1r<, set

M η , r (f)(x)= sup Q x ( 1 | Q | 1 r η / n Q | f ( y ) | r d y ) 1 / r .

The A p weight is defined by [1]

A p = { w L loc 1 ( R n ) : sup Q ( 1 | Q | Q w ( x ) d x ) ( 1 | Q | Q w ( x ) 1 / ( p 1 ) d x ) p 1 < } , 1 < p < ,

and

A 1 = { w L loc p ( R n ) : M ( w ) ( x ) C w ( x ) ,  a.e. } .

The A(p,q) weight is defined by [14], for 1<p,q<,

A(p,q)= { w > 0 : sup Q ( 1 | Q | Q w ( x ) q d x ) 1 / q ( 1 | Q | Q w ( x ) p / ( p 1 ) d x ) ( p 1 ) / p < } .

Given a non-negative weight function w, for 1p<, the weighted Lebesgue space L p (w) is the space of functions f such that

f L p ( w ) = ( R n | f ( x ) | p w ( x ) d x ) 1 / p <.

For β>0, p>1 and the non-negative weight function w, let F ˙ p β , (w) be the weighted homogeneous Triebel-Lizorkin space [9].

For 0<β<1 and the non-negative weight function w, the weighted Lipschitz space Lip β (w) is the space of functions b such that

b Lip β ( w ) = sup Q 1 w ( Q ) 1 + β / n Q | b ( y ) b Q | dy<.

Remark (1) For b Lip β (w), w A 1 and xQ, it is well known that

| b Q b 2 k Q | Ck b Lip β ( w ) w(x)w ( 2 k Q ) β / n .

(2) Let b Lip β (w) and w A 1 . By [15], we know that the spaces Lip β (w) coincide and the norms b Lip β ( w ) are equivalent with respect to different values of 1p.

Definition Let T:S S be a bounded linear operator. T is called a strongly singular integral operator if it satisfies the following conditions:

  1. (i)

    T extends to a bounded operator on L 2 ( R n );

  2. (ii)

    there exists a function K(x,y) continuous away from the diagonal on R n × R n such that

    | K ( x , y ) K ( x , z ) | + | K ( y , x ) K ( z , x ) | C | y z | δ | x z | n + δ / ε

    if 2 | y z | ε |xz| for some 0<δ1, 0<ε<1, and (Tf,g)= R n R n K(x,y)f(y)g(x)dydx for f,gS with disjoint support;

  3. (iii)

    for some (1ε)n/2β<n/2, T and T extend to a bounded operator from L q ( R n ) into L 2 ( R n ), where 1/q=1/2+β/n.

Let b be a locally integrable function on R n . The Toeplitz type operator related to T is defined by

T b = k = 1 m T k , 1 M b T k , 2 ,

where T k , 1 are strongly singular integral operators or ±I (the identity operator), T k , 2 are bounded linear operators on L p ( R n ) for 1<p<, k=1,,m, M b (f)=bf.

Note that the commutator [b,T](f)=bT(f)T(bf) is a particular case of the Toeplitz type operators T b . The Toeplitz type operators T b are non-trivial generalizations of the commutator. It is well known that commutators are of great interest in harmonic analysis and have been widely studied by many authors [4, 5]. In [1619], the boundedness of the strongly singular integral operator is obtained. In [20], a sharp function estimate of the strongly singular integral operator is obtained. In [21], the boundedness of the strongly singular integral operators and their commutators is obtained. In [13], the Toeplitz type operators related to the strongly singular integral operators are introduced, and the boundedness for the operators generated by BMO and Lipschitz functions is obtained. Our works are motivated by these papers. The main purpose of this paper is to prove sharp maximal inequalities for the Toeplitz type operators T b . As applications, we obtain the weighted L p -norm inequality and the Triebel-Lizorkin space boundedness for the Toeplitz type operators T b .

We need the following preliminary lemmas.

Lemma 1 ([16])

Let T be a strongly singular integral operator. Then T is bounded on L p (w) for w A p with 1<p<, and when ((1ε)n+2β)/2β<u2, 0<u/vδ, T is bounded from L u ( R n ) into L v ( R n ).

Lemma 2 ([15])

For any cube Q,b Lip β (w), 0<β<1, and w A 1 , we have

sup x Q | b ( x ) b Q | C b Lip β ( w ) w ( Q ) 1 + β / n | Q | 1 .

Lemma 3 ([9])

For 0<β<1, 1<p<, and w A , we have

f F ˙ p β , ( w ) sup Q 1 | Q | 1 + β / n Q | f ( x ) f Q | d x L p ( w ) sup Q inf c 1 | Q | 1 + β / n Q | f ( x ) c | d x L p ( w ) .

Lemma 4 ([1])

Let 0<p< and w 1 r < A r . Then, for any smooth function f for which the left-hand side is finite,

R n M(f) ( x ) p w(x)dxC R n M # (f) ( x ) p w(x)dx.

Lemma 5 ([14])

Suppose that 0<η<n, 1<s<p<n/η, 1/q=1/pη/n, and wA(p,q). Then

M η , s ( f ) L q ( w q ) C f L p ( w p ) .

2 Theorems and proofs

We shall prove the following theorems.

Theorem 1 Let w A 1 , 0<β<1, b Lip β (w), and ((1ε)n+2β)/2β<s<n/β. If g L p ( R n ) (1<p<) and T 1 (g)=0, then there exists a constant C>0 such that, for any f C 0 ( R n ) and x ˜ R n ,

M # ( T b ( f ) ) ( x ˜ )C b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M β , s ( T k , 2 ( f ) ) ( x ˜ ).

Theorem 2 Let w A 1 , 0<β<min(1,δ/ε), ((1ε)n+2β)/2β<s<n/β, and b Lip β (w). If g L p ( R n ) (1<p<) and T 1 (g)=0, then there exists a constant C>0 such that, for any f C 0 ( R n ) and x ˜ R n ,

sup Q x ˜ inf c R n 1 | Q | 1 + β / n Q | T b (f)(x)c|dxC b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M s ( T k , 2 ( f ) ) ( x ˜ ).

Theorem 3 Let w A 1 , 0<β<1, 1/q=1/pβ/n, and b Lip β (w). If g L p ( R n ) (1<p<) and T 1 (g)=0, then T b is bounded from L p (w) to L q ( w q / p q ( 1 + β / n ) ).

Theorem 4 Let w A 1 , 0<β<min(1,δ/ε), 1<p<n/mβ, 1/q=1/pβ/n, and b Lip β (w). If g L p ( R n ) (1<p<) and T 1 (g)=0, then T b is bounded from L p (w) to F ˙ q β , ( w q / p q ( 1 + β / n ) ).

Proof of Theorem 1 It suffices to prove for f C 0 ( R n ) and some constant C 0 that the following inequality holds:

1 | Q | Q | T b (f)(x) C 0 |dxC b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M β , s ( T k , 2 ( f ) ) ( x ˜ ).

Without loss of generality, we may assume T k , 1 are T (k=1,,m). Fix a cube Q=Q( x 0 ,d) and x ˜ Q. We have the following two cases.

Case 1. d>1. Write

T b (f)(x)= T b b Q (f)(x)= T ( b b Q ) χ 2 Q (f)(x)+ T ( b b Q ) χ ( 2 Q ) c (f)(x)= f 1 (x)+ f 2 (x).

Then

1 | Q | Q | T b (f)(x) f 2 ( x 0 )|dx 1 | Q | Q | f 1 ( x ) | dx+ 1 | Q | Q | f 2 ( x ) f 2 ( x 0 ) | dx= I 1 + I 2 .

For I 1 , by Hölder’s inequality, boundedness of T, and Lemma 2, we obtain

1 | Q | Q | T k , 1 M ( b b Q ) χ 2 Q T k , 2 ( f ) ( x ) | d x ( 1 | Q | R n | T k , 1 M ( b b Q ) χ 2 Q T k , 2 ( f ) ( x ) | s d x ) 1 / s C | Q | 1 / s ( 2 Q | M ( b b Q ) χ 2 Q T k , 2 ( f ) ( x ) | s d x ) 1 / s C | Q | 1 / s ( 2 Q ( | b ( x ) b Q | | T k , 2 ( f ) ( x ) | ) s d x ) 1 / s C | Q | 1 / s sup x 2 Q | b ( x ) b 2 Q | ( Q | T k , 2 ( f ) ( x ) | s d x ) 1 / s C | Q | 1 / s b Lip β ( w ) w ( 2 Q ) 1 + β / n | 2 Q | | Q | 1 / s β / n ( 1 | Q | 1 s β / n Q | T k , 2 ( f ) ( x ) | s d x ) 1 / s C b Lip β ( w ) ( w ( Q ) | Q | ) 1 + β / n M β , s ( T k , 2 ( f ) ) ( x ˜ ) C b Lip β ( w ) w ( x ˜ ) 1 + β / n M β , s ( T k , 2 ( f ) ) ( x ˜ ) ,

thus

I 1 k = 1 m 1 | Q | Q | T k , 1 M ( b b Q ) χ 2 Q T k , 2 ( f ) ( x ) | d x C b Lip β w ( x ˜ ) 1 + β / n k = 1 m M β , s ( T k , 2 ( f ) ) ( x ˜ ) .

For I 2 , by d>1 and 2 | x x 0 | ε |y x 0 | for xQ and y ( 2 Q ) c , we obtain, for xQ,

| T k , 1 M ( b b Q ) χ ( 2 Q ) c T k , 2 ( f ) ( x ) T k , 1 M ( b b Q ) χ ( 2 Q ) c T k , 2 ( f ) ( x 0 ) | ( 2 Q ) c | b ( y ) b 2 Q | | K ( x , y ) K ( x 0 , y ) | | T k , 2 ( f ) ( y ) | d y C ( 2 Q ) c | b ( y ) b 2 Q | | x 0 x | δ | x 0 y | n + δ / ε | T k , 2 ( f ) ( y ) | d y C d δ j = 1 2 j d | y x 0 | < 2 j + 1 d ( 2 j d ) n δ / ε | b ( y ) b 2 i + 1 Q | | T k , 2 ( f ) ( y ) | d y + C d δ j = 1 ( 2 j d ) n δ / ε | b 2 j + 1 Q b 2 Q | 2 j d | y x 0 | < 2 j + 1 d | T k , 2 ( f ) ( y ) | d y C b Lip β ( w ) d δ δ / ε × j = 1 2 j δ / ε ( w ( 2 j + 1 Q ) | 2 j + 1 Q | ) 1 + β / n ( 1 | 2 j + 1 Q | 1 s β / n 2 j + 1 Q | T k , 2 ( f ) ( y ) | s d y ) 1 / s + C b Lip β ( w ) d δ δ / ε × j = 1 j 2 j δ / ε w ( x ˜ ) ( w ( 2 j + 1 Q ) | 2 j + 1 Q | ) β / n ( 1 | 2 j + 1 Q | 1 s β / n 2 j + 1 Q | T k , 2 ( f ) ( y ) | s d y ) 1 / s C b Lip β ( w ) w ( x ˜ ) 1 + β / n M β , s ( T k , 2 ( f ) ) ( x ˜ ) ,

thus

I 2 1 | Q | Q k = 1 m | T k , 1 M ( b b Q ) χ ( 2 Q ) c T k , 2 ( f ) ( x ) T k , 1 M ( b b Q ) χ ( 2 Q ) c T k , 2 ( f ) ( x 0 ) | d x C b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M β , s ( T k , 2 ( f ) ) ( x ˜ ) .

Case 2. d1. Set Q ˜ =Q( x 0 , d ε ) and write

T b (f)(x)= T b b Q (f)(x)= T ( b b Q ) χ 2 Q ˜ (f)(x)+ T ( b b Q ) χ ( 2 Q ˜ ) c (f)(x)= f 1 (x)+ f 2 (x).

Then

1 | Q | Q | T b (f)(x) f 2 ( x 0 )|dx 1 | Q | Q | f 1 ( x ) | dx+ 1 | Q | Q | f 2 ( x ) f 2 ( x 0 ) | dx= I 3 + I 4 .

For I 3 , since ((1ε)n+2β)/2βs<, there exists q such that r<s, 0<r/qε, and T is bounded from L r ( R n ) into L q ( R n ). By using the same argument as in the proof of I 1 , we get

1 | Q | Q | T k , 1 M ( b b Q ) χ 2 Q ˜ T k , 2 ( f ) ( x ) | d x ( 1 | Q | R n | T k , 1 M ( b b Q ) χ 2 Q ˜ T k , 2 ( f ) ( x ) | q d x ) 1 / q C | Q | 1 / q ( R n | ( b ( x ) b 2 Q ) f 1 ( x ) | r d x ) 1 / r C | Q | 1 / q ( 2 Q ˜ ( | b ( x ) b 2 Q ˜ | r + | b 2 Q ˜ b 2 Q | r ) | T k , 2 ( f ) ( x ) | r d x ) 1 / r C b Lip β ( w ) | Q | 1 / q ( w ( Q ˜ ) 1 + β / n | Q ˜ | 1 + w ( x ˜ ) w ( Q ˜ ) β / n ) ( 2 Q ˜ | T k , 2 ( f ) ( x ) | r d x ) 1 / r C b Lip β ( w ) d n ( ε / r 1 / q ) w ( x ˜ ) ( w ( Q ˜ ) | Q ˜ | ) β / n ( 1 | Q ˜ | 1 s β / n Q ˜ | T k , 2 ( f ) ( x ) | s d x ) 1 / s C b Lip β ( w ) w ( x ˜ ) 1 + β / n M β , s ( T k , 2 ( f ) ) ( x ˜ ) ,

thus

I 3 k = 1 m 1 | Q | Q | T k , 1 M ( b b Q ) χ 2 Q ˜ T k , 2 ( f ) ( x ) | d x C b Lip β w ( x ˜ ) 1 + β / n k = 1 m M β , s ( T k , 2 ( f ) ) ( x ˜ ) .

For I 4 , by using the same argument as in the proof of I 2 , we get, for xQ,

| T k , 1 M ( b b Q ) χ ( 2 Q ˜ ) c T k , 2 ( f ) ( x ) T k , 1 M ( b b Q ) χ ( 2 Q ˜ ) c T k , 2 ( f ) ( x 0 ) | ( 2 Q ˜ ) c | b ( y ) b 2 Q | | K ( x , y ) K ( x 0 , y ) | | T k , 2 ( f ) ( y ) | d y C ( 2 Q ˜ ) c | b ( y ) b 2 Q | | f ( y ) | | x 0 x | δ | x 0 y | n + δ / ε d y C d δ j = 1 ( 2 j d ε ) n δ / ε 2 j + 1 Q ˜ | b ( y ) b 2 j + 1 Q ˜ | | T k , 2 ( f ) ( y ) | d y + C d δ j = 1 ( 2 j d ε ) n δ / ε | b 2 j + 1 Q ˜ b 2 Q ˜ | 2 j + 1 Q ˜ | T k , 2 ( f ) ( y ) | d y + C d δ j = 1 ( 2 j d ε ) n δ / ε | b 2 Q ˜ b 2 Q | 2 j + 1 Q ˜ | T k , 2 ( f ) ( y ) | d y C b Lip β ( w ) j = 1 2 j δ / ε ( w ( 2 j + 1 Q ˜ ) | 2 j + 1 Q ˜ | ) 1 + β / n ( 1 | 2 j + 1 Q ˜ | 1 s β / n 2 j + 1 Q | T k , 2 ( f ) ( y ) | s d y ) 1 / s + C b Lip β ( w ) × j = 1 j 2 j δ / ε w ( x ˜ ) ( w ( 2 j + 1 Q ˜ ) | 2 j + 1 Q ˜ | ) β / n ( 1 | 2 j + 1 Q ˜ | 1 s β / n 2 j + 1 Q ˜ | T k , 2 ( f ) ( y ) | s d y ) 1 / s + C b Lip β ( w ) j = 1 2 j δ / ε w ( x ˜ ) ( w ( Q ˜ ) | Q ˜ | ) β / n ( 1 | 2 j + 1 Q ˜ | 1 s β / n 2 j + 1 Q ˜ | T k , 2 ( f ) ( y ) | s d y ) 1 / s C b Lip β ( w ) w ( x ˜ ) 1 + β / n M β , s ( T k , 2 ( f ) ) ( x ˜ ) ,

thus

I 4 1 | Q | Q k = 1 m | T k , 1 M ( b b Q ) χ ( 2 Q ) c T k , 2 ( f ) ( x ) T k , 1 M ( b b Q ) χ ( 2 Q ) c T k , 2 ( f ) ( x 0 ) | d x C b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M β , s ( T k , 2 ( f ) ) ( x ˜ ) .

These complete the proof of Theorem 1. □

Proof of Theorem 2 It suffices to prove for f C 0 ( R n ) and some constant C 0 that the following inequality holds:

1 | Q | 1 + β / n Q | T b (f)(x) C 0 |dxC b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M s ( T k , 2 ( f ) ) ( x ˜ ).

Without loss of generality, we may assume T k , 1 are T (k=1,,m). Fix a cube Q=Q( x 0 ,d) and x ˜ Q. We have the following two cases.

Case 1. d>1. Similar to the proof of Theorem 1, we have

T b (f)(x)= T b b Q (f)(x)= T ( b b Q ) χ 2 Q (f)(x)+ T ( b b Q ) χ ( 2 Q ) c (f)(x)= f 1 (x)+ f 2 (x)

and

1 | Q | 1 + β / n Q | T b ( f ) ( x ) f 2 ( x 0 ) | d x 1 | Q | 1 + β / n Q | f 1 ( x ) | d x + 1 | Q | 1 + β / n Q | f 2 ( x ) f 2 ( x 0 ) | d x = I I 1 + I I 2 .

By using the same argument as in the proof of Theorem 1, we get

I I 1 k = 1 m C | Q | β / n sup x 2 Q | b ( x ) b 2 Q | | Q | 1 / s ( 2 Q | T k , 2 ( f ) ( x ) | s d x ) 1 / s I I 1 k = 1 m b Lip β ( w ) ( w ( Q ) | Q | ) 1 + β / n ( 1 | 2 Q | 2 Q | T k , 2 ( f ) ( x ) | s d x ) 1 / s I I 1 C b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M s ( T k , 2 ( f ) ) ( x ˜ ) , I I 2 1 | Q | 1 + β / n Q ( 2 Q ) c | b ( y ) b 2 Q | | K ( x , y ) K ( x 0 , y ) | | T k , 2 ( f ) ( y ) | d y d x I I 2 C | Q | 1 + β / n Q ( 2 Q ) c | b ( y ) b 2 Q | | x 0 x | δ | x 0 y | n + δ / ε | T k , 2 ( f ) ( y ) | d y d x I I 2 C d δ j = 1 ( 2 j d ) n δ / ε 2 j + 1 Q | b ( y ) b 2 j + 1 Q | | T k , 2 ( f ) ( y ) | d y I I 2 + C d δ j = 1 ( 2 j d ) n δ / ε | b 2 j + 1 Q b 2 Q | 2 j + 1 Q | T k , 2 ( f ) ( y ) | d y I I 2 C b Lip β ( w ) d δ δ / ε I I 2 × j = 1 2 j ( β δ / ε ) ( w ( 2 j + 1 Q ) | 2 j + 1 Q | ) 1 + β / n ( 1 | 2 j + 1 Q | 2 j + 1 Q | T k , 2 ( f ) ( y ) | s d y ) 1 / s I I 2 + C b Lip β ( w ) d δ δ / ε I I 2 × j = 1 j 2 j ( β δ / ε ) w ( x ˜ ) ( w ( 2 j + 1 Q ) | 2 j + 1 Q | ) β / n ( 1 | 2 j + 1 Q | 2 j + 1 Q | T k , 2 ( f ) ( y ) | s d y ) 1 / s I I 2 C b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M s ( T k , 2 ( f ) ) ( x ˜ ) .

Case 2. d1. Set Q ˜ =Q( x 0 , d ρ ), where ρ=(δβ)/(δ/εβ)<ε, and write

T b (f)(x)= T b b Q (f)(x)= T ( b b Q ) χ 2 Q ˜ (f)(x)+ T ( b b Q ) χ ( 2 Q ˜ ) c (f)(x)= f 1 (x)+ f 2 (x)

and

1 | Q | 1 + β / n Q | T b ( f ) ( x ) f 2 ( x 0 ) | d x 1 | Q | 1 + β / n Q | f 1 ( x ) | d x + 1 | Q | 1 + β / n Q | f 2 ( x ) f 2 ( x 0 ) | d x = I I 3 + I I 4 .

By using the same argument as in the proof of Theorem 1, for ((1ε)n+2β)/2βs<, there exists q such that r<s, 0<r/qε, and T is bounded from L r ( R n ) into L q ( R n ), and we get

I I 3 k = 1 m 1 | Q | Q | T k , 1 M ( b b Q ) χ 2 Q ˜ T k , 2 ( f ) ( x ) | d x I I 3 k = 1 m 1 | Q | β / n ( 1 | Q | R n | T k , 1 M ( b b Q ) χ 2 Q ˜ T k , 2 ( f ) ( x ) | q d x ) 1 / q I I 3 C k = 1 m d β n / q ( R n | ( b ( x ) b 2 Q ) f 1 ( x ) | r d x ) 1 / r I I 3 C k = 1 m d β n / q ( 2 Q ˜ ( | b ( x ) b 2 Q ˜ | r + | b 2 Q ˜ b 2 Q | r ) | T k , 2 ( f ) ( x ) | r d x ) 1 / r I I 3 C k = 1 m b Lip β ( w ) d β n / q ( w ( Q ˜ ) 1 + β / n | Q ˜ | 1 + w ( x ˜ ) w ( Q ˜ ) β / n ) ( 2 Q ˜ | T k , 2 ( f ) ( x ) | r d x ) 1 / r I I 3 C k = 1 m b Lip β ( w ) d ρ ( n / s + β ) β n / q w ( x ˜ ) ( w ( Q ˜ ) | Q ˜ | ) β / n ( 1 | Q ˜ | Q ˜ | T k , 2 ( f ) ( x ) | s d x ) 1 / s I I 3 C b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M s ( T k , 2 ( f ) ) ( x ˜ ) , I I 4 k = 1 m 1 | Q | 1 + β / n Q ( 2 Q ˜ ) c | b ( y ) b 2 Q | | K ( x , y ) K ( x 0 , y ) | | T k , 2 ( f ) ( y ) | d y d x I I 4 k = 1 m C | Q | 1 + β / n Q ( 2 Q ˜ ) c | b ( y ) b 2 Q | | x 0 x | δ | x 0 y | n + δ / ε | T k , 2 ( f ) ( y ) | d y d x I I 4 C k = 1 m d δ β j = 1 ( 2 j d ρ ) n δ / ε 2 j + 1 Q ˜ | b ( y ) b 2 j + 1 Q ˜ | | T k , 2 ( f ) ( y ) | d y I I 3 + C k = 1 m d δ β j = 1 ( 2 j d ρ ) n δ / ε | b 2 j + 1 Q ˜ b 2 Q ˜ | 2 j + 1 Q ˜ | T k , 2 ( f ) ( y ) | d y I I 3 + C k = 1 m d δ δ j = 1 ( 2 j d ρ ) n δ / ε | b 2 Q ˜ b 2 Q | 2 j + 1 Q ˜ | T k , 2 ( f ) ( y ) | d y I I 3 C k = 1 m b Lip β ( w ) j = 1 2 j ( β δ / ε ) ( w ( 2 j + 1 Q ˜ ) | 2 j + 1 Q ˜ | ) 1 + β / n ( 1 | 2 j + 1 Q ˜ | 2 s + 1 Q | T k , 2 ( f ) ( y ) | s d y ) 1 / s I I 3 + C k = 1 m b Lip β ( w ) I I 3 × j = 1 j 2 j ( β δ / ε ) w ( x ˜ ) ( w ( 2 j + 1 Q ˜ ) | 2 j + 1 Q ˜ | ) β / n ( 1 | 2 j + 1 Q ˜ | 2 j + 1 Q ˜ | T k , 2 ( f ) ( y ) | s d y ) 1 / s I I 3 + C k = 1 m b Lip β ( w ) j = 1 j 2 j ( β δ / ε ) w ( x ˜ ) ( w ( Q ˜ ) | Q ˜ | ) β / n ( 1 | 2 j + 1 Q ˜ | 2 j + 1 Q ˜ | T k , 2 ( f ) ( y ) | s d y ) 1 / s I I 3 C b Lip β ( w ) w ( x ˜ ) 1 + β / n k = 1 m M s ( T k , 2 ( f ) ) ( x ˜ ) .

This completes the proof of Theorem 2. □

Proof of Theorem 3 Choose 1<s<p in Theorem 1, notice that w q / p q ( 1 + β / n ) A and w 1 / p A(p,q), and we have, by Lemmas 1, 4, and 5,

T b ( f ) L q ( w q / p q ( 1 + β / n ) ) M ( T b ( f ) ) L q ( w q / p q ( 1 + β / n ) ) C M # ( T b ( f ) ) L q ( w q / p q ( 1 + β / n ) ) C b Lip β ( w ) k = 1 m M β , s ( T k , 2 ( f ) ) w 1 + β / n L q ( w q / p q ( 1 + β / n ) ) = C b Lip β ( w ) k = 1 m M β , s ( T k , 2 ( f ) ) L q ( w q / p ) C b Lip β ( w ) k = 1 m T k , 2 ( f ) L p ( w ) C b Lip β ( w ) f L p ( w ) .

This completes the proof of Theorem 3. □

Proof of Theorem 4 Choose 1<s<p in Theorem 2. By using Lemma 3, we obtain

T b ( f ) F ˙ q β , ( w q / p q ( 1 + β / n ) ) C b Lip β ( w ) k = 1 m M s ( T k , 2 ( f ) ) w 1 + β / n L q ( w q / p q ( 1 + β / n ) ) = C b Lip β ( w ) k = 1 m M s ( T k , 2 ( f ) ) L q ( w q / p ) C b Lip β ( w ) k = 1 m T k , 2 ( f ) L p ( w ) C b Lip β ( w ) f L p ( w ) .

This completes the proof of the theorem. □

Remark A typical example of strongly singular integral operators is a class of multiplier operators whose symbol is given by exp(i | ξ | ε )/ | ξ | δ for 0<ε<1 and δ>0 [1820, 22].

References

  1. 1.

    Garcia-Cuerva J, Rubio de Francia JL North-Holland Math. 16. In Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam; 1985.

    Google Scholar 

  2. 2.

    Stein EM: Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton University Press, Princeton; 1993.

    Google Scholar 

  3. 3.

    Coifman RR, Rochberg R, Weiss G: Factorization theorems for Hardy spaces in several variables. Ann. Math. 1976, 103: 611-635. 10.2307/1970954

    MathSciNet  Article  Google Scholar 

  4. 4.

    Pérez C: Endpoint estimate for commutators of singular integral operators. J. Funct. Anal. 1995, 128: 163-185. 10.1006/jfan.1995.1027

    MathSciNet  Article  Google Scholar 

  5. 5.

    Pérez C, Trujillo-Gonzalez R: Sharp weighted estimates for multilinear commutators. J. Lond. Math. Soc. 2002, 65: 672-692. 10.1112/S0024610702003174

    Article  Google Scholar 

  6. 6.

    Chanillo S: A note on commutators. Indiana Univ. Math. J. 1982, 31: 7-16. 10.1512/iumj.1982.31.31002

    MathSciNet  Article  Google Scholar 

  7. 7.

    Chen WG: Besov estimates for a class of multilinear singular integrals. Acta Math. Sin. 2000, 16: 613-626. 10.1007/s101140000059

    Article  Google Scholar 

  8. 8.

    Janson S: Mean oscillation and commutators of singular integral operators. Ark. Mat. 1978, 16: 263-270. 10.1007/BF02386000

    MathSciNet  Article  Google Scholar 

  9. 9.

    Paluszynski M: Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J. 1995, 44: 1-17.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Bloom S:A commutator theorem and weighted BMO. Trans. Am. Math. Soc. 1985, 292: 103-122. 10.1090/S0002-9947-1985-0805955-5

    Article  Google Scholar 

  11. 11.

    Hu B, Gu J: Necessary and sufficient conditions for boundedness of some commutators with weighted Lipschitz spaces. J. Math. Anal. Appl. 2008, 340: 598-605. 10.1016/j.jmaa.2007.08.034

    MathSciNet  Article  Google Scholar 

  12. 12.

    Krantz S, Li S: Boundedness and compactness of integral operators on spaces of homogeneous type and applications. J. Math. Anal. Appl. 2001, 258: 629-641. 10.1006/jmaa.2000.7402

    MathSciNet  Article  Google Scholar 

  13. 13.

    Lin Y, Lu SZ: Toeplitz type operators associated to strongly singular integral operator. Sci. China Ser. A 2006, 36: 615-630.

    Google Scholar 

  14. 14.

    Muckenhoupt B, Wheeden RL: Weighted norm inequalities for fractional integral. Trans. Am. Math. Soc. 1974, 192: 261-274.

    MathSciNet  Article  Google Scholar 

  15. 15.

    Garcia-Cuerva, J: Weighted H p spaces. Diss. Math. 162 (1979)

  16. 16.

    Alvarez J, Milman M: H p continuity properties of Calderón-Zygmund type operators. J. Math. Anal. Appl. 1986, 118: 63-79. 10.1016/0022-247X(86)90290-8

    MathSciNet  Article  Google Scholar 

  17. 17.

    Alvarez J, Milman M: Vector-valued inequalities for strongly singular Calderón-Zygmund operators. Rev. Mat. Iberoam. 1986, 2: 405-426.

    MathSciNet  Article  Google Scholar 

  18. 18.

    Fefferman C: Inequalities for strongly singular convolution operators. Acta Math. 1970, 124: 9-36. 10.1007/BF02394567

    MathSciNet  Article  Google Scholar 

  19. 19.

    Fefferman C, Stein EM: H p spaces of several variables. Acta Math. 1972, 129: 137-193. 10.1007/BF02392215

    MathSciNet  Article  Google Scholar 

  20. 20.

    Chanillo S: Weighted norm inequalities for strongly singular convolution operators. Trans. Am. Math. Soc. 1984, 281: 77-107. 10.1090/S0002-9947-1984-0719660-6

    MathSciNet  Article  Google Scholar 

  21. 21.

    Garcia-Cuerva J, Harboure E, Segovia C, Torrea JL: Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J. 1991, 40: 1397-1420. 10.1512/iumj.1991.40.40063

    MathSciNet  Article  Google Scholar 

  22. 22.

    Sjölin P:An H p inequality for strongly singular integrals. Math. Z. 1979, 165: 231-238. 10.1007/BF01437558

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dazhao Chen.

Additional information

Competing interests

The author declares that they have no competing interests.

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.

Authors’ original file for figure 1

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Chen, D. Weighted boundedness for Toeplitz type operators related to strongly singular integral operators. J Inequal Appl 2014, 42 (2014). https://doi.org/10.1186/1029-242X-2014-42

Download citation

Keywords

  • Toeplitz operator
  • strongly singular integral operator
  • sharp maximal function
  • Triebel-Lizorkin space
  • weighted Lipschitz function