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1 Introduction
Let X be a Banach space and C be a closed convex subset of X. For each j ≥ , a mapping
Tj : C → C is said to be nonexpansive on C if

‖Tjx – Tjy‖ ≤ ‖x – y‖

for all x, y ∈ C. For each j ≥ , let F(Tj) be the set of fixed points of Tj. If X is a strictly
convex Banach space, then F(Tj) is closed and convex.
In [], Baillon proved the first nonlinear ergodic theorem such that, if X is a real Hilbert

space and F(Tj) �= ∅ for each j ≥ , then, for each x ∈ C, the sequence {Sn,jx} defined by

Sn,jx =

n

(
x + Tjx + · · · + Tn–

j x
)

converges weakly to a fixed point of Tj. It was also shown by Pazy [] that, if X is a real
Hilbert space and Sn,jx converges weakly to y ∈ C, then y ∈ F(T). These results were ex-
tended by Baillon [], Bruck [] and Reich [, ] and [].

2 Multi-Banach spaces
The notion of a multi-normed space was introduced by Dales and Polyakov in []. This
concept is somewhat similar to an operator sequence space and has some connections
with the operator spaces and Banach lattices. Observations on multi-normed spaces and
examples are given in [–].
Let (E,‖ · ‖) be a complex normed space and let k ∈N. We denote by Ek the linear space

E ⊕ · · · ⊕ E consisting of k-tuples (x, . . . ,xk), where x, . . . ,xk ∈ E. The linear operations
on Ek are defined coordinate-wise. The zero element of either E or Ek is denoted by .We
denote by Nk the set {, , . . . ,k} and by �k the group of permutations on k symbols.
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Definition . A multi-norm on {Ek : k ∈ N} is a sequence {‖ · ‖k}k∈N such that ‖ · ‖k is a
norm on Ek for each k ∈N with k ≥  satisfying the following conditions:
(A) ‖(xσ (), . . . ,xσ (k))‖k = ‖(x, . . . ,xk)‖k (σ ∈ �k , x, . . . ,xk ∈ E);
(A) ‖(αx, . . . ,αkxk)‖k ≤ (maxi∈Nk |αi|)‖(x, . . . ,xk)‖k (α, . . . ,αk ∈C, x, . . . ,xk ∈ E);
(A) ‖(x, . . . ,xk–, )‖k = ‖(x, . . . ,xk–)‖k– (x, . . . ,xk– ∈ E);
(A) ‖(x, . . . ,xk–,xk–)‖k = ‖(x, . . . ,xk–)‖k– (x, . . . ,xk– ∈ E).
In this case, we say that {(Ek ,‖ · ‖k)}k∈N is amulti-normed space.

Lemma . ([]) Suppose that {(Ek ,‖ · ‖k)}k∈N is a multi-normed space and take k ∈ N.
Then we have the following:
() ‖(x, . . . ,x)‖k = ‖x‖ (x ∈ E);
() maxi∈Nk ‖xi‖ ≤ ‖x, . . . ,xk‖k ≤ ∑k

i= ‖xi‖ ≤ kmaxi∈Nk ‖xi‖ (x, . . . ,xk ∈ E).

It follows from () that, if (E,‖ · ‖) is a Banach space, then (Ek ,‖ · ‖k) is a Banach space
for each k ∈N. In this case {(Ek ,‖ · ‖k)}k∈N is a multi-Banach space.
Now, we give two important examples of multi-norms for an arbitrary normed space

E [].

Example . The sequence {‖ · ‖k}k∈N on {Ek : k ∈N} defined by

∥∥(x, . . . ,xk)∥∥k :=max
i∈Nk

‖xi‖ (x, . . . ,xk ∈ E)

is a multi-norm, which is called theminimummulti-norm. The terminology ‘minimum’ is
justified by the property ().

Example . Let {(‖ · ‖α
k : k ∈N) : α ∈ A} be the (nonempty) family of all multi-norms on

{Ek : k ∈N}. For each k ∈N, set

∥∥(x, . . . ,xk)∥∥k := sup
α∈A

∥∥(x, . . . ,xk)∥∥α

k (x, . . . ,xk ∈ E).

Then {‖ ·‖k}k∈N is amulti-norm on {Ek : k ∈N}, which is called themaximummulti-norm.

We need the following observation, which can easily be deduced from the triangle in-
equality for the norm ‖ · ‖k and the property () of multi-norms.

Lemma . Suppose that k ∈ N and (x, . . . ,xk) ∈ Ek . For each j ∈ {, . . . ,k}, let {xjn}n≥ be
a sequence in E such that limn→∞ xjn = xj. Then, for each (y, . . . , yk) ∈ Ek , we have

lim
n→∞

(
xn – y, . . . ,xkn – yk

)
= (x – y, . . . ,xk – yk).

Definition . Let {(Ek ,‖ · · · ‖k)}k∈N be a multi-normed space. A sequence {xn}n≥ in E is
called amulti-null sequence if, for any ε > , there exists n ∈N such that

sup
k∈N

∥∥(xn, . . . ,xn+k–)∥∥k < ε (n≥ n).
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Let x ∈ E. We say that the sequence {xn}n≥ ismulti-convergent to a point x ∈ E and write

lim
n→∞xn = x

if {xn – x}n is a multi-null sequence.

3 Main results
To prove the main results in this paper, first, we introduce some lemmas.

Lemma . ([]) Let {(Xj,‖ · ‖j)}j∈N be a uniformly convex multi-Banach space with mod-
ulus of the convexity δ. Let xj, yj ∈ X. If ‖(x, . . . ,xj)‖j ≤ r, ‖(y, . . . , yj)‖j ≤ r, r ≤ R and
‖(x – y, . . . ,xj – yj)‖j ≥ ε > , then

∥∥(
λx + ( – λ)y, . . . ,λxj + ( – λ)yj

)∥∥
j ≤ r

(
 – λ( – λ)δR(ε)

)
for all λ ∈ [, ], where δR(ε) = δ( ε

R ).

To proceed, let {(Xj,‖ ·‖j)}j∈N denote a uniformly convexmulti-Banach space withmod-
ulus of the convexity δ.

Lemma . Let C be a closed convex subset of X and for each j ≥ , Tj : C → C be a nonex-
pansive mapping. Let x ∈ C, fj ∈ F(Tj) for each j ≥  and  < α ≤ β < . Then, for any ε > ,
there exists N >  such that, for all n ≥ N ,

∥∥(
Tk

(
λTn

 x + ( – λ)f
)
–

(
λTn+k

 x + ( – λ)f
)
,

. . . ,Tk
j
(
λTn

j x + ( – λ)fj
)
–

(
λTn+k

j x + ( – λ)fj
))∥∥

j

< ε

for all k >  and λ ∈ [α,β].

Proof Put

r = lim
n

∥∥(
Tn
 x – f, . . . ,Tn

j x – fj
)∥∥

j, R =
∥∥(x – f, . . . ,x – fj)

∥∥
j,

c =min
{
λ( – λ) : α ≤ λ ≤ β

}
.

For given ε > , choose d >  such that r
r+d >  – cδR(ε). Then there exists N >  such that,

for all n ≥ N ,

∥∥(
Tn
 x – f, . . . ,Tn

j x – fj
)∥∥

j < r + d.

For each n ≥ N , k >  and α ≤ λ ≤ β , we put

uj = ( – λ)
(
Tk
j z – fj

)
, vj = λ

(
Tn+k
j x – Tk

j z
)
,

where zj = λTn
j x + ( – λ)fj. Then we have

∥∥(u, . . . ,uj)∥∥j ≤ λ( – λ)
∥∥(
Tn
 x – f, . . . ,Tn

j x – fj
)∥∥

j

http://www.journalofinequalitiesandapplications.com/content/2014/1/259
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and

∥∥(v, . . . , vj)∥∥j ≤ λ( – λ)
∥∥(
Tn
 x – f, . . . ,Tn

j x – fj
)∥∥

j.

Suppose that

∥∥(u – v, . . . ,uj – vj)
∥∥
j

=
∥∥(
Tk
 z –

(
λTn+k

 x + ( – λ)f
)
, . . . ,Tk

 z –
(
λTn+k

j x + ( – λ)fj
))∥∥

j

≥ ε.

Then, by Lemma ., we have

∥∥(
λu + ( – λ)v, . . . ,λuj + ( – λ)vj

)∥∥
j

= λ( – λ)
∥∥(
Tn+k
 x – f, . . . ,Tn+k

j x – fj
)∥∥

j

≤ λ( – λ)
∥∥(
Tn
 x – f, . . . ,Tn

j x – fj
)∥∥

j

(
 – λ( – λ)δR(ε)

)
≤ λ( – λ)

∥∥(
Tn
 x – f, . . . ,Tn

j x – fj
)∥∥

j

(
 – cδR(ε)

)
.

Hence we have

(r + d)
(
 – cδR(ε)

)
< r ≤ (r + d)

(
 –CδR(ε)

)
,

which is a contradiction. This completes the proof. �

Lemma . (Browder []) Let C be a closed convex subset of X and Tj : C → C be a
nonexpansive mapping. If {ui} is a weakly convergent sequence in C with the weak limit u
and limi ‖ui – Tjui‖ = , then u is a fixed point of Tj.

Lemma . Let C be a closed convex subset of X and, for each j ≥ , Tj : C → C be a
nonexpansive mapping. Then, for all x ∈ C and n > ,

lim
i→∞ sup

j→∞

∥∥(
Tk
 Sn,T

i
x – Sn,Tk

 T
i
x, . . . ,T

k
j Sn,jT

i
j x – Sn,jTk

j T
i
j x

)∥∥
j =  ()

uniformly for each k ≥ .

Proof By induction on n, we prove this lemma. First, we prove the conclusion in the case
n = . Put

r = lim
n→∞ sup

j≥

∥∥(
Tn+
 x – Tn

 x, . . . ,T
n+
j x – Tn

j x
)∥∥

j,

R =
∥∥(x – Tx, . . . ,x – Tjx)

∥∥
j, xi,j = Ti

j x

for each i ≥ .
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If r �= , then, for any ε > , choose c >  such that r
r+c >  – δR(ε)/. Then there exists

N >  such that, for all i≥ N ,

∥∥(
Tk
 xi, – Tk+

 xi,, . . . ,Tk
j xi,j – Tk+

j xi,j
)∥∥

j ≤ r + c

for each k ≥ . If we put

uj =


(
Tk
j z – Tk

j xi,j
)
, vj =



(
Tk+
j xi,j – Tk

j zj
)
,

where i≥ N , k >  and zj = 
 (xi,j + Tjxi,j), then we have

∥∥(u, . . . ,uj)∥∥j ≤


∥∥(z – xi, – zj – xi,j)

∥∥
j

=



∥∥(Txi, – xi,, . . . ,Tjxi,j – xi,j)
∥∥
j

≤ 

(r + c).

Similarly, we have ‖(v, . . . , vj)‖j ≤ 
 (r + c). Suppose that

∥∥(u – v, . . . ,uj – vj)
∥∥
j

=
∥∥∥∥
(
Tk
 z –



(
Tk+
 xi, + Tk

 xi,
)
, . . . ,Tk

j zj –


(
Tk+
j xi,j + Tk

j xi,j
))∥∥∥∥

j

≥ ε.

Then, by Lemma ., we have

∥∥∥∥  (u + v, . . . ,uj + vj)
∥∥∥∥
j
=




∥∥(
Tk+
 xi, – Tk

 xi,, . . . ,T
k+
j xi,j – Tk

j xi,j
)∥∥

j

≤ 

(r + c)

(
 –



δR(ε)

)
,

which contradicts r > (r + c)( – 
δR(ε)).

If r = , then, for any ε > , choose i >  so large that supj ‖(u, . . . ,uj)‖j < ε
 . Hence we

have

sup
j≥

∥∥∥∥
(
Tk
 z –



(
Tk+
 xi, + Tk

 xi,
)
, . . . ,Tk

j zj –


(
Tk+
j xi,j + Tk

j xi,j
))∥∥∥∥

j

= sup
j≥

∥∥(u – v, . . . ,uj – vj)
∥∥
j

≤ sup
j≥

∥∥(u, . . . ,uj)∥∥j + sup
j≥

∥∥(v, . . . , vj)∥∥j

< ε.

This completes the proof of the case n = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/259


Kenari et al. Journal of Inequalities and Applications 2014, 2014:259 Page 6 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/259

Now, suppose that

lim
i→∞ sup

j≥

∥∥(
Tk
 Sn–,xi, – Sn–,Tk

 xi,, . . . ,T
k
j Sn–,jxi,j – Sn–,jTk

j xi,j
)∥∥

j = 

uniformly for each k ≥ . We claim that

lim
i→∞ sup

j≥

∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)
∥∥
j

exists. Put

r = lim inf
i→∞ sup

j≥

∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)
∥∥
j.

For any ε > , choose i >  such that

sup
j≥

∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)
∥∥
j < r +

ε



and

sup
j≥

∥∥(
Sn–,Tk

 xi+, – Tk
 Sn–,xi+,, . . . ,Sn–,jT

k
j xi+,j – Tk

j Sn–,jxi+,j
)∥∥

j <
ε


.

Then we have

sup
j≥

∥∥(Sn–,Txi+k, – xi+k,, . . . ,Sn–,jTjxi+k,j – xi+k,j)
∥∥
j

≤ sup
j≥

∥∥(
Sn–,Tk

 xi+, – Tk
 Sn–,xi+,, . . . ,Sn–,jT

k
j xi+,j – Tk

j Sn–,jxi+,j
)∥∥

j

+ sup
j≥

∥∥(
Tk
 Sn–,xi+, – Tk

 xi,, . . . ,T
k
j Sn–,jxi+,j – Tk

j xi,j
)∥∥

j

<
ε


+ r +

ε



= r + ε

for all k ≥ . Therefore, we have

lim sup
i→∞

sup
j≥

∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)
∥∥
j

= lim sup
k→∞

sup
j≥

∥∥(Sn–,Txi+k, – xi+k,, . . . ,Sn–,jTjxi+k,j – xi+k,j)
∥∥
j

< r + ε.

Since ε >  is arbitrary, we have

lim sup
i→∞

sup
j≥

∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi, – xi,)
∥∥
j

≤ lim inf
i→∞ sup

j≥

∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)
∥∥
j,

i.e., limi→∞ supj≥ ‖(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)‖j exists.
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Now, we put

r = lim
i→∞ sup

j≥

∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)
∥∥
j.

If r �= , then, for any ε, choose c >  such that

r – c
r + c

>  –
(

(n – )
n

)
δr(ε).

Then there exists N >  such that, if, for all i≥ N , we put

uj =
n

(n – )
(
Tk
j Sn,jxi,j – Tk

j xi,j
)
, vj = n

(
Sn–,jTk

j xi+,j – Tk
j Sn,jxi,j

)
,

so

∥∥(u, . . . ,uj)∥∥j ≤
∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)

∥∥
j ≤ r + c,∥∥(v, . . . , v)∥∥j

≤ n
∥∥(
Sn–,Tk

 xi+, – Tk
 Sn–,xi+,, . . . ,Sn–,jT

k
j xi+,j – Tk

j Sn–,jxi+,j
)∥∥

j

+
∥∥(Sn–,Txi, – xi,, . . . ,Sn–,jTjxi,j – xi,j)

∥∥
j

≤ r + c

and

∥∥(u – v, . . . ,uj – vj)
∥∥
j

=
n

n – 
∥∥(
Tk
 Sn,xi, – Sn,Tk

 xi,, . . . ,T
k
j Sn,jxi,j – Sn,jTk

j xi,j
)∥∥

j.

Hence, by the method in the proof of the case n = , we have

sup
j≥

∥∥(
Tk
 Sn,xi, – Sn,Tk

 xi,, . . . ,T
k
j Sn,jxi,j – Sn,jTk

j xi,j
)∥∥

j < ε

for all k ≥  and i ≥ N .
If r = , then, as in the proof of the case n = , there exists N ′ such that, for each i≥ N ′,

sup
j≥

∥∥(u, . . . ,uj)∥∥j <
ε


, sup

j≥

∥∥(v, . . . , vj)∥∥j <
ε


.

Therefore, we have

sup
j≥

∥∥(
Tk
 Sn,xi, – Sn,Tk

 xi,, . . . ,T
k
j Sn,jxi,j – Sn,jTk

j xi,j
)∥∥

j < ε.

This completes the proof. �

Now, assume that the normofX is Frechet differentiable and thenwe have the following.
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Proposition . ([, , ]) Let C be a closed convex subset of X and, for each j ≥ , Tj :
C → C be a nonexpansive mapping. If we putWj(x) = ∩mco{Tk

j x : k ≥ m} for all x ∈ C, then
Wj(x)∩ F(Tj) is at most one point.

In this paper, we give a new proof of the following theorem, which is due to Reich [].

Theorem . Let {(Xj,‖ · ‖j)}j∈N be a uniformly convex multi-Banach space which has
the Fréchet differentiable norm. Let C be a closed convex subset of X and, for each j ≥ ,
Tj : C → C be a nonexpansive mapping. Then the following statements are equivalent:
() F(Tj) �= ∅.
() {Tn

j x} is bounded for all x ∈ C.
() For all x ∈ C, {SnTi

j x} converges weakly to a point (y, . . . , yj) ∈ Cj uniformly for each
i≥ .

Proof () ⇐⇒ () is well known in [].
()⇐⇒ () Suppose that, for some x ∈ C, there exists an unbounded subsequence {Tni

j x}
of {Tn

j x}. For each j ≥ , since Tj is a nonexpansivemapping, it follows that, for eachm > ,
the sequence {Sm<jT

ni
j x} is also unbounded, which contradicts the condition ().

() ⇐⇒ () Since {Tn
j x} is bounded and

∥∥(
TSn,Ti

x – Sn,Ti
x, . . . ,TjSn,jTi

j x – Sn,jTi
j x

)∥∥
j

≤ ∥∥(
TSn,Ti

x – Sn,TTi
x, . . . ,TjSn,jTi

j x – Sn,jTjTi
j x

)∥∥
j

+
∥∥(
Sn,TTi

x – Sn,Ti
x, . . . ,Sn,jTjTi

j x – Sn,jTi
j x

)∥∥
j

≤ ∥∥(
TSn,Ti

x – Sn,TTi
x, . . . ,TjSn,jTi

j x – Sn,jTjTi
j x

)∥∥
j

+

n

∥∥(
Ti++n
 x – Ti

x, . . . ,T
i++n
j x – Ti

j x
)∥∥

j,

there exists a sequence {Sn,jTin
j x} such that

lim
n→∞ sup

j≥

∥∥(
TSn,Tin

 x – Sn,Tin
 x, . . . ,TjSn,jTin

j x – Sn,jTin
j x

)∥∥
j = .

Then, by Lemma . and Proposition ., it follows that any weakly multi-convergent
subsequence of {Sn,jTin

j x} multi-converges weakly to a point yj, i.e., Sn,jTin
j x ⇁ yj, where

yj =Wj(x)∩ F(Tj). Also, by Lemma ., it follows that

lim
n→∞ sup

j≥

∥∥(
TSn,Tin+kn+i

 x – Sn,Tin+kn+i
 x, . . . ,TjSn,jTin+kn+i

j x – Sn,jTin+kn+i
j x

)∥∥
j = 

for all i,k ≥ . Therefore, Sn,jTin+kn
j xi ⇁ yj uniformly for each k ≥ .

On the other hand, for each n≥  with m ≥ in, we have

Sm,jTi
j x =


m

m–∑
k=

Tk
j xi

=

m

( m–∑
k=in+tn

Tk
j xi + n

( t∑
k=

SnTin+kn
j xi

)
+

in∑
k=

Tk
j xi

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/259
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where m = tn + in + r, r < n. Since {Sn,jTin+kn
j xi} multi-converges to yj uniformly for each

k ≥ , it follows that {Sm,jTi
j x} converges weakly to yj uniformly for each i ≥ . This com-

pletes the proof. �
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