Skip to main content

The mean ergodic theorem for nonexpansive mappings in multi-Banach spaces

Abstract

In this paper, we prove a mean ergodic theorem for nonexpansive mappings in multi-Banach spaces.

MSC:39A10, 39B72, 47H10, 46B03.

1 Introduction

Let X be a Banach space and C be a closed convex subset of X. For each j1, a mapping T j :CC is said to be nonexpansive on C if

T j x T j yxy

for all x,yC. For each j1, let F( T j ) be the set of fixed points of T j . If X is a strictly convex Banach space, then F( T j ) is closed and convex.

In [1], Baillon proved the first nonlinear ergodic theorem such that, if X is a real Hilbert space and F( T j ) for each j1, then, for each xC, the sequence { S n , j x} defined by

S n , j x= 1 n ( x + T j x + + T j n 1 x )

converges weakly to a fixed point of T j . It was also shown by Pazy [2] that, if X is a real Hilbert space and S n , j x converges weakly to yC, then yF(T). These results were extended by Baillon [3], Bruck [4] and Reich [5, 6] and [7].

2 Multi-Banach spaces

The notion of a multi-normed space was introduced by Dales and Polyakov in [8]. This concept is somewhat similar to an operator sequence space and has some connections with the operator spaces and Banach lattices. Observations on multi-normed spaces and examples are given in [810].

Let (E,) be a complex normed space and let kN. We denote by E k the linear space EE consisting of k-tuples ( x 1 ,, x k ), where x 1 ,, x k E. The linear operations on E k are defined coordinate-wise. The zero element of either E or E k is denoted by 0. We denote by N k the set {1,2,,k} and by Σ k the group of permutations on k symbols.

Definition 2.1 A multi-norm on { E k :kN} is a sequence { k } k N such that k is a norm on E k for each kN with k2 satisfying the following conditions:

(A1) ( x σ ( 1 ) , , x σ ( k ) ) k = ( x 1 , , x k ) k (σ Σ k , x 1 ,, x k E);

(A2) ( α 1 x 1 , , α k x k ) k ( max i N k | α i |) ( x 1 , , x k ) k ( α 1 ,, α k C, x 1 ,, x k E);

(A3) ( x 1 , , x k 1 , 0 ) k = ( x 1 , , x k 1 ) k 1 ( x 1 ,, x k 1 E);

(A4) ( x 1 , , x k 1 , x k 1 ) k = ( x 1 , , x k 1 ) k 1 ( x 1 ,, x k 1 E).

In this case, we say that { ( E k , k ) } k N is a multi-normed space.

Lemma 2.2 ([10])

Suppose that { ( E k , k ) } k N is a multi-normed space and take kN. Then we have the following:

  1. (1)

    ( x , , x ) k =x (xE);

  2. (2)

    max i N k x i x 1 , , x k k i = 1 k x i k max i N k x i ( x 1 ,, x k E).

It follows from (2) that, if (E,) is a Banach space, then ( E k , k ) is a Banach space for each kN. In this case { ( E k , k ) } k N is a multi-Banach space.

Now, we give two important examples of multi-norms for an arbitrary normed space E [8].

Example 2.3 The sequence { k } k N on { E k :kN} defined by

( x 1 , , x k ) k := max i N k x i ( x 1 ,, x k E)

is a multi-norm, which is called the minimum multi-norm. The terminology ‘minimum’ is justified by the property (2).

Example 2.4 Let {( k α :kN):αA} be the (nonempty) family of all multi-norms on { E k :kN}. For each kN, set

( x 1 , , x k ) k := sup α A ( x 1 , , x k ) k α ( x 1 ,, x k E).

Then { k } k N is a multi-norm on { E k :kN}, which is called the maximum multi-norm.

We need the following observation, which can easily be deduced from the triangle inequality for the norm k and the property (2) of multi-norms.

Lemma 2.5 Suppose that kN and ( x 1 ,, x k ) E k . For each j{1,,k}, let { x n j } n 1 be a sequence in E such that lim n x n j = x j . Then, for each ( y 1 ,, y k ) E k , we have

lim n ( x n 1 y 1 , , x n k y k ) =( x 1 y 1 ,, x k y k ).

Definition 2.6 Let { ( E k , k ) } k N be a multi-normed space. A sequence { x n } n 1 in E is called a multi-null sequence if, for any ε>0, there exists n 0 N such that

sup k N ( x n , , x n + k 1 ) k <ε(n n 0 ).

Let xE. We say that the sequence { x n } n 1 is multi-convergent to a point xE and write

lim n x n =x

if { x n x } n is a multi-null sequence.

3 Main results

To prove the main results in this paper, first, we introduce some lemmas.

Lemma 3.1 ([11])

Let { ( X j , j ) } j N be a uniformly convex multi-Banach space with modulus of the convexity δ. Let x j , y j X. If ( x 1 , , x j ) j r, ( y 1 , , y j ) j r, rR and ( x 1 y 1 , , x j y j ) j ϵ>0, then

( λ x 1 + ( 1 λ ) y 1 , , λ x j + ( 1 λ ) y j ) j r ( 1 2 λ ( 1 λ ) δ R ( ϵ ) )

for all λ[0,1], where δ R (ϵ)=δ( ϵ R ).

To proceed, let { ( X j , j ) } j N denote a uniformly convex multi-Banach space with modulus of the convexity δ.

Lemma 3.2 Let C be a closed convex subset of X and for each j1, T j :CC be a nonexpansive mapping. Let xC, f j F( T j ) for each j1 and 0<αβ<1. Then, for any ϵ>0, there exists N>0 such that, for all nN,

( T 1 k ( λ T 1 n x + ( 1 λ ) f 1 ) ( λ T 1 n + k x + ( 1 λ ) f 1 ) , , T j k ( λ T j n x + ( 1 λ ) f j ) ( λ T j n + k x + ( 1 λ ) f j ) ) j < ϵ

for all k>0 and λ[α,β].

Proof Put

r = lim n ( T 1 n x f 1 , , T j n x f j ) j , R = ( x f 1 , , x f j ) j , c = min { 2 λ ( 1 λ ) : α λ β } .

For given ϵ>0, choose d>0 such that r r + d >1c δ R (ϵ). Then there exists N>0 such that, for all nN,

( T 1 n x f 1 , , T j n x f j ) j <r+d.

For each nN, k>0 and αλβ, we put

u j =(1λ) ( T j k z f j ) , v j =λ ( T j n + k x T j k z ) ,

where z j =λ T j n x+(1λ) f j . Then we have

( u 1 , , u j ) j λ(1λ) ( T 1 n x f 1 , , T j n x f j ) j

and

( v 1 , , v j ) j λ(1λ) ( T 1 n x f 1 , , T j n x f j ) j .

Suppose that

( u 1 v 1 , , u j v j ) j = ( T 1 k z ( λ T 1 n + k x + ( 1 λ ) f 1 ) , , T 1 k z ( λ T j n + k x + ( 1 λ ) f j ) ) j ϵ .

Then, by Lemma 3.1, we have

( λ u 1 + ( 1 λ ) v 1 , , λ u j + ( 1 λ ) v j ) j = λ ( 1 λ ) ( T 1 n + k x f 1 , , T j n + k x f j ) j λ ( 1 λ ) ( T 1 n x f 1 , , T j n x f j ) j ( 1 2 λ ( 1 λ ) δ R ( ϵ ) ) λ ( 1 λ ) ( T 1 n x f 1 , , T j n x f j ) j ( 1 c δ R ( ϵ ) ) .

Hence we have

(r+d) ( 1 c δ R ( ϵ ) ) <r(r+d) ( 1 C δ R ( ϵ ) ) ,

which is a contradiction. This completes the proof. □

Lemma 3.3 (Browder [12])

Let C be a closed convex subset of X and T j :CC be a nonexpansive mapping. If { u i } is a weakly convergent sequence in C with the weak limit u 0 and lim i u i T j u i =0, then u 0 is a fixed point of T j .

Lemma 3.4 Let C be a closed convex subset of X and, for each j1, T j :CC be a nonexpansive mapping. Then, for all xC and n>0,

lim i sup j ( T 1 k S n , 1 T 1 i x S n , 1 T 1 k T 1 i x , , T j k S n , j T j i x S n , j T j k T j i x ) j =0
(1)

uniformly for each k1.

Proof By induction on n, we prove this lemma. First, we prove the conclusion in the case n=2. Put

r = lim n sup j 1 ( T 1 n + 1 x T 1 n x , , T j n + 1 x T j n x ) j , R = ( x T 1 x , , x T j x ) j , x i , j = T j i x

for each i1.

If r0, then, for any ϵ>0, choose c>0 such that r r + c >1 δ R (ϵ)/2. Then there exists N>0 such that, for all iN,

( T 1 k x i , 1 T 1 k + 1 x i , 1 , , T j k x i , j T j k + 1 x i , j ) j r+c

for each k1. If we put

u j = 1 2 ( T j k z T j k x i , j ) , v j = 1 2 ( T j k + 1 x i , j T j k z j ) ,

where iN, k>0 and z j = 1 2 ( x i , j + T j x i , j ), then we have

( u 1 , , u j ) j 1 2 ( z 1 x i , 1 z j x i , j ) j = 1 4 ( T 1 x i , 1 x i , 1 , , T j x i , j x i , j ) j 1 4 ( r + c ) .

Similarly, we have ( v 1 , , v j ) j 1 4 (r+c). Suppose that

( u 1 v 1 , , u j v j ) j = ( T 1 k z 1 1 2 ( T 1 k + 1 x i , 1 + T 1 k x i , 1 ) , , T j k z j 1 2 ( T j k + 1 x i , j + T j k x i , j ) ) j ϵ .

Then, by Lemma 3.1, we have

1 2 ( u 1 + v 1 , , u j + v j ) j = 1 4 ( T 1 k + 1 x i , 1 T 1 k x i , 1 , , T j k + 1 x i , j T j k x i , j ) j 1 4 ( r + c ) ( 1 1 2 δ R ( ϵ ) ) ,

which contradicts r>(r+c)(1 1 2 δ R (ϵ)).

If r=0, then, for any ϵ>0, choose i>0 so large that sup j ( u 1 , , u j ) j < ϵ 2 . Hence we have

sup j 1 ( T 1 k z 1 1 2 ( T 1 k + 1 x i , 1 + T 1 k x i , 1 ) , , T j k z j 1 2 ( T j k + 1 x i , j + T j k x i , j ) ) j = sup j 1 ( u 1 v 1 , , u j v j ) j sup j 1 ( u 1 , , u j ) j + sup j 1 ( v 1 , , v j ) j < ϵ .

This completes the proof of the case n=2.

Now, suppose that

lim i sup j 1 ( T 1 k S n 1 , 1 x i , 1 S n 1 , 1 T 1 k x i , 1 , , T j k S n 1 , j x i , j S n 1 , j T j k x i , j ) j =0

uniformly for each k1. We claim that

lim i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j

exists. Put

r= lim inf i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j .

For any ϵ>0, choose i>0 such that

sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j <r+ ϵ 2

and

sup j 1 ( S n 1 , 1 T 1 k x i + 1 , 1 T 1 k S n 1 , 1 x i + 1 , 1 , , S n 1 , j T j k x i + 1 , j T j k S n 1 , j x i + 1 , j ) j < ϵ 2 .

Then we have

sup j 1 ( S n 1 , 1 T 1 x i + k , 1 x i + k , 1 , , S n 1 , j T j x i + k , j x i + k , j ) j sup j 1 ( S n 1 , 1 T 1 k x i + 1 , 1 T 1 k S n 1 , 1 x i + 1 , 1 , , S n 1 , j T j k x i + 1 , j T j k S n 1 , j x i + 1 , j ) j + sup j 1 ( T 1 k S n 1 , 1 x i + 1 , 1 T 1 k x i , 1 , , T j k S n 1 , j x i + 1 , j T j k x i , j ) j < ϵ 2 + r + ϵ 2 = r + ϵ

for all k1. Therefore, we have

lim sup i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j = lim sup k sup j 1 ( S n 1 , 1 T 1 x i + k , 1 x i + k , 1 , , S n 1 , j T j x i + k , j x i + k , j ) j < r + ϵ .

Since ϵ>0 is arbitrary, we have

lim sup i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , 1 x i , 1 ) j lim inf i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j ,

i.e., lim i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j exists.

Now, we put

r= lim i sup j 1 ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j .

If r0, then, for any ϵ, choose c>0 such that

r c r + 2 c >1 ( 2 ( n 1 ) n 2 ) δ 3 r (ϵ).

Then there exists N>0 such that, if, for all iN, we put

u j = n ( n 1 ) ( T j k S n , j x i , j T j k x i , j ) , v j =n ( S n 1 , j T j k x i + 1 , j T j k S n , j x i , j ) ,

so

( u 1 , , u j ) j ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j r + c , ( v 1 , , v 2 ) j n ( S n 1 , 1 T 1 k x i + 1 , 1 T 1 k S n 1 , 1 x i + 1 , 1 , , S n 1 , j T j k x i + 1 , j T j k S n 1 , j x i + 1 , j ) j + ( S n 1 , 1 T 1 x i , 1 x i , 1 , , S n 1 , j T j x i , j x i , j ) j r + 2 c

and

( u 1 v 1 , , u j v j ) j = n n 1 ( T 1 k S n , 1 x i , 1 S n , 1 T 1 k x i , 1 , , T j k S n , j x i , j S n , j T j k x i , j ) j .

Hence, by the method in the proof of the case n=2, we have

sup j 1 ( T 1 k S n , 1 x i , 1 S n , 1 T 1 k x i , 1 , , T j k S n , j x i , j S n , j T j k x i , j ) j <ϵ

for all k1 and iN.

If r=0, then, as in the proof of the case n=2, there exists N such that, for each i N ,

sup j 1 ( u 1 , , u j ) j < ϵ 2 , sup j 1 ( v 1 , , v j ) j < ϵ 2 .

Therefore, we have

sup j 1 ( T 1 k S n , 1 x i , 1 S n , 1 T 1 k x i , 1 , , T j k S n , j x i , j S n , j T j k x i , j ) j <ϵ.

This completes the proof. □

Now, assume that the norm of X is Frechet differentiable and then we have the following.

Proposition 3.5 ([4, 6, 13])

Let C be a closed convex subset of X and, for each j1, T j :CC be a nonexpansive mapping. If we put W j (x)= m c o ¯ { T j k x:km} for all xC, then W j (x)F( T j ) is at most one point.

In this paper, we give a new proof of the following theorem, which is due to Reich [6].

Theorem 3.6 Let { ( X j , j ) } j N be a uniformly convex multi-Banach space which has the Fréchet differentiable norm. Let C be a closed convex subset of X and, for each j1, T j :CC be a nonexpansive mapping. Then the following statements are equivalent:

  1. (1)

    F( T j ).

  2. (2)

    { T j n x} is bounded for all xC.

  3. (3)

    For all xC, { S n T j i x} converges weakly to a point ( y 1 ,, y j ) C j uniformly for each i1.

Proof (1) (2) is well known in [12].

(3) (2) Suppose that, for some xC, there exists an unbounded subsequence { T j n i x} of { T j n x}. For each j1, since T j is a nonexpansive mapping, it follows that, for each m>0, the sequence { S m < j T j n i x} is also unbounded, which contradicts the condition (3).

(2) (3) Since { T j n x} is bounded and

( T 1 S n , 1 T 1 i x S n , 1 T 1 i x , , T j S n , j T j i x S n , j T j i x ) j ( T 1 S n , 1 T 1 i x S n , 1 T 1 T 1 i x , , T j S n , j T j i x S n , j T j T j i x ) j + ( S n , 1 T 1 T 1 i x S n , 1 T 1 i x , , S n , j T j T j i x S n , j T j i x ) j ( T 1 S n , 1 T 1 i x S n , 1 T 1 T 1 i x , , T j S n , j T j i x S n , j T j T j i x ) j + 1 n ( T 1 i + 1 + n x T 1 i x , , T j i + 1 + n x T j i x ) j ,

there exists a sequence { S n , j T j i n x} such that

lim n sup j 1 ( T 1 S n , 1 T 1 i n x S n , 1 T 1 i n x , , T j S n , j T j i n x S n , j T j i n x ) j =0.

Then, by Lemma 3.3 and Proposition 3.5, it follows that any weakly multi-convergent subsequence of { S n , j T j i n x} multi-converges weakly to a point y j , i.e., S n , j T j i n x y j , where y j = W j (x)F( T j ). Also, by Lemma 3.4, it follows that

lim n sup j 1 ( T 1 S n , 1 T 1 i n + k n + i x S n , 1 T 1 i n + k n + i x , , T j S n , j T j i n + k n + i x S n , j T j i n + k n + i x ) j =0

for all i,k1. Therefore, S n , j T j i n + k n x i y j uniformly for each k1.

On the other hand, for each n1 with m i n , we have

S m , j T j i x = 1 m k = 0 m 1 T j k x i = 1 m ( k = i n + t n m 1 T j k x i + n ( k = 0 t S n T j i n + k n x i ) + k = 0 i n T j k x i ) ,

where m=tn+ i n +r, r<n. Since { S n , j T j i n + k n x i } multi-converges to y j uniformly for each k1, it follows that { S m , j T j i x} converges weakly to y j uniformly for each i1. This completes the proof. □

References

  1. Baillon JB: Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert. C. R. Acad. Sci. Paris Sér. A-B 1975, 280: 1511–1514.

    MathSciNet  MATH  Google Scholar 

  2. Pazy A: On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space. Isr. J. Math. 1977, 26: 197–204. 10.1007/BF03007669

    Article  MathSciNet  MATH  Google Scholar 

  3. Baillon JB:Comportement asymptotique des itérés de contractions non linéaires dans les espaces L p . C. R. Acad. Sci. Paris Sér. A-B 1978, 286: 157–159.

    MathSciNet  MATH  Google Scholar 

  4. Bruk RE: A simple proof of the mean ergodic theorem for nonlinear contractions in Banach space. Isr. J. Math. 1979, 32: 107–116. 10.1007/BF02764907

    Article  Google Scholar 

  5. Reich S: Almost convergence and nonlinear ergodic theorems. J. Approx. Theory 1978, 24: 269–272. 10.1016/0021-9045(78)90012-6

    Article  MathSciNet  MATH  Google Scholar 

  6. Reich S: Weak convergence theorems for nonexpansive mappings in Banach space. J. Math. Anal. Appl. 1979, 67: 274–276. 10.1016/0022-247X(79)90024-6

    Article  MathSciNet  MATH  Google Scholar 

  7. Reich, S: Nonlinear ergodic theory in Banach space. Argonne National Laboratory Report # 79–69 (1979)

    Google Scholar 

  8. Dales, HG, Polyakov, ME: Multi-normed spaces and multi-Banach algebras. Preprint

  9. Dales HG, Moslehian MS: Stability of mappings on multi-normed spaces. Glasg. Math. J. 2007, 49: 321–332. 10.1017/S0017089507003552

    Article  MathSciNet  MATH  Google Scholar 

  10. Moslehian MS, Nikodem K, Popa D: Asymptotic aspect of the quadratic functional equation in multi-normed spaces. J. Math. Anal. Appl. 2009, 355: 717–724. 10.1016/j.jmaa.2009.02.017

    Article  MathSciNet  MATH  Google Scholar 

  11. Groetsch CW: A note on segmention Mann iterates. J. Math. Anal. Appl. 1972, 40: 369–372. 10.1016/0022-247X(72)90056-X

    Article  MathSciNet  MATH  Google Scholar 

  12. Browder FE Pure Math. 18. In Nonlinear Operators and Nonlinear Equations of Evolution in Banach Space. Am. Math. Soc., Providence; 1976.

    Chapter  Google Scholar 

  13. Hirano N: A proof of the mean ergodic theorem for nonexpansive mappings in Banach space. Proc. Am. Math. Soc. 1980, 78: 361–365. 10.1090/S0002-9939-1980-0553377-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The third author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2011-0021821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Morghi Kenari.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors carried out the proof. All authors conceived of the study, and participated in its design and coordination. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenari, H.M., Saadati, R. & Cho, Y.J. The mean ergodic theorem for nonexpansive mappings in multi-Banach spaces. J Inequal Appl 2014, 259 (2014). https://doi.org/10.1186/1029-242X-2014-259

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2014-259

Keywords