Skip to main content

A note on Hardy’s inequality

Abstract

In this paper, we prove that the inequality n = 1 ( 1 n k = 1 n a k ) p ( p p 1 ) p n = 1 (1 d ( p ) ( n 1 / 2 ) 1 1 / p ) a n p holds for p1 and d(p)=(1+( 2 1 / p 1)p)/[8(1+( 2 1 / p 1)p)+2] if a n >0 (n=1,2,), and n = 1 a n p <+.

MSC:26D15.

1 Introduction

Let p>1 and a n >0 (n=1,2,) with n = 1 a n p <+, then Hardy’s well-known inequality [1] is given by

n = 1 ( 1 n k = 1 n a k ) p < ( p p 1 ) p n = 1 a n p .
(1.1)

Recently, the refinement, improvement, generalization, extension, and application for Hardy’s inequality have attracted the attention of many researchers [210].

Yang and Zhu [11] presented an improvement of Hardy’s inequality (1.1) for p=2 as follows:

n = 1 ( 1 n k = 1 n a k ) 2 <4 n = 1 ( 1 1 3 n + 5 ) a n 2 .

For 7/6p2, Huang [12] proved that

n = 1 ( 1 n k = 1 n a k ) p < ( p p 1 ) p n = 1 ( 1 15 196 ( n 1 1 / p + 3 , 436 ) ) a n p .

In [13], Wen and Zhang proved that the inequality

n = 1 ( 1 n k = 1 n a k ) p < ( p p 1 ) p n = 1 ( 1 C p 2 n 1 1 / p ) a n p
(1.2)

holds for p>1 if a n >0 (n=1,2,), with n = 1 a n p <+, where C p =1 ( 1 1 / p ) p 1 for p2 and C p =11/p for 1<p2.

Xu et al. [14] gave a further improvement of the inequality (1.2):

n = 1 ( 1 n k = 1 n a k ) p < ( p p 1 ) p n = 1 ( 1 Z p 2 ( n 1 ) 1 1 / p ) a n p ,

where Z p =p1 ( p 1 ) 2 p 2 1 / p for 1<p2 and Z p =1 ( p 1 p ) p 1 2 p 1 p for p>2.

For the special parameter p=5/4, Deng et al. [15] established

n = 1 ( 1 n k = 1 n a k ) 5 / 4 5 5 / 4 n = 1 ( 1 1 10 ( n 1 / 5 + η 5 / 4 ) ) a n 5 / 4 ,

where η 5 / 4 = 5 5 / 4 /[10( 5 5 / 4 ( n = 1 1 n 5 / 4 ( m = 1 n m 4 / 5 ) 1 / 4 ))1]=0.46 .

In [16], Long and Linh discussed Hardy’s inequality with the parameter p<0, and proved that

n = 1 ( 1 n k = 1 n a k ) p < ( p p 1 ) p n = 1 a n p
(1.3)

for p1 and

n = 1 ( 1 n k = 1 n a k ) p < 2 1 p 1 p n = 1 a n p

for 1<p<0 if a n >0 (n=1,2,) with n = 1 a n p <+.

It is the aim of this paper to present an improvement of inequality (1.3) for the parameter p1. Our main result is Theorem 1.1.

Theorem 1.1 Let p1, d(p)=(1+( 2 1 / p 1)p)/[8(1+( 2 1 / p 1)p)+2] and a n >0 (n=1,2,) with n = 1 a n p <+, then

n = 1 ( 1 n k = 1 n a k ) p ( p p 1 ) p n = 1 ( 1 d ( p ) ( n 1 / 2 ) 1 1 / p ) a n p .

2 Lemmas

In order to establish our main result we need several lemmas, which we present in this section.

Lemma 2.1 (see [[17], Corollary 1.3])

Suppose that a,bR with a<b, f: [ a , b ] n R has continuous partial derivatives and

D m = { x = ( x 1 , x 2 , , x n ) | a min 1 k n { x k } < x m = max 1 k n { x k } b } ,m=1,2,,n.

If f ( x ) x m >0 holds for all x=( x 1 , x 2 ,, x n ) D m and m=1,2,,n, then

f( x 1 , x 2 ,, x n )f( x min , x min ,, x min )

for all x m [a,b] (m=1,2,,n), where x min = min 1 k n { x k }.

Lemma 2.2 Let nR be a positive natural number and rR with r1. Then

k = 1 n ( k 1 2 ) 1 / r r r + 1 ( n 1 + 1 / r 1 ) + 2 1 / r .
(2.1)

Proof We use mathematical induction to prove inequality (2.1). We clearly see that inequality (2.1) becomes equality for n=1. We assume that inequality (2.1) holds for n=i (iN, i1), namely

k = 1 i ( k 1 2 ) 1 / r r r + 1 ( i 1 + 1 / r 1 ) + 2 1 / r .

Then for n=i+1 we have

k = 1 i + 1 ( k 1 2 ) 1 / r = k = 1 i ( k 1 2 ) 1 / r + ( i + 1 2 ) 1 / r r r + 1 ( i 1 + 1 / r 1 ) + 2 1 / r + ( i + 1 2 ) 1 / r = r r + 1 [ ( i + 1 ) 1 + 1 / r 1 ] + 2 1 / r + ( i + 1 2 ) 1 / r i i + 1 x 1 / r d x .
(2.2)

Note that x 1 / r (r1) is concave on (0,+), therefore Hermite-Hadamard’s inequality implies that

( i + 1 2 ) 1 / r i i + 1 x 1 / r dx.
(2.3)

From (2.2) and (2.3) we know that inequality (2.1) holds for n=i+1. □

Remark 2.1 The inequality

2 1 / r r r + 1
(2.4)

holds for all r1 with equality if and only if r=1.

Proof We clearly see that inequality (2.4) becomes equality for r=1.

If r>1, then it is well known that the function ( 1 + 1 / r ) r is strictly increasing on (1,+), so we get

( 1 + 1 r ) r >2.
(2.5)

Therefore, inequality (2.4) follows from (2.5). □

Lemma 2.3 The inequality

( 3 r + 1 ) 2 1 1 / r r + 1 > ( 2 1 / r r r + 1 ) 3 r 2 + 1 r
(2.6)

holds for all r1.

Proof Let r1, then we clearly see that

(6log23) r 2 +r+2log224(2log21)>0.
(2.7)

Inequality (2.7) leads to

e ( 3 r 2 r + 2 ) / ( 6 r 2 + 2 ) <2.
(2.8)

It follows from the well-known inequality ( 1 + x ) 1 / x <e (x>0) that

e> ( 1 + 3 r 2 r + 2 6 r 3 + 2 r ) ( 6 r 3 + 2 r ) / ( 3 r 2 r + 2 ) .
(2.9)

From (2.8) and (2.9) we have

2 1 / r < 6 r 3 + 2 r 6 r 3 + 3 r 2 + r + 2 .
(2.10)

Therefore, inequality (2.6) follows easily from (2.10). □

Lemma 2.4 Let r1 and

f(x)= x r ( r r + 1 x 1 + 1 / r + 2 1 / r r r + 1 ) r + 1 .
(2.11)

Then f is convex on [1/2,+).

Proof From (2.11) we have

f ( x ) = 2 r + 1 r + 1 x r + 1 / r + ( 2 1 / r r r + 1 ) r x r 1 ( r r + 1 x 1 + 1 / r + 2 1 / r r r + 1 ) r + 2 , f ( x ) = ( 3 r + 1 ) ( 2 r + 1 ) ( r + 1 ) 2 x 2 + 2 / r ( 2 1 / r r r + 1 ) ( 3 r 2 + 1 ) ( 2 r + 1 ) r ( r + 1 ) x 1 + 1 / r + r ( r 1 ) ( 2 1 / r r r + 1 ) 2 ( r r + 1 x 1 + 1 / r + 2 1 / r r r + 1 ) r + 3 x r 2 .
(2.12)

It follows from Lemma 2.3 and (2.12) that

f (x) ( 3 r + 1 ) ( 2 r + 1 ) ( r + 1 ) 2 2 1 1 / r ( 2 1 / r r r + 1 ) ( 3 r 2 + 1 ) ( 2 r + 1 ) r ( r + 1 ) ( r r + 1 x 1 + 1 / r + 2 1 / r r r + 1 ) r + 3 x r + 1 / r 1 >0
(2.13)

for all x[1/2,+).

Therefore, Lemma 2.4 follows from inequality (2.13). □

Lemma 2.5 Let r1, 0t4 and c=(r+1 2 1 / r r)/[8(r+1 2 1 / r r)+2], then

(r+1) ( 2 1 / r r r + 1 ) (1ct)t1 [ 1 + ( 1 + r 2 1 / r r 1 ) t ] r .
(2.14)

Proof If r=1, then we clearly see that inequality (2.14) becomes equality. Next, we assume that r>1. Let

f(t)=(r+1) ( 2 1 / r r r + 1 ) (1ct)t1+ [ 1 + ( 1 + r 2 1 / r r 1 ) t ] r .
(2.15)

Then simple computations lead to

f(0)=0,
(2.16)
f (t)= ( r + 1 ) ( 2 1 / r r r + 1 ) [ 1 + ( r + 1 2 1 / r r 1 ) t ] r + 1 { ( 1 2 c t ) [ 1 + ( r + 1 2 1 / r r 1 ) t ] r + 1 1 } .
(2.17)

Note that

12ct18c= 1 4 ( r + 1 2 1 / r r ) + 1 >0,
(2.18)
[ 1 + ( r + 1 2 1 / r r 1 ) t ] r + 1 1+(r+1) ( r + 1 2 1 / r r 1 ) t.
(2.19)

It follows from Remark 2.1 and (2.17)-(2.19) that

f (t) ( r + 1 ) ( 2 1 / r r r + 1 ) [ 1 + ( r + 1 2 1 / r r 1 ) t ] r + 1 { ( 1 2 c t ) [ 1 + ( r + 1 ) ( r + 1 2 1 / r r 1 ) t ] 1 } .
(2.20)

Let

g(t)=(12ct) [ 1 + ( r + 1 ) ( r + 1 2 1 / r r 1 ) t ] 1.
(2.21)

Then from g(0)=0 and g(4)=4 ( r + 1 2 1 / r r ) 2 /[ 2 1 / r r(4(r+1 2 1 / r r)+1)]0 together with the fact that g(t) is a concave parabola we know that

g(t)0
(2.22)

for t[0,4].

Therefore, Lemma 2.5 follows easily from (2.15) and (2.16) together with (2.20)-(2.22). □

Lemma 2.6 Let r1, c=(r+1 2 1 / r r)/[8(r+1 2 1 / r r)+2], N is a positive natural number, a k >0 (k=1,2,,N) and B N = min 1 k N { ( k 1 / 2 ) 1 / r a k }, then

( r + 1 r ) r n = 1 N ( 1 c ( n 1 / 2 ) 1 + 1 / r ) a n r n = 1 N ( n k = 1 n 1 / a k ) r B N r [ ( r + 1 r ) r n = 1 N ( 1 c ( n 1 / 2 ) 1 + 1 / r ) 1 n 1 / 2 n = 1 N ( n k = 1 n ( k 1 / 2 ) 1 / r ) r ] .
(2.23)

Proof Let a k = b k / ( k 1 / 2 ) 1 / r (k=1,2,,N), then B N = min 1 k N { b k } and inequality (2.23) becomes

( r + 1 r ) r n = 1 N ( 1 c ( n 1 / 2 ) 1 + 1 / r ) b n r n 1 / 2 n = 1 N ( n k = 1 n ( k 1 / 2 ) 1 / r b k ) r B N r [ ( r + 1 r ) r n = 1 N ( 1 c ( n 1 / 2 ) 1 + 1 / r ) 1 n 1 / 2 n = 1 N ( n k = 1 n ( k 1 / 2 ) 1 / r ) r ] .
(2.24)

Let D m ={b=( b 1 , b 2 ,, b N )| b m = max 1 k N { b k }> min 1 k N { b k }} (m=1,2,,N), and

f ( b 1 , b 2 , , b N ) = ( r + 1 r ) r n = 1 N ( 1 c ( n 1 / 2 ) 1 + 1 / r ) b n r n 1 / 2 n = 1 N ( n k = 1 n ( k 1 / 2 ) 1 / r b k ) r .
(2.25)

Then for any b D m (m=1,2,,N) we have

f ( b ) b m = ( 1 c ( m 1 / 2 ) 1 + 1 / r ) ( r + 1 ) r b m r 1 ( m 1 / 2 ) r r 1 r ( m 1 / 2 ) 1 / r b m 2 n = m N n r ( k = 1 n ( k 1 / 2 ) 1 / r b k ) r + 1 > ( 1 c ( m 1 / 2 ) 1 + 1 / r ) ( r + 1 ) r b m r 1 ( m 1 / 2 ) r r 1 r ( m 1 / 2 ) 1 / r b m r 1 n = m + n r ( k = 1 n ( k 1 / 2 ) 1 / r ) r + 1 .
(2.26)

From Lemma 2.2 and (2.26) one has

1 r ( m 1 / 2 ) 1 / r b m r 1 f ( b ) b m > ( r + 1 r ) r ( 1 c ( m 1 / 2 ) 1 + 1 / r ) 1 ( m 1 / 2 ) 1 + 1 / r n = m + n r ( r r + 1 n 1 + 1 / r + 2 1 / r r r + 1 ) r + 1 .
(2.27)

It clearly follows from Lemma 2.4 and the Hermite-Hadamard inequality that

m 1 / 2 m + 1 / 2 x r ( r r + 1 x 1 + 1 / r + 2 1 / r r r + 1 ) r + 1 m r ( r r + 1 m 1 + 1 / r + 2 1 / r r r + 1 ) r + 1

and

m 1 / 2 + x r ( r r + 1 x 1 + 1 / r + 2 1 / r r r + 1 ) r + 1 n = m + n r ( r r + 1 n 1 + 1 / r + 2 1 / r r r + 1 ) r + 1 .
(2.28)

Note that

m 1 / 2 + x r ( r r + 1 x 1 + 1 / r + 2 1 / r r r + 1 ) r + 1 = ( 1 + r r ) r 2 1 / r r + 1 2 1 / r r { 1 [ 1 + ( r + 1 2 1 / r r 1 ) ( m 1 / 2 ) 1 1 / r ] r } ,
(2.29)
0< ( m 1 / 2 ) 1 1 / r 2 1 + 1 / r 4.
(2.30)

From Lemma 2.5 and (2.30) one has

( r + 1 r ) r ( 1 c ( m 1 / 2 ) 1 + 1 / r ) 1 ( m 1 / 2 ) 1 + 1 / r ( 1 + r r ) r 2 1 / r r + 1 2 1 / r r { 1 [ 1 + ( r + 1 2 1 / r r 1 ) ( m 1 / 2 ) 1 1 / r ] r } .
(2.31)

Inequalities (2.27), (2.28), and (2.31) together with (2.29) lead to the conclusion that

f ( b ) b m >0
(2.32)

for any b=( b 1 , b 2 ,, b N ) D m and m=1,2,,N.

It follows from Lemma 2.1 and (2.32) that

f( b 1 , b 2 ,, b N )f( B N , B N ,, B N ).
(2.33)

Therefore, inequality (2.24) follows from (2.25) and (2.33). □

Lemma 2.7 Let r1, c=(r+1 2 1 / r r)/[8(r+1 2 1 / r r)+2], then

( r + 1 r ) ( 1 2 1 + 1 / r c ) >1.
(2.34)

Proof We clearly see that inequality (2.34) holds for r=1. Next, we assume that r>1, let t= 2 1 + 1 / r , then 0<t<4 and Lemma 2.5 leads to

( r + 1 r ) r ( 1 2 1 + 1 / r c ) 1 ( r + 1 r ) r 2 ( r + 1 2 1 / r r ) [ 1 ( 1 + 2 ( r + 1 2 1 / r r ) r ) r ] 1 ( r + 1 r ) r 2 ( r + 1 2 1 / r r ) 2 ( r + 1 2 1 / r r ) 1 + 2 ( r + 1 2 1 / r r ) 1 = ( r + 1 r ) r 1 + 2 ( r + 1 2 1 / r r ) 1 .
(2.35)

Note that

r+1 2 1 / r r<1log2
(2.36)

for all r1. In fact, let x1 and

f(x)=x 2 1 / x x+1.
(2.37)

Then

f (x)=1+ ( log 2 x 1 ) 2 1 / x ,
(2.38)
f (x)= ( log 2 ) 2 x 3 2 1 / x <0.
(2.39)

It follows from (2.38) and (2.39) that

f (x)> lim x + [ 1 + ( log 2 x 1 ) 2 1 / x ] =0.
(2.40)

Equation (2.37) and inequality (2.40) lead to the conclusion that

f(x)< lim x + ( x 2 1 / x x + 1 ) =1log2.
(2.41)

From (2.35) and (2.36) together with the fact that [ ( r + 1 ) / r ] r 2 we have

( r + 1 r ) r ( 1 2 1 + 1 / r c ) 1> 2 1 + 2 ( 1 log 2 ) 1= 2 log 2 1 3 2 log 2 >0.
(2.42)

Therefore, inequality (2.34) follows from (2.42). □

Lemma 2.8 Let r1, c=(r+1 2 1 / r r)/[8(r+1 2 1 / r r)+2], N is a positive natural number, a k >0 (k=1,2,,N) and B N = min 1 k N { ( k 1 / 2 ) 1 / r a k }, then

( r + 1 r ) r n = 1 N ( 1 c ( n 1 / 2 ) 1 + 1 / r ) a n r n = 1 N ( n k = 1 n 1 / a k ) r 2 B N r [ ( r + 1 r ) r ( 1 2 1 + 1 / r c ) 1 ] .
(2.43)

Proof Let m{1,2,,N}, f(0)=0 and

f(m)= ( r + 1 r ) r n = 1 m ( 1 c ( n 1 / 2 ) 1 + 1 / r ) 1 n 1 / 2 n = 1 m ( n k = 1 n ( k 1 / 2 ) 1 / r ) r .
(2.44)

Then

f(1)=2 [ ( 1 + r r ) r ( 1 2 1 + 1 / r c ) 1 ] ,
(2.45)
f(m)f(m1)= ( 1 + r r ) r m 1 / 2 ( 1 c ( m 1 / 2 ) 1 + 1 / r ) ( m k = 1 m ( k 1 / 2 ) 1 / r ) r .
(2.46)

It follows from Lemma 2.2 and (2.46) together with Remark 2.1 that

f ( m ) f ( m 1 ) ( 1 + r r ) r m 1 / 2 ( 1 c ( m 1 / 2 ) 1 + 1 / r ) ( m r r + 1 ( m 1 + 1 / r 1 ) + 2 1 / r ) r ( 1 + r r ) r m 1 / 2 ( 1 c ( m 1 / 2 ) 1 + 1 / r ) ( m r r + 1 m 1 + 1 / r ) r = ( 1 + r r ) r [ ( 4 ( r + 1 2 1 / r r ) + 1 ) ( m 1 / 2 ) 1 + 1 / r m ( r + 1 2 1 / r r ) ] m ( m 1 / 2 ) 2 + 1 / r [ 8 ( r + 1 2 1 / r r ) + 2 ] .
(2.47)

Let

g(t)= [ 4 ( r + 1 2 1 / r r ) + 1 ] ( t 1 / 2 ) 1 + 1 / r ( r + 1 2 1 / r r ) t.
(2.48)

Then

g ( 1 ) = [ 4 ( r + 1 2 1 / r r ) + 1 ] 2 1 1 / r ( r + 1 2 1 / r r ) > ( 2 1 1 / r 1 ) ( r + 1 2 1 / r r ) 0 ,
(2.49)
g ( t ) = ( 1 + 1 r ) [ 4 ( r + 1 2 1 / r r ) + 1 ] ( t 1 / 2 ) 1 / r ( r + 1 2 1 / r r ) > ( 2 2 1 / r 1 ) ( r + 1 2 1 / r r ) 0
(2.50)

for t1.

From (2.47)-(2.50) we get

f(1)<f(2)<<f(N1)<f(N).
(2.51)

Therefore, Lemma 2.8 follows easily from Lemma 2.6, (2.44), (2.45), and (2.51). □

3 Proof of Theorem 1.1

Let r=p, c=c(r)=d(r) and b n =1/ a n (n=1,2,), then r1, c=(r+1 2 1 / r r)/[8(r+1 2 1 / r r)+2], b n >0 and n = 1 b n r <+.

It follows from Lemmas 2.7 and 2.8 that one has

n = 1 N ( n k = 1 n 1 / b k ) r ( r + 1 r ) r n = 1 N ( 1 c ( n 1 / 2 ) 1 + 1 / r ) b n r .
(3.1)

Letting n+, (3.1) leads to

n = 1 ( n k = 1 n 1 / b k ) r ( r + 1 r ) r n = 1 ( 1 c ( n 1 / 2 ) 1 + 1 / r ) b n r .
(3.2)

Therefore, Theorem 1.1 follows immediately from (3.2) and r=p together with b n =1/ a n .

References

  1. Hardy GH, Littlewood JE, Pólya G: Inequalities. Cambridge University Press, Cambridge; 1952.

    Google Scholar 

  2. Beesack PR: Hardy’s inequality and its extensions. Pac. J. Math. 1961, 11: 39-61. 10.2140/pjm.1961.11.39

    Article  MathSciNet  Google Scholar 

  3. Mitrinović DS, Pečarić JE, Fink AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht; 1991.

    Book  Google Scholar 

  4. Yang B-C, Zeng Z-H, Debnath L: On new generalizations of Hardy’s integral inequality. J. Math. Anal. Appl. 1998,217(1):321-327. 10.1006/jmaa.1998.5758

    Article  MathSciNet  Google Scholar 

  5. Chen C-P, Qi F: Generalization of Hardy’s inequality. Proc. Jangjeon Math. Soc. 2004,7(1):57-61.

    MathSciNet  Google Scholar 

  6. Pachpatte BG: Mathematical Inequalities. Elsevier, Amsterdam; 2005.

    Google Scholar 

  7. Liu H-P, Zhu L: New strengthened Carleman’s inequality and Hardy’s inequality. J. Inequal. Appl. 2007. Article ID 84104, 2007: Article ID 84104

    Google Scholar 

  8. Persson L-E, Oguntuase JA: Refinement of Hardy’s Inequality for “All” p. Banach and Function Spaces II. Yokohama Publ., Yokohama; 2008:129-144.

    Google Scholar 

  9. Lü Z-X, Gao Y-C, Wei Y-X: Note on the Carleman’s inequality and Hardy’s inequality. Comput. Math. Appl. 2010,59(1):94-97. 10.1016/j.camwa.2009.09.001

    Article  MathSciNet  Google Scholar 

  10. Liu J-Z, Zhang X-D, Jiang B: Some generalizations and improvements of discrete Hardy’s inequality. Comput. Math. Appl. 2012,63(3):601-607. 10.1016/j.camwa.2011.09.019

    Article  MathSciNet  Google Scholar 

  11. Yang B-C, Zhu Y-H: An improvement on Hardy’s inequality. Acta Sci. Natur. Univ. Sunyatseni 1998 (in Chinese),37(1):41-44. (in Chinese)

    MathSciNet  Google Scholar 

  12. Huang Q-L: An improvement for Hardy’s inequality in an interval. Acta Sci. Natur. Univ. Sunyatseni 2000 (in Chinese),39(3):20-24. (in Chinese)

    MathSciNet  Google Scholar 

  13. Wen J-J, Zhang R-X: A strengthened improvement of Hardy’s inequality. Math. Pract. Theory 2002 (in Chinese),32(3):476-482. (in Chinese)

    MathSciNet  Google Scholar 

  14. Xu Q, Zhou M-X, Zhang X-M: On a strengthened version of Hardy’s inequality. J. Inequal. Appl. 2012. Article ID 300, 2012: Article ID 300

    Google Scholar 

  15. Deng Y-P, Wu S-H, He D:A sharpened version of Hardy’s inequality for parameter p=5/4. J. Inequal. Appl. 2013. Article ID 63, 2013: Article ID 63

    Google Scholar 

  16. Long NT, Linh NVD: The Carleman’s inequality for a negative power number. J. Math. Anal. Appl. 2001,259(1):219-225. 10.1006/jmaa.2000.7422

    Article  MathSciNet  Google Scholar 

  17. Zhang X-M, Chu Y-M: A new method to study analytic inequalities. J. Inequal. Appl. 2010. Article ID 698012, 2010: Article ID 698012

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep gratitude to the referees for giving many valuable suggestions. This research was supported by the Natural Science Foundation of China under Grants 11171307 and 61374086, and the Natural Science Foundation of Zhejiang Province under Grant Y13A01000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Chu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Y-MC provided the main idea and carried out the proof of Lemmas 2.1 and 2.2. QX carried out the proof of Lemmas 2.3-2.5 and Theorem 1.1. X-MZ carried out the proof of Lemmas 2.6-2.8. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YM., Xu, Q. & Zhang, XM. A note on Hardy’s inequality. J Inequal Appl 2014, 271 (2014). https://doi.org/10.1186/1029-242X-2014-271

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-271

Keywords