# Inequalities and asymptotic expansions associated with the Wallis sequence

## Abstract

We present the asymptotic expansions of functions involving the ratio of gamma functions and provide formulas for determining the coefficients of the asymptotic expansions. As consequences, we obtain the asymptotic expansions of the Wallis sequence. Also, we establish inequalities for the Wallis sequence.

MSC:40A05, 33B15, 41A60, 26D15.

## 1 Introduction

The Wallis sequence to which the title refers is

${W}_{n}=\prod _{k=1}^{n}\frac{4{k}^{2}}{4{k}^{2}-1},\phantom{\rule{1em}{0ex}}n\in \mathbb{N}:=\left\{1,2,3,\dots \right\}.$
(1.1)

Wallis (1616-1703) discovered that

$\prod _{k=1}^{\mathrm{\infty }}\frac{4{k}^{2}}{4{k}^{2}-1}=\frac{2}{1}\frac{2}{3}\frac{4}{3}\frac{4}{5}\frac{6}{5}\frac{6}{7}\frac{8}{7}\cdots =\frac{\pi }{2}$
(1.2)

(see [[1], p.68]). Based on Wallis’ infinite product (1.2), the first infinite continued fraction of π was given by Brouncker (1620-1684):

$\frac{4}{\pi }=1+\frac{1}{2+\frac{9}{2+\frac{25}{2+\frac{49}{2+\ddots }}}}.$
(1.3)

Euler’s analysis of Wallis’ proof led him to formulas for the gamma and beta functions. Stirling (1692-1770) used (1.2) to determine the constant factor in his asymptotic formula

$n!\sim \sqrt{2\pi n}{\left(\frac{n}{e}\right)}^{n},\phantom{\rule{1em}{0ex}}n\to \mathrm{\infty }.$

Several elementary proofs of (1.2) can be found (see, for example, [24]). An interesting geometric construction produces (1.2) [5]. Many formulas exist for the representation of π, and a collection of these formulas is listed in [6, 7]. For more on the history of π see [1, 810].

Some inequalities and asymptotic formulas associated with the Wallis sequence ${W}_{n}$ can be found (see, for example, [1123]). In [13], Hirschhorn proved that for $n\in \mathbb{N}$,

$\frac{\pi }{2}\left(1-\frac{1}{4n+\frac{7}{3}}\right)<{W}_{n}<\frac{\pi }{2}\left(1-\frac{1}{4n+\frac{8}{3}}\right).$
(1.4)

Also in [13], Hirschhorn pointed out that if the ${c}_{j}$ are given by

$tanh\left(\frac{x}{4}\right)=\sum _{j=0}^{\mathrm{\infty }}{c}_{j}\frac{{x}^{2j+1}}{\left(2j\right)!},$
(1.5)

then, as $n\to \mathrm{\infty }$,

${W}_{n}\sim \frac{\pi }{2}{\left(1+\frac{1}{2n}\right)}^{-1}\prod _{j\ge 0}exp\left(\frac{{c}_{j}}{{n}^{2j+1}}\right)=\frac{\pi }{2}{\left(1+\frac{1}{2n}\right)}^{-1}exp\left(\sum _{j=0}^{\mathrm{\infty }}\frac{{c}_{j}}{{n}^{2j+1}}\right).$
(1.6)

Remark 1 It is well known (see [[24], p.85]) that

$tanhz=\sum _{k=1}^{\mathrm{\infty }}\frac{{2}^{2k}\left({2}^{2k}-1\right){B}_{2k}}{\left(2k\right)!}{z}^{2k-1},\phantom{\rule{1em}{0ex}}|z|<\frac{\pi }{2},$

where ${B}_{n}$ ($n\in {\mathbb{N}}_{0}:=\mathbb{N}\cup \left\{0\right\}$) are the Bernoulli numbers. We then obtain

$tanh\left(\frac{x}{4}\right)=\sum _{j=0}^{\mathrm{\infty }}\frac{\left({2}^{2j+2}-1\right){B}_{2j+2}}{{2}^{2j+1}\left(2j+1\right)\left(j+1\right)}\frac{{x}^{2j+1}}{\left(2j\right)!},\phantom{\rule{1em}{0ex}}|x|<2\pi .$
(1.7)

Thus we have

${c}_{j}=\frac{\left({2}^{2j+2}-1\right){B}_{2j+2}}{{2}^{2j+1}\left(2j+1\right)\left(j+1\right)},\phantom{\rule{1em}{0ex}}j\in {\mathbb{N}}_{0}:=\mathbb{N}\cup \left\{0\right\}.$
(1.8)

Let $r\ne 0$ be a given real number and $\ell \ge 0$ be a given integer. The first aim of this paper is to determine the coefficients ${c}_{j}\left(\ell ,r\right)$ (for $j\in \mathbb{N}$) such that

where the function $W\left(x\right)$ is defined by

$W\left(x\right)=\frac{\pi }{2}{\left(1+\frac{1}{2x}\right)}^{-1}\frac{1}{x}{\left[\frac{\mathrm{\Gamma }\left(x+1\right)}{\mathrm{\Gamma }\left(x+\frac{1}{2}\right)}\right]}^{2}.$
(1.9)

Clearly, ${W}_{n}=W\left(n\right)$. The second aim of this paper is to establish inequalities for the Wallis sequence ${W}_{n}$.

## 2 A useful lemma

The classical Euler’s gamma function is defined for $x>0$ by

$\mathrm{\Gamma }\left(x\right)={\int }_{0}^{\mathrm{\infty }}{t}^{x-1}{e}^{-t}\phantom{\rule{0.2em}{0ex}}\mathrm{d}t.$

The logarithmic derivative of $\mathrm{\Gamma }\left(x\right)$, denoted by $\psi \left(x\right)={\mathrm{\Gamma }}^{\prime }\left(x\right)/\mathrm{\Gamma }\left(x\right)$, is called psi (or digamma) function, and ${\psi }^{\left(k\right)}\left(x\right)$ ($k\in \mathbb{N}$) are called polygamma functions.

The following lemma is required in our present investigation.

Lemma 1 ([[25], Corollary 2.1])

Let $m,n\in \mathbb{N}$. Then for $x>0$,

$\begin{array}{r}\sum _{j=1}^{2m}\left(1-\frac{1}{{2}^{2j}}\right)\frac{2{B}_{2j}}{\left(2j\right)!}\frac{\left(2j+n-2\right)!}{{x}^{2j+n-1}}\\ \phantom{\rule{1em}{0ex}}<{\left(-1\right)}^{n}\left({\psi }^{\left(n-1\right)}\left(x+1\right)-{\psi }^{\left(n-1\right)}\left(x+\frac{1}{2}\right)\right)+\frac{\left(n-1\right)!}{2{x}^{n}}\\ \phantom{\rule{1em}{0ex}}<\sum _{j=1}^{2m-1}\left(1-\frac{1}{{2}^{2j}}\right)\frac{2{B}_{2j}}{\left(2j\right)!}\frac{\left(2j+n-2\right)!}{{x}^{2j+n-1}},\end{array}$
(2.1)

where ${B}_{n}$ are the Bernoulli numbers.

It follows from (2.1) that, for $x>0$,

$L\left(x\right)<\psi \left(x+1\right)-\psi \left(x+\frac{1}{2}\right)
(2.2)

where

$\begin{array}{rl}L\left(x\right)=& \frac{1}{2x}-\frac{1}{8{x}^{2}}+\frac{1}{64{x}^{4}}-\frac{1}{128{x}^{6}}+\frac{17}{2,048{x}^{8}}\\ -\frac{31}{2,048{x}^{10}}+\frac{691}{16,384{x}^{12}}-\frac{5,461}{32,768{x}^{14}}\end{array}$

and

$\begin{array}{rl}U\left(x\right)=& \frac{1}{2x}-\frac{1}{8{x}^{2}}+\frac{1}{64{x}^{4}}-\frac{1}{128{x}^{6}}+\frac{17}{2,048{x}^{8}}\\ -\frac{31}{2,048{x}^{10}}+\frac{691}{16,384{x}^{12}}-\frac{5,461}{32,768{x}^{14}}+\frac{929,569}{1,048,576{x}^{16}}.\end{array}$

In Section 4, the proofs of Theorems 3 and 4 make use of inequality (2.2).

## 3 Asymptotic expansions

The logarithm of gamma function has asymptotic expansion (see [[26], p.32]):

$ln\mathrm{\Gamma }\left(x+t\right)\sim \left(x+t-\frac{1}{2}\right)lnx-x+\frac{1}{2}ln\left(2\pi \right)+\sum _{n=1}^{\mathrm{\infty }}\frac{{\left(-1\right)}^{n+1}{B}_{n+1}\left(t\right)}{n\left(n+1\right)}\frac{1}{{x}^{n}}$
(3.1)

as $x\to \mathrm{\infty }$, where ${B}_{n}\left(t\right)$ denotes the Bernoulli polynomials defined by the following generating function:

$\frac{x{e}^{tx}}{{e}^{x}-1}=\sum _{n=0}^{\mathrm{\infty }}{B}_{n}\left(t\right)\frac{{x}^{n}}{n!}.$
(3.2)

Note that the Bernoulli numbers ${B}_{n}$ (for $n\in {\mathbb{N}}_{0}$) are defined by (3.2) for $t=0$.

From (3.1), we obtain, as $x\to \mathrm{\infty }$,

${\left[\frac{\mathrm{\Gamma }\left(x+t\right)}{\mathrm{\Gamma }\left(x+s\right)}\right]}^{1/\left(t-s\right)}\sim xexp\left(\frac{1}{t-s}\sum _{j=1}^{\mathrm{\infty }}\frac{{\left(-1\right)}^{j+1}\left({B}_{j+1}\left(t\right)-{B}_{j+1}\left(s\right)\right)}{j\left(j+1\right)}\frac{1}{{x}^{j}}\right).$
(3.3)

Setting $\left(s,t\right)=\left(\frac{1}{2},1\right)$ and noting that

(see [[24], p.805]), we obtain from (3.3), as $x\to \mathrm{\infty }$,

${\left[\frac{\mathrm{\Gamma }\left(x+1\right)}{\mathrm{\Gamma }\left(x+\frac{1}{2}\right)}\right]}^{2}\sim xexp\left(\sum _{j=1}^{\mathrm{\infty }}\frac{2\left(1-{\left(-1\right)}^{j+1}\left({2}^{-j}-1\right)\right){B}_{j+1}}{j\left(j+1\right)}\frac{1}{{x}^{j}}\right),$
(3.4)

or

$\frac{1}{x}{\left[\frac{\mathrm{\Gamma }\left(x+1\right)}{\mathrm{\Gamma }\left(x+\frac{1}{2}\right)}\right]}^{2}\sim exp\left(\sum _{j=0}^{\mathrm{\infty }}\frac{\left(2-{2}^{-2j-1}\right){B}_{2j+2}}{\left(2j+1\right)\left(j+1\right)}\frac{1}{{x}^{2j+1}}\right).$
(3.5)

We see from (1.6) and (1.9) that

$\frac{1}{n}{\left[\frac{\mathrm{\Gamma }\left(n+1\right)}{\mathrm{\Gamma }\left(n+\frac{1}{2}\right)}\right]}^{2}\sim exp\left(\sum _{j=0}^{\mathrm{\infty }}\frac{{c}_{j}}{{n}^{2j+1}}\right),\phantom{\rule{1em}{0ex}}n\to \mathrm{\infty },$
(3.6)

with the coefficients ${c}_{j}$ given by (1.5). From (3.5) and (3.6), we retrieve (1.8).

By using the Maclaurin expansion of $ln\left(1+x\right)$,

we obtain

(3.7)

Applying (3.4) and (3.7) yields

(3.8)

with the coefficients ${b}_{j}$ (for $j\in \mathbb{N}$) given by

${b}_{j}={\left(-1\right)}^{j-1}\left(-\frac{1}{j{2}^{j}}+\frac{2\left({\left(-1\right)}^{j+1}-\left({2}^{-j}-1\right)\right){B}_{j+1}}{j\left(j+1\right)}\right).$
(3.9)

From (3.8), we obtain the following asymptotic expansion for the Wallis sequence ${W}_{n}$:

$\begin{array}{rl}{W}_{n}\sim & \frac{\pi }{2}exp\left(-\frac{1}{4n}+\frac{1}{8{n}^{2}}-\frac{5}{96{n}^{3}}+\frac{1}{64{n}^{4}}-\frac{1}{320{n}^{5}}+\frac{1}{384{n}^{6}}-\frac{25}{7,168{n}^{7}}\\ +\frac{1}{2,048{n}^{8}}+\frac{29}{9,216{n}^{9}}+\frac{1}{10,240{n}^{10}}-\frac{695}{90,112{n}^{11}}+\cdots \right),\phantom{\rule{1em}{0ex}}n\to \mathrm{\infty }.\end{array}$
(3.10)

Using ${e}^{x}={\sum }_{j=0}^{\mathrm{\infty }}\frac{{x}^{j}}{j!}$, from (3.10) we deduce that

$\begin{array}{rl}{W}_{n}\sim & \frac{\pi }{2}\left(1-\frac{1}{4n}+\frac{5}{32{n}^{2}}-\frac{11}{128{n}^{3}}+\frac{83}{2,048{n}^{4}}-\frac{143}{8,192{n}^{5}}+\frac{625}{65,536{n}^{6}}-\frac{1,843}{262,144{n}^{7}}\\ +\frac{24,323}{8,388,608{n}^{8}}+\frac{61,477}{33,554,432{n}^{9}}-\frac{14,165}{268,435,456{n}^{10}}\\ -\frac{8,084,893}{1,073,741,824{n}^{11}}+\cdots \right).\end{array}$
(3.11)

Even though as many coefficients as we please on the right-hand side of (3.11) can be obtained by using Mathematica, here we aim at giving a formula for determining these coefficients. In fact, Theorem 1 below presents a general asymptotic expansion for $W\left(x\right)$ which includes (3.11) as its special case.

Theorem 1 Let $r\ne 0$ be a given real number and $\ell \ge 0$ be a given integer. Then the function $W\left(x\right)$, as defined in (1.9), has the following asymptotic expansion:

(3.12)

with the coefficients ${c}_{j}\left(\ell ,r\right)$ (for $j\in \mathbb{N}$) given by

${c}_{j}\left(\ell ,r\right)=\sum \frac{{r}^{{k}_{1}+{k}_{2}+\cdots +{k}_{j}}}{{k}_{1}!{k}_{2}!\cdots {k}_{j}!}{b}_{1}^{{k}_{1}}{b}_{2}^{{k}_{2}}\cdots {b}_{j}^{{k}_{j}},$
(3.13)

where ${b}_{j}$ are given in (3.9), summed over all non-negative integers ${k}_{j}$ satisfying the equation

$\left(1+\ell \right){k}_{1}+\left(2+\ell \right){k}_{2}+\cdots +\left(j+\ell \right){k}_{j}=j.$

Proof In view of (1.6), we can let

(3.14)

where ${c}_{1}\left(\ell ,r\right),\dots ,{c}_{m}\left(\ell ,r\right)$ are real numbers to be determined. Write (3.8) as

$ln\left(\frac{2}{\pi }W\left(x\right)\right)=\sum _{k=1}^{m}\frac{{b}_{k}}{{x}^{k}}+{R}_{m}\left(x\right),$

where ${R}_{m}\left(x\right)=O\left({x}^{-m-1}\right)$. Further, we have

$\begin{array}{rl}{\left(\frac{2}{\pi }W\left(x\right)\right)}^{r/{x}^{\ell }}=& {e}^{r{R}_{m}\left(x\right)/{x}^{\ell }}{e}^{{\sum }_{k=1}^{m}\frac{r{b}_{k}}{{x}^{k+\ell }}}\\ =& {e}^{r{R}_{m}\left(x\right)/{x}^{\ell }}\prod _{k=1}^{m}\left[1+\left(\frac{r{b}_{k}}{{x}^{k+\ell }}\right)+\frac{1}{2!}{\left(\frac{r{b}_{k}}{{x}^{k+\ell }}\right)}^{2}+\cdots \right]\\ =& {e}^{r{R}_{m}\left(x\right)/{x}^{\ell }}\sum _{{k}_{1}=0}^{\mathrm{\infty }}\sum _{{k}_{2}=0}^{\mathrm{\infty }}\cdots \sum _{{k}_{m}=0}^{\mathrm{\infty }}\frac{1}{{k}_{1}!{k}_{2}!\cdots {k}_{m}!}\\ ×{\left(\frac{r{b}_{1}}{{x}^{1+\ell }}\right)}^{{k}_{1}}{\left(\frac{r{b}_{2}}{{x}^{2+\ell }}\right)}^{{k}_{2}}\cdots {\left(\frac{r{b}_{m}}{{x}^{m+\ell }}\right)}^{{k}_{m}}\\ =& {e}^{r{R}_{m}\left(x\right)/{x}^{\ell }}\sum _{{k}_{1}=0}^{\mathrm{\infty }}\sum _{{k}_{2}=0}^{\mathrm{\infty }}\cdots \sum _{{k}_{m}=0}^{\mathrm{\infty }}\frac{{r}^{{k}_{1}+{k}_{2}+\cdots +{k}_{m}}}{{k}_{1}!{k}_{2}!\cdots {k}_{m}!}{b}_{1}^{{k}_{1}}{b}_{2}^{{k}_{2}}\cdots {b}_{m}^{{k}_{m}}\\ ×\frac{1}{{x}^{\left(1+\ell \right){k}_{1}+\left(2+\ell \right){k}_{2}+\cdots +\left(m+\ell \right){k}_{m}}}.\end{array}$
(3.15)

Equating the coefficients by the equal powers of x in (3.14) and (3.15), we see that

${c}_{j}\left(\ell ,r\right)=\sum _{\left(1+\ell \right){k}_{1}+\left(2+\ell \right){k}_{2}+\cdots +\left(j+\ell \right){k}_{j}=j}\frac{{r}^{{k}_{1}+{k}_{2}+\cdots +{k}_{j}}}{{k}_{1}!{k}_{2}!\cdots {k}_{j}!}{b}_{1}^{{k}_{1}}{b}_{2}^{{k}_{2}}\cdots {b}_{j}^{{k}_{j}}.$

The proof of Theorem 1 is complete. □

Theorem 1 gives an explicit formula for determining the coefficients of the asymptotic expansion (3.12). Theorem 2 below provides a recurrence relation for determining the coefficients of the asymptotic expansion (3.12).

Theorem 2 Let $r\ne 0$ be a given real number and $\ell \ge 0$ be a given integer. Then the function $W\left(x\right)$, as defined in (1.9), has the following asymptotic expansion:

(3.16)

with the coefficients ${c}_{j}\left(\ell ,r\right)$ (for $j\in {\mathbb{N}}_{0}$) given by the recurrence relation:

(3.17)

where ${b}_{j}$ (for $j\in \mathbb{N}$) are given in (3.9).

Proof Taking the logarithm of (3.8)

Write (3.14) as

It follows that

Differentiating each side with respect to x yields

$r\left(\sum _{j=0}^{\mathrm{\infty }}{c}_{j}\left(\ell ,r\right){x}^{-j}\right)\left(\sum _{k=1}^{\mathrm{\infty }}{b}_{k}\left(k+\ell \right){x}^{-k-\ell -1}\right)\sim \sum _{j=1}^{\mathrm{\infty }}{c}_{j}\left(\ell ,r\right)j{x}^{-j-1}.$

Hence,

and (3.17) follows. The proof of Theorem 2 is complete. □

## 4 Inequalities

In this section, we establish inequalities for the Wallis sequence ${W}_{n}$.

Theorem 3 For all $n\in \mathbb{N}$,

$\frac{\pi }{2}\alpha \left(n\right)<{W}_{n}<\frac{\pi }{2}\beta \left(n\right),$
(4.1)

where

$\alpha \left(n\right)=1-\frac{\frac{1}{4}}{n+\frac{5}{8}+\frac{\frac{3}{64}}{n+\frac{1}{2}+\frac{\frac{15}{64}}{n+\frac{1}{2}+\frac{\frac{35}{64}}{n+\frac{1}{2}+\frac{\frac{63}{64}}{n+\frac{1}{2}}}}}}$

and

$\beta \left(n\right)=1-\frac{\frac{1}{4}}{n+\frac{5}{8}+\frac{\frac{3}{64}}{n+\frac{1}{2}+\frac{\frac{15}{64}}{n+\frac{1}{2}+\frac{\frac{35}{64}}{n+\frac{1}{2}+\frac{\frac{63}{64}}{n+\frac{1}{2}+\frac{\frac{99}{64}}{n+\frac{1}{2}}}}}}}.$

That is,

$\alpha \left(n\right)=\frac{32,768{n}^{5}+77,824{n}^{4}+133,120{n}^{3}+116,672{n}^{2}+55,416n+10,395}{32,768{n}^{5}+86,016{n}^{4}+149,504{n}^{3}+143,424{n}^{2}+73,976n+16,413}$

and

$\beta \left(n\right)=\frac{262,144{n}^{6}+753,664{n}^{5}+1,781,760{n}^{4}+2,226,176{n}^{3}+1,778,048{n}^{2}+765,768n+135,135}{262,144{n}^{6}+819,200{n}^{5}+1,945,600{n}^{4}+2,607,104{n}^{3}+2,185,600{n}^{2}+1,043,384n+211,479}.$

Proof In view of the fact that

${W}_{n}=\frac{\pi }{2}\cdot \frac{1}{n+\frac{1}{2}}{\left[\frac{\mathrm{\Gamma }\left(n+1\right)}{\mathrm{\Gamma }\left(n+\frac{1}{2}\right)}\right]}^{2},$

the inequality (4.1) is equivalent to

$\frac{1}{2}ln\alpha \left(n\right)

To obtain the left-hand inequality, define $f\left(x\right)$ for $x\ge 1$ by

$f\left(x\right)=ln\mathrm{\Gamma }\left(x+1\right)-ln\mathrm{\Gamma }\left(x+\frac{1}{2}\right)-\frac{1}{2}ln\left(x+\frac{1}{2}\right)-\frac{1}{2}ln\alpha \left(x\right).$

Using Stirling’s formula, we find that

$\underset{x\to \mathrm{\infty }}{lim}f\left(x\right)=0.$

We now show that $f\left(x\right)$ is strictly decreasing for $x\ge 3$, and $f\left(1\right)>f\left(2\right)>f\left(3\right)$, so $f\left(n\right)>0$ for $n\ge 1$. By using the second inequality in (2.2), we have

$\begin{array}{rl}{f}^{\prime }\left(x\right)& =\psi \left(x+1\right)-\psi \left(x+\frac{1}{2}\right)-\frac{1}{2x+1}-\frac{1}{2}\frac{{\alpha }^{\prime }\left(x\right)}{\alpha \left(x\right)}\\

where ${P}_{k}\left(x\right)$ is a polynomial of degree k with non-negative integer coefficients. In what follows, ${P}_{k}\left(x\right)$ has the same understanding.

On simplification, using MAPLE, we find that

${f}^{\prime }\left(x\right)<-\frac{N\left(x\right)}{{P}_{27}\left(x\right)},$

where $N\left(x\right)$ is a polynomial of degree 15 with integer coefficients (some positive, some negative). It can be shown further that

$N\left(x\right)=\left(x-3\right){P}_{14}\left(x\right)+1,752,962,197,350,057,763,671,$

so

$N\left(x\right)>0$

for $x\ge 3$ and so

${f}^{\prime }\left(x\right)<0$

for $x\ge 3$. Direct computation yields

$f\left(1\right)=1.83×{10}^{-6},\phantom{\rule{2em}{0ex}}f\left(2\right)=1.92×{10}^{-8},\phantom{\rule{2em}{0ex}}f\left(3\right)=7.06×{10}^{-10}.$

Consequently, the sequence ${\left(f\left(n\right)\right)}_{n\in \mathbb{N}}$ is strictly decreasing. This leads to

$f\left(n\right)>\underset{n\to \mathrm{\infty }}{lim}f\left(n\right)=0,\phantom{\rule{1em}{0ex}}n\in \mathbb{N},$

which means that the first inequality in (4.1) is valid for $n\in \mathbb{N}$.

To obtain the right-hand inequality, define $g\left(x\right)$ for $x\ge 1$ by

$g\left(x\right)=ln\mathrm{\Gamma }\left(x+1\right)-ln\mathrm{\Gamma }\left(x+\frac{1}{2}\right)-\frac{1}{2}ln\left(x+\frac{1}{2}\right)-\frac{1}{2}ln\beta \left(x\right).$

Using Stirling’s formula, we find that

$\underset{x\to \mathrm{\infty }}{lim}g\left(x\right)=0.$

Differentiating $g\left(x\right)$ and applying the first inequality in (2.2), we obtain

$\begin{array}{rl}{g}^{\prime }\left(x\right)& =\psi \left(x+1\right)-\psi \left(x+\frac{1}{2}\right)-\frac{1}{2x+1}-\frac{1}{2}\frac{{\beta }^{\prime }\left(x\right)}{\beta \left(x\right)}\\ >L\left(x\right)-\frac{1}{2x+1}-\frac{1}{2}\frac{{\beta }^{\prime }\left(x\right)}{\beta \left(x\right)}=L\left(x\right)-\frac{1}{2x+1}-\frac{1}{2}\frac{{P}_{10}\left(x\right)}{{P}_{12}\left(x\right)}.\end{array}$

On simplification, using MAPLE, we find that

${g}^{\prime }\left(x\right)>\frac{1}{32,768}\frac{M\left(x\right)}{{P}_{26}\left(x\right)},$

where $M\left(x\right)$ is a polynomial of degree 13 with integer coefficients (some positive, some negative). It can be shown further that

$M\left(x\right)=\left(x-9\right){P}_{12}\left(x\right)+83,067,781,256,008,661,351,549,403,$

so

$M\left(x\right)>0$

for $x\ge 9$ and so

${g}^{\prime }\left(x\right)>0$

for $x\ge 9$. Direct computation yields

$\begin{array}{r}g\left(1\right)=-7.03×{10}^{-7},\phantom{\rule{2em}{0ex}}g\left(2\right)=-4.217×{10}^{-9},\phantom{\rule{2em}{0ex}}g\left(3\right)=-9.61×{10}^{-11},\\ g\left(4\right)=-4.88×{10}^{-12},\phantom{\rule{2em}{0ex}}g\left(5\right)=-4.22×{10}^{-13},\phantom{\rule{2em}{0ex}}g\left(6\right)=-5.3×{10}^{-14},\\ g\left(7\right)=-8.78×{10}^{-15},\phantom{\rule{2em}{0ex}}g\left(8\right)=-1.8×{10}^{-15},\phantom{\rule{2em}{0ex}}g\left(9\right)=-4.37×{10}^{-16}.\end{array}$

Consequently, the sequence ${\left(g\left(n\right)\right)}_{n\in \mathbb{N}}$ is strictly increasing. This leads to

$g\left(n\right)<\underset{n\to \mathrm{\infty }}{lim}g\left(n\right)=0,\phantom{\rule{1em}{0ex}}n\in \mathbb{N},$

which means that the second inequality in (4.1) is valid for $n\in \mathbb{N}$. The proof of Theorem 3 is complete. □

We propose the following.

Conjecture 1 Let ${a}_{k}=\frac{\left(2k-1\right)\left(2k+1\right)}{64}$, $k\in \mathbb{N}$. The Wallis sequence ${W}_{n}$ has the following continued fraction representation:

${W}_{n}=\frac{\pi }{2}\left(1-\frac{\frac{1}{4}}{n+\frac{5}{8}+\frac{{a}_{1}}{n+\frac{1}{2}+\frac{{a}_{2}}{n+\frac{1}{2}+\frac{{a}_{3}}{n+\frac{1}{2}+\ddots }}}}\right).$

Theorem 4 The following inequalities hold:

$\frac{\pi }{2}{\left(1-\frac{1}{4n+\frac{5}{2}}\right)}^{\lambda \left(n\right)}<{W}_{n}<\frac{\pi }{2}{\left(1-\frac{1}{4n+\frac{5}{2}}\right)}^{\mu \left(n\right)},$
(4.2)

where

$\lambda \left(n\right)=1-\frac{3}{64{n}^{2}}+\frac{3}{64{n}^{3}}-\frac{23}{1,024{n}^{4}}$

and

$\mu \left(n\right)=1-\frac{3}{64{n}^{2}}+\frac{3}{64{n}^{3}}-\frac{23}{1,024{n}^{4}}-\frac{1}{512{n}^{5}}.$

The first inequality holds for $n\ge 5$, while the second inequality is valid for all $n\ge 1$.

Proof Inequality (4.2) can be written as

${\left(1-\frac{1}{4n+\frac{5}{2}}\right)}^{\lambda \left(n\right)/2}<\frac{1}{\sqrt{n+\frac{1}{2}}}\frac{\mathrm{\Gamma }\left(n+1\right)}{\mathrm{\Gamma }\left(n+\frac{1}{2}\right)}<{\left(1-\frac{1}{4n+\frac{5}{2}}\right)}^{\mu \left(n\right)/2}.$
(4.3)

The lower bound in (4.3) is obtained by considering the function $F\left(x\right)$ defined by

$F\left(x\right)=ln\mathrm{\Gamma }\left(x+1\right)-ln\mathrm{\Gamma }\left(x+\frac{1}{2}\right)-\frac{1}{2}ln\left(x+\frac{1}{2}\right)-\frac{\lambda \left(x\right)}{2}ln\left(1-\frac{1}{4x+\frac{5}{2}}\right).$

Using Stirling’s formula, we find that

$\underset{x\to \mathrm{\infty }}{lim}F\left(x\right)=0.$

Differentiating $F\left(x\right)$ and applying the second inequality in (2.2), we obtain

$\begin{array}{rl}{F}^{\prime }\left(x\right)& =\psi \left(x+1\right)-\psi \left(x+\frac{1}{2}\right)-V\left(x\right)-\frac{24{x}^{2}-36x+23}{512{x}^{5}}ln\left(\frac{8x+3}{8x+5}\right)\\

with

$V\left(x\right)=\frac{8,192{x}^{6}+10,240{x}^{5}+2,944{x}^{4}-96{x}^{3}+48{x}^{2}+2x-23}{128\left(8x+3\right)\left(8x+5\right){x}^{4}\left(2x+1\right)}.$

We claim that ${F}^{\prime }\left(x\right)<0$ for $x\ge 7$. It suffices to show that

Differentiation yields

${G}^{\prime }\left(x\right)=\frac{R\left(x\right)}{2,048{x}^{12}{\left(8x+3\right)}^{2}{\left(8x+5\right)}^{2}{\left(2x+1\right)}^{2}{\left(24{x}^{2}-36x+23\right)}^{2}},$

where $R\left(x\right)$ is a polynomial of degree 17 with integer coefficients (some positive, some negative). It can be shown further that

$R\left(x\right)=\left(x-7\right){P}_{16}\left(x\right)+89,314,236,262,237,854,773,083,$

so

$R\left(x\right)>0$

for $x\ge 7$ and so

${G}^{\prime }\left(x\right)>0$

for $x\ge 7$, and we have

$G\left(x\right)<\underset{x\to \mathrm{\infty }}{lim}G\left(x\right)=0,\phantom{\rule{1em}{0ex}}x\ge 7.$

This proves the claim.

Hence, $F\left(x\right)$ is strictly decreasing for $x\ge 7$. Direct computation yields

$F\left(5\right)=2.399×{10}^{-9},\phantom{\rule{2em}{0ex}}F\left(6\right)=1.494×{10}^{-9},\phantom{\rule{2em}{0ex}}F\left(7\right)=7.947×{10}^{-10}.$

Consequently, the sequence $\left(F\left(n\right)\right)$ is strictly decreasing for $n\ge 5$. This leads to

$F\left(n\right)>\underset{n\to \mathrm{\infty }}{lim}F\left(n\right)=0,\phantom{\rule{1em}{0ex}}n\ge 5,$

which means that the first inequality in (4.2) is valid for $n\ge 5$.

The upper bound in (4.3) is obtained by considering the function $H\left(x\right)$ defined by

$H\left(x\right)=ln\mathrm{\Gamma }\left(x+1\right)-ln\mathrm{\Gamma }\left(x+\frac{1}{2}\right)-\frac{1}{2}ln\left(x+\frac{1}{2}\right)-\frac{\mu \left(x\right)}{2}ln\left(1-\frac{1}{4x+\frac{5}{2}}\right).$

Using Stirling’s formula, we find that

$\underset{x\to \mathrm{\infty }}{lim}H\left(x\right)=0.$

Differentiating $H\left(x\right)$ and applying the first inequality in (2.2), we obtain

$\begin{array}{rl}{H}^{\prime }\left(x\right)& =\psi \left(x+1\right)-\psi \left(x+\frac{1}{2}\right)-J\left(x\right)-\frac{48{x}^{3}-72{x}^{2}+46x+5}{1,024{x}^{6}}ln\left(\frac{8x+3}{8x+5}\right)\\ >L\left(x\right)-J\left(x\right)-\frac{48{x}^{3}-72{x}^{2}+46x+5}{1,024{x}^{6}}ln\left(\frac{8x+3}{8x+5}\right),\end{array}$

with

$J\left(x\right)=\frac{8,192{x}^{7}+10,240{x}^{6}+2,944{x}^{5}-96{x}^{4}+48{x}^{3}+2{x}^{2}-27x-2}{128\left(8x+3\right)\left(8x+5\right){x}^{5}\left(2x+1\right)}.$

We claim that the function ${H}^{\prime }\left(x\right)>0$ for $x\ge 2$. It suffices to show that

Differentiation yields

${I}^{\prime }\left(x\right)=-\frac{S\left(x\right)}{16{x}^{9}{\left(8x+3\right)}^{2}{\left(8x+5\right)}^{2}{\left(2x+1\right)}^{2}{\left(48{x}^{3}-72{x}^{2}+46x+5\right)}^{2}},$

where $S\left(x\right)$ is a polynomial of degree 15 with integer coefficients (some positive, some negative). It can be shown further that

$S\left(x\right)=\left(x-2\right){P}_{14}\left(x\right)+5,637,072,199,918,$

so

$S\left(x\right)>0$

for $x\ge 2$ and so

${I}^{\prime }\left(x\right)<0$

for $x\ge 2$, and we have

$I\left(x\right)>\underset{x\to \mathrm{\infty }}{lim}I\left(x\right)=0,\phantom{\rule{1em}{0ex}}x\ge 2.$

This proves the claim.

Hence, $H\left(x\right)$ is strictly increasing for $x\ge 2$. Direct computation yields

$H\left(1\right)=-0.000462508\dots ,\phantom{\rule{2em}{0ex}}H\left(2\right)=-0.000005843\dots .$

Consequently, the sequence $\left(H\left(n\right)\right)$ is strictly increasing for $n\ge 1$. This leads to

$H\left(n\right)<\underset{n\to \mathrm{\infty }}{lim}H\left(n\right)=0,\phantom{\rule{1em}{0ex}}n\ge 1,$

which means that the second inequality in (4.2) is valid for $n\ge 1$. The proof of Theorem 4 is complete. □

In fact, it is proved that

${W}_{n}=\frac{\pi }{2}{\left(1-\frac{1}{4n+\frac{5}{2}}\right)}^{1-\frac{3}{64{n}^{2}}+\frac{3}{64{n}^{3}}-\frac{23}{1,024{n}^{4}}+O\left({n}^{-5}\right)},\phantom{\rule{1em}{0ex}}n\to \mathrm{\infty }.$
(4.4)

## References

1. Berggren L, Borwein J, Borwein P (Eds): Pi: A Source Book. 2nd edition. Springer, New York; 2000.

2. Amdeberhan T, Espinosa O, Moll VH, Straub A: Wallis-Ramanujan-Schur-Feynman. Am. Math. Mon. 2010, 117: 618-632.

3. Miller SJ: A probabilistic proof of Wallis’s formula for π . Am. Math. Mon. 2008, 115: 740-745.

4. Wästlund J: An elementary proof of the Wallis product formula for Pi. Am. Math. Mon. 2007, 114: 914-917.

5. Myerson G: The limiting shape of a sequence of rectangles. Am. Math. Mon. 1992, 99: 279-280. 10.2307/2325077

6. Sofo A: Some representations of π . Aust. Math. Soc. Gaz. 2004, 31: 184-189.

7. Sofo A: π and some other constants. J. Inequal. Pure Appl. Math. 2005. Article ID 138 (electronic),6(5): Article ID 138 (electronic)

8. Beckmann P: A History of Pi. St. Martin’s Press, New York; 1971.

9. Dunham W: Journey Through Genius: The Great Theorems of Mathematics. Penguin, Baltimore; 1990.

10. Agarwal RP, Agarwal H, Sen SK: Birth, growth and computation of Pi to ten trillion digits. Adv. Differ. Equ. 2013. Article ID 100, 2013: Article ID 100 10.1186/1687-1847-2013-100

11. Buric, T, Elezović, N, Šimić, R: Asymptotic expansions of the multiple quotients of gamma functions with applications. Math. Inequal. Appl. (to appear)

12. Elezović N, Lin L, Vukšić L: Inequalities and asymptotic expansions for the Wallis sequence and the sum of the Wallis ratio. J. Math. Inequal. 2013, 7: 679-695.

13. Hirschhorn MD: Comments on the paper ‘Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product π could be computed fairly accurately’ by Lampret. Aust. Math. Soc. Gaz. 2005, 32: 194.

14. Lampret V: Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product π could be computed fairly accurately. Aust. Math. Soc. Gaz. 2004, 31: 328-339.

15. Lampret V: An asymptotic approximation of Wallis’ sequence. Cent. Eur. J. Math. 2012, 10: 775-787. 10.2478/s11533-011-0138-4

16. Lin L: Further refinements of Gurland’s formula for π . J. Inequal. Appl. 2013. Article ID 48, 2013: Article ID 48 10.1186/1029-242X-2013-48

17. Mortici C: Estimating π from the Wallis sequence. Math. Commun. 2012, 17: 489-495.

18. Mortici C, Cristea VG, Lu D: Completely monotonic functions and inequalities associated to some ratio of gamma function. Appl. Math. Comput. 2014. 10.1016/j.amc.2014.04.085

19. Mortici C: Completely monotone functions and the Wallis ratio. Appl. Math. Lett. 2012, 25: 717-722. 10.1016/j.aml.2011.10.008

20. Mortici C: Sharp inequalities and complete monotonicity for the Wallis ratio. Bull. Belg. Math. Soc. Simon Stevin 2010, 17: 929-936.

21. Mortici C: A new method for establishing and proving new bounds for the Wallis ratio. Math. Inequal. Appl. 2010, 13: 803-815.

22. Mortici C: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 2010, 52: 425-433. 10.1016/j.mcm.2010.03.013

23. Păltănea E: On the rate of convergence of Wallis’ sequence. Aust. Math. Soc. Gaz. 2007, 34: 34-38.

24. Abramowitz M, Stegun IA (Eds): National Bureau of Standards, Applied Mathematics Series 55 In Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover, New York; 1972. 9th printing 9th printing

25. Chen, CP: Completely monotonic functions relating to the ratio of gamma functions (submitted)

26. Luke YL I. In The Special Functions and Their Approximations. Academic Press, New York; 1969.

## Acknowledgements

The authors would like to thank the referees for their careful reading of the manuscript and insightful comments.

## Author information

Authors

### Corresponding author

Correspondence to Ji-En Deng.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors read and approved the final manuscript.

## Rights and permissions

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

Lin, L., Deng, JE. & Chen, CP. Inequalities and asymptotic expansions associated with the Wallis sequence. J Inequal Appl 2014, 251 (2014). https://doi.org/10.1186/1029-242X-2014-251

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1029-242X-2014-251