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Abstract
In this paper, we prove that the inequality∑∞

n=1(
1
n

∑n
k=1 ak)

p ≤ ( p
p–1 )

p ∑∞
n=1(1 –

d(p)
(n–1/2)1–1/p

)apn holds for p ≤ –1 and

d(p) = (1 + (2–1/p – 1)p)/[8(1 + (2–1/p – 1)p) + 2] if an > 0 (n = 1, 2, . . .), and
∑∞

n=1 a
p
n < +∞.
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1 Introduction
Let p >  and an >  (n = , , . . .) with

∑∞
n= anp < +∞, then Hardy’s well-known inequality

[] is given by

∞∑
n=

(

n

n∑
k=

ak

)p

<
(

p
p – 

)p ∞∑
n=

apn. (.)

Recently, the refinement, improvement, generalization, extension, and application for
Hardy’s inequality have attracted the attention of many researchers [–].
Yang and Zhu [] presented an improvement of Hardy’s inequality (.) for p =  as

follows:

∞∑
n=

(

n

n∑
k=

ak

)

< 
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n=

(
 –



√
n + 

)
an.

For / ≤ p≤ , Huang [] proved that

∞∑
n=

(

n

n∑
k=

ak

)p

<
(

p
p – 

)p ∞∑
n=

(
 –


(n–/p + ,)

)
apn.

In [], Wen and Zhang proved that the inequality

∞∑
n=

(

n

n∑
k=

ak

)p

<
(

p
p – 

)p ∞∑
n=

(
 –

Cp

n–/p

)
apn (.)

holds for p >  if an >  (n = , , . . .), with
∑∞

n= a
p
n < +∞, where Cp =  – ( – /p)p– for

p ≥  and Cp =  – /p for  < p≤ .
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Xu et al. [] gave a further improvement of the inequality (.):

∞∑
n=

(

n

n∑
k=

ak

)p

<
(

p
p – 

)p ∞∑
n=

(
 –

Zp

(n – )–/p

)
apn,

where Zp = p –  – (p–)
p /p for  < p≤  and Zp =  – ( p–p )p–

p–
p for p > .

For the special parameter p = /, Deng et al. [] established

∞∑
n=

(

n

n∑
k=

ak

)/

≤ /
∞∑
n=

(
 –


(n/ + η/)

)
a/n ,

where η/ = //[(/ – (
∑∞

n=


n/ (
∑n

m=m–/)/)) – ] = . · · · .
In [], Long andLinh discussedHardy’s inequalitywith the parameter p < , and proved

that

∞∑
n=

(

n

n∑
k=

ak

)p

<
(

p
p – 

)p ∞∑
n=

apn (.)

for p≤ – and

∞∑
n=

(

n

n∑
k=

ak

)p

<
–p

 – p

∞∑
n=

apn

for – < p <  if an >  (n = , , . . .) with
∑∞

n= a
p
n < +∞.

It is the aim of this paper to present an improvement of inequality (.) for the parameter
p≤ –. Our main result is Theorem ..

Theorem . Let p ≤ –, d(p) = ( + (–/p – )p)/[( + (–/p – )p) + ] and an >  (n =
, , . . .) with

∑∞
n= a

p
n < +∞, then

∞∑
n=

(

n

n∑
k=

ak

)p

≤
(

p
p – 

)p ∞∑
n=

(
 –

d(p)
(n – /)–/p

)
apn.

2 Lemmas
In order to establish our main result we need several lemmas, which we present in this
section.

Lemma . (see [, Corollary .]) Suppose that a,b ∈ R with a < b, f : [a,b]n → R has
continuous partial derivatives and

Dm =
{
x = (x,x, . . . ,xn)

∣∣a ≤ min
≤k≤n

{xk} < xm = max
≤k≤n

{xk} ≤ b
}
, m = , , . . . ,n.

If ∂f (x)
∂xm >  holds for all x = (x,x, . . . ,xn) ∈Dm and m = , , . . . ,n, then

f (x,x, . . . ,xn) ≥ f (xmin,xmin, . . . ,xmin)

for all xm ∈ [a,b] (m = , , . . . ,n), where xmin =min≤k≤n{xk}.
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Lemma . Let n ∈R be a positive natural number and r ∈R with r ≥ . Then

n∑
k=

(
k –




)/r

≥ r
r + 

(
n+/r – 

)
+ –/r. (.)

Proof We use mathematical induction to prove inequality (.). We clearly see that in-
equality (.) becomes equality for n = . We assume that inequality (.) holds for n = i
(i ∈N, i≥ ), namely

i∑
k=

(
k –




)/r

≥ r
r + 

(
i+/r – 

)
+ –/r .

Then for n = i +  we have

i+∑
k=

(
k –




)/r

=
i∑

k=

(
k –




)/r

+
(
i +




)/r

≥ r
r + 

(
i+/r – 

)
+ –/r +

(
i +




)/r

=
r

r + 
[
(i + )+/r – 

]
+ –/r +

(
i +




)/r

–
∫ i+

i
x/r dx. (.)

Note that x/r (r ≥ ) is concave on (,+∞), therefore Hermite-Hadamard’s inequality
implies that

(
i +




)/r

≥
∫ i+

i
x/r dx. (.)

From (.) and (.) we know that inequality (.) holds for n = i + . �

Remark . The inequality

–/r ≥ r
r + 

(.)

holds for all r ≥  with equality if and only if r = .

Proof We clearly see that inequality (.) becomes equality for r = .
If r > , then it is well known that the function ( + /r)r is strictly increasing on (, +∞),

so we get
(
 +


r

)r

> . (.)

Therefore, inequality (.) follows from (.). �

Lemma . The inequality

(r + )––/r

r + 
>

(
–/r –

r
r + 

)
r + 

r
(.)

holds for all r ≥ .
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Proof Let r ≥ , then we clearly see that

( log – )r + r +  log –  ≥ ( log – ) > . (.)

Inequality (.) leads to

e(r
–r+)/(r+) < . (.)

It follows from the well-known inequality ( + x)/x < e (x > ) that

e >
(
 +

r – r + 
r + r

)(r+r)/(r–r+)

. (.)

From (.) and (.) we have

–/r <
r + r

r + r + r + 
. (.)

Therefore, inequality (.) follows easily from (.). �

Lemma . Let r ≥  and

f (x) =
xr

( r
r+x+/r + –/r – r

r+ )r+
. (.)

Then f is convex on [/, +∞).

Proof From (.) we have

f ′(x) =
–r+

r+ x
r+/r + (–/r – r

r+ )rx
r–

( r
r+x+/r + –/r – r

r+ )r+
,

(.)

f ′′(x) =
(r+)(r+)

(r+) x+/r – (–/r – r
r+ )

(r+)(r+)
r(r+) x+/r + r(r – )(–/r – r

r+ )


( r
r+x+/r + –/r – r

r+ )r+
xr–.

It follows from Lemma . and (.) that

f ′′(x)≥
(r+)(r+)

(r+) ––/r – (–/r – r
r+ )

(r+)(r+)
r(r+)

( r
r+x+/r + –/r – r

r+ )r+
xr+/r– >  (.)

for all x ∈ [/, +∞).
Therefore, Lemma . follows from inequality (.). �

Lemma . Let r ≥ ,  ≤ t ≤  and c = (r +  – /rr)/[(r +  – /rr) + ], then

(r + )
(
–/r –

r
r + 

)
( – ct)t ≥  –

[
 +

(
 + r
/rr

– 
)
t
]–r

. (.)
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Proof If r = , then we clearly see that inequality (.) becomes equality. Next, we assume
that r > . Let

f (t) = (r + )
(
–/r –

r
r + 

)
( – ct)t –  +

[
 +

(
 + r
/rr

– 
)
t
]–r

. (.)

Then simple computations lead to

f () = , (.)

f ′(t) =
(r + )(–/r – r

r+ )
[ + ( r+

/rr – )t]r+

{
( – ct)

[
 +

(
r + 
/rr

– 
)
t
]r+

– 
}
. (.)

Note that

 – ct ≥  – c =


(r +  – /rr) + 
> , (.)

[
 +

(
r + 
/rr

– 
)
t
]r+

≥  + (r + )
(
r + 
/rr

– 
)
t. (.)

It follows from Remark . and (.)-(.) that

f ′(t) ≥ (r + )(–/r – r
r+ )

[ + ( r+
/rr – )t]r+

{
( – ct)

[
 + (r + )

(
r + 
/rr

– 
)
t
]
– 

}
. (.)

Let

g(t) = ( – ct)
[
 + (r + )

(
r + 
/rr

– 
)
t
]
– . (.)

Then from g() =  and g() = (r +  – /rr)/[/rr((r + – /rr) + )]≥  together with
the fact that g(t) is a concave parabola we know that

g(t) ≥  (.)

for t ∈ [, ].
Therefore, Lemma . follows easily from (.) and (.) together with (.)-(.).

�

Lemma . Let r ≥ , c = (r+–/rr)/[(r+–/rr)+],N is a positive natural number,
ak >  (k = , , . . . ,N ) and BN =min≤k≤N {(k – /)/rak}, then

(
r + 
r

)r N∑
n=

(
 –

c
(n – /)+/r

)
arn –

N∑
n=

(
n∑n

k= /ak

)r

≥ Br
N

[(
r + 
r

)r N∑
n=

(
 –

c
(n – /)+/r

)


n – /

–
N∑
n=

(
n∑n

k=(k – /)/r

)r
]
. (.)
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Proof Let ak = bk/(k–/)/r (k = , , . . . ,N ), thenBN =min≤k≤N {bk} and inequality (.)
becomes

(
r + 
r

)r N∑
n=

(
 –

c
(n – /)+/r

)
brn

n – /
–

N∑
n=

(
n∑n

k=
(k–/)/r

bk

)r

≥ Br
N

[(
r + 
r

)r N∑
n=

(
 –

c
(n – /)+/r

)


n – /

–
N∑
n=

(
n∑n

k=(k – /)/r

)r
]
. (.)

Let Dm = {b = (b,b, . . . ,bN )|bm =max≤k≤N {bk} >min≤k≤N {bk}} (m = , , . . . ,N ), and

f (b,b, . . . ,bN ) =
(
r + 
r

)r N∑
n=

(
 –

c
(n – /)+/r

)
brn

n – /

–
N∑
n=

(
n∑n

k=
(k–/)/r

bk

)r

. (.)

Then for any b ∈Dm (m = , , . . . ,N ) we have

∂f (b)
∂bm

=
(
 –

c
(m – /)+/r

)
(r + )rbr–m
(m – /)rr–

–
r(m – /)/r

bm

N∑
n=m

nr

(
∑n

k=
(k–/)/r

bk
)r+

>
(
 –

c
(m – /)+/r

)
(r + )rbr–m
(m – /)rr–

– r(m – /)/rbr–m

+∞∑
n=m

nr

(
∑n

k=(k – /)/r)r+
. (.)

From Lemma . and (.) one has


r(m – /)/rbr–m

∂f (b)
∂bm

>
(
r + 
r

)r(
 –

c
(m – /)+/r

)


(m – /)+/r

–
+∞∑
n=m

nr

( r
r+n+/r + –/r – r

r+ )r+
. (.)

It clearly follows from Lemma . and the Hermite-Hadamard inequality that

∫ m+/

m–/

xr

( r
r+x+/r + –/r – r

r+ )r+
≥ mr

( r
r+m+/r + –/r – r

r+ )r+

and

∫ +∞

m–/

xr

( r
r+x+/r + –/r – r

r+ )r+
≥

+∞∑
n=m

nr

( r
r+n+/r + –/r – r

r+ )r+
. (.)
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Note that∫ +∞

m–/

xr

( r
r+x+/r + –/r – r

r+ )r+

=
(
 + r
r

)r /r

r +  – /rr

{
 –

[
 +

(
r + 
/rr

– 
)
(m – /)––/r

]–r}
, (.)

 < (m – /)––/r ≤ +/r ≤ . (.)

From Lemma . and (.) one has

(
r + 
r

)r(
 –

c
(m – /)+/r

)


(m – /)+/r

≥
(
 + r
r

)r /r

r +  – /rr

{
 –

[
 +

(
r + 
/rr

– 
)
(m – /)––/r

]–r}
. (.)

Inequalities (.), (.), and (.) together with (.) lead to the conclusion that

∂f (b)
∂bm

>  (.)

for any b = (b,b, . . . ,bN ) ∈Dm andm = , , . . . ,N .
It follows from Lemma . and (.) that

f (b,b, . . . ,bN ) ≥ f (BN ,BN , . . . ,BN ). (.)

Therefore, inequality (.) follows from (.) and (.). �

Lemma . Let r ≥ , c = (r +  – /rr)/[(r +  – /rr) + ], then
(
r + 
r

)(
 – +/rc

)
> . (.)

Proof We clearly see that inequality (.) holds for r = . Next, we assume that r > , let
t = +/r , then  < t <  and Lemma . leads to

(
r + 
r

)r(
 – +/rc

)
–  ≥ ( r+r )r

(r +  – /rr)

[
 –

(
 +

(r +  – /rr)
r

)–r]
– 

≥ ( r+r )r

(r +  – /rr)
(r +  – /rr)

 + (r +  – /rr)
– 

=
( r+r )r

 + (r +  – /rr)
– . (.)

Note that

r +  – /rr <  – log (.)

for all r ≥ . In fact, let x ≥  and

f (x) = x – /xx + . (.)
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Then

f ′(x) =  +
(
log
x

– 
)
/x, (.)

f ′′(x) = –
(log)

x
/x < . (.)

It follows from (.) and (.) that

f ′(x) > lim
x→+∞

[
 +

(
log
x

– 
)
/x

]
= . (.)

Equation (.) and inequality (.) lead to the conclusion that

f (x) < lim
x→+∞

(
x – /xx + 

)
=  – log. (.)

From (.) and (.) together with the fact that [(r + )/r]r ≥  we have

(
r + 
r

)r(
 – +/rc

)
–  >


 + ( – log)

–  =
 log – 
 –  log

> . (.)

Therefore, inequality (.) follows from (.). �

Lemma . Let r ≥ , c = (r+–/rr)/[(r+–/rr) +],N is a positive natural number,
ak >  (k = , , . . . ,N ) and BN =min≤k≤N {(k – /)/rak}, then

(
r + 
r

)r N∑
n=

(
 –

c
(n – /)+/r

)
arn –

N∑
n=

(
n∑n

k= /ak

)r

≥ Br
N

[(
r + 
r

)r(
 – +/rc

)
– 

]
. (.)

Proof Let m ∈ {, , . . . ,N}, f () =  and

f (m) =
(
r + 
r

)r m∑
n=

(
 –

c
(n – /)+/r

)


n – /
–

m∑
n=

(
n∑n

k=(k – /)/r

)r

. (.)

Then

f () = 
[(

 + r
r

)r(
 – +/rc

)
– 

]
, (.)

f (m) – f (m – ) =
( +rr )r

m – /

(
 –

c
(m – /)+/r

)
–

(
m∑m

k=(k – /)/r

)r

. (.)

It follows from Lemma . and (.) together with Remark . that

f (m) – f (m – )

≥ ( +rr )r

m – /

(
 –

c
(m – /)+/r

)
–

(
m

r
r+ (m+/r – ) + –/r

)r
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≥ ( +rr )r

m – /

(
 –

c
(m – /)+/r

)
–

(
m

r
r+m+/r

)r

=
( +rr )r[((r +  – /rr) + )(m – /)+/r –m(r +  – /rr)]

m(m – /)+/r[(r +  – /rr) + ]
. (.)

Let

g(t) =
[

(
r +  – /rr

)
+ 

]
(t – /)+/r –

(
r +  – /rr

)
t. (.)

Then

g() =
[

(
r +  – /rr

)
+ 

]
––/r –

(
r +  – /rr

)
>

(
–/r – 

)(
r +  – /rr

) ≥ ,
(.)

g ′(t) =
(
 +


r

)[

(
r +  – /rr

)
+ 

]
(t – /)/r –

(
r +  – /rr

)
>

(
–/r – 

)(
r +  – /rr

) ≥  (.)

for t ≥ .
From (.)-(.) we get

f () < f () < · · · < f (N – ) < f (N). (.)

Therefore, Lemma . follows easily from Lemma ., (.), (.), and (.). �

3 Proof of Theorem 1.1
Let r = –p, c = c(r) = d(–r) and bn = /an (n = , , . . .), then r ≥ , c = (r +  – /rr)/[(r +
 – /rr) + ], bn >  and

∑∞
n= brn < +∞.

It follows from Lemmas . and . that one has

N∑
n=

(
n∑n

k= /bk

)r

≤
(
r + 
r

)r N∑
n=

(
 –

c
(n – /)+/r

)
brn. (.)

Letting n → +∞, (.) leads to

∞∑
n=

(
n∑n

k= /bk

)r

≤
(
r + 
r

)r ∞∑
n=

(
 –

c
(n – /)+/r

)
brn. (.)

Therefore, Theorem . follows immediately from (.) and r = –p together with bn =
/an.
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