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Abstract
We present the asymptotic expansions of functions involving the ratio of gamma
functions and provide formulas for determining the coefficients of the asymptotic
expansions. As consequences, we obtain the asymptotic expansions of the Wallis
sequence. Also, we establish inequalities for the Wallis sequence.
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1 Introduction
The Wallis sequence to which the title refers is

Wn =
n∏
k=

k

k – 
, n ∈N := {, , , . . .}. (.)

Wallis (-) discovered that

∞∏
k=

k

k – 
=















· · · = π


(.)

(see [, p.]). Based on Wallis’ infinite product (.), the first infinite continued fraction
of π was given by Brouncker (-):


π

=  +


 + 
+ 

+ 

+
...

. (.)

Euler’s analysis of Wallis’ proof led him to formulas for the gamma and beta functions.
Stirling (-) used (.) to determine the constant factor in his asymptotic formula

n!∼ √
πn

(
n
e

)n

, n → ∞.

Several elementary proofs of (.) can be found (see, for example, [–]). An interest-
ing geometric construction produces (.) []. Many formulas exist for the representation
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of π , and a collection of these formulas is listed in [, ]. For more on the history of π see
[, –].
Some inequalities and asymptotic formulas associated with theWallis sequenceWn can

be found (see, for example, [–]). In [], Hirschhorn proved that for n ∈N,

π



(
 –


n + 



)
<Wn <

π



(
 –


n + 



)
. (.)

Also in [], Hirschhorn pointed out that if the cj are given by

tanh

(
x


)
=

∞∑
j=

cj
xj+

(j)!
, (.)

then, as n→ ∞,

Wn ∼ π



(
 +


n

)– ∏
j≥

exp

(
cj

nj+

)
=

π



(
 +


n

)–

exp

( ∞∑
j=

cj
nj+

)
. (.)

Remark  It is well known (see [, p.]) that

tanh z =
∞∑
k=

k(k – )Bk

(k)!
zk–, |z| < π


,

where Bn (n ∈N :=N∪ {}) are the Bernoulli numbers. We then obtain

tanh

(
x


)
=

∞∑
j=

(j+ – )Bj+

j+(j + )(j + )
xj+

(j)!
, |x| < π . (.)

Thus we have

cj =
(j+ – )Bj+

j+(j + )(j + )
, j ∈N :=N∪ {}. (.)

Let r 	=  be a given real number and � ≥  be a given integer. The first aim of this paper
is to determine the coefficients cj(�, r) (for j ∈N) such that

W (x)∼ π



(
 +

∞∑
j=

cj(�, r)
xj

)x�/r

as x → ∞,

where the functionW (x) is defined by

W (x) =
π



(
 +


x

)– 
x

[
�(x + )
�(x + 

 )

]

. (.)

Clearly,Wn =W (n). The second aim of this paper is to establish inequalities for theWallis
sequenceWn.
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2 A useful lemma
The classical Euler’s gamma function is defined for x >  by

�(x) =
∫ ∞


tx–e–t dt.

The logarithmic derivative of �(x), denoted by ψ(x) = �′(x)/�(x), is called psi (or
digamma) function, and ψ (k)(x) (k ∈N) are called polygamma functions.
The following lemma is required in our present investigation.

Lemma  ([, Corollary .]) Let m,n ∈N. Then for x > ,

m∑
j=

(
 –


j

)
Bj

(j)!
(j + n – )!

xj+n–

< (–)n
(

ψ (n–)(x + ) –ψ (n–)
(
x +




))
+
(n – )!
xn

<
m–∑
j=

(
 –


j

)
Bj

(j)!
(j + n – )!

xj+n–
, (.)

where Bn are the Bernoulli numbers.

It follows from (.) that, for x > ,

L(x) < ψ(x + ) –ψ

(
x +




)
<U(x), (.)

where

L(x) =

x

–

x

+


x
–


x

+


,x

–


,x
+


,x

–
,

,x

and

U(x) =

x

–

x

+


x
–


x

+


,x

–


,x
+


,x

–
,

,x
+

,
,,x

.

In Section , the proofs of Theorems  and  make use of inequality (.).

3 Asymptotic expansions
The logarithm of gamma function has asymptotic expansion (see [, p.]):

ln�(x + t)∼
(
x + t –




)
lnx – x +



ln(π ) +

∞∑
n=

(–)n+Bn+(t)
n(n + )


xn

(.)
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as x → ∞, where Bn(t) denotes the Bernoulli polynomials defined by the following gener-
ating function:

xetx

ex – 
=

∞∑
n=

Bn(t)
xn

n!
. (.)

Note that the Bernoulli numbers Bn (for n ∈N) are defined by (.) for t = .
From (.), we obtain, as x→ ∞,

[
�(x + t)
�(x + s)

]/(t–s)

∼ x exp

(


t – s

∞∑
j=

(–)j+(Bj+(t) – Bj+(s))
j(j + )


xj

)
. (.)

Setting (s, t) = (  , ) and noting that

Bn() = (–)nBn() = Bn and Bn

(



)
=

(
–n – 

)
Bn for n ∈N

(see [, p.]), we obtain from (.), as x → ∞,

[
�(x + )
�(x + 

 )

]

∼ x exp

( ∞∑
j=

( – (–)j+(–j – ))Bj+

j(j + )

xj

)
, (.)

or


x

[
�(x + )
�(x + 

 )

]

∼ exp

( ∞∑
j=

( – –j–)Bj+

(j + )(j + )


xj+

)
. (.)

We see from (.) and (.) that


n

[
�(n + )
�(n + 

 )

]

∼ exp

( ∞∑
j=

cj
nj+

)
, n→ ∞, (.)

with the coefficients cj given by (.). From (.) and (.), we retrieve (.).
By using the Maclaurin expansion of ln( + x),

ln( + x) =
∞∑
j=

(–)j–

j
xj for – < x ≤ ,

we obtain

(
 +


x

)–

∼ exp

( ∞∑
j=

(–)j

jj

xj

)
as x→ ∞. (.)

Applying (.) and (.) yields

W (x)∼ π


exp

( ∞∑
j=

bj
xj

)
as x→ ∞, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/251


Lin et al. Journal of Inequalities and Applications 2014, 2014:251 Page 5 of 14
http://www.journalofinequalitiesandapplications.com/content/2014/1/251

with the coefficients bj (for j ∈N) given by

bj = (–)j–
(
–


jj

+
((–)j+ – (–j – ))Bj+

j(j + )

)
. (.)

From (.), we obtain the following asymptotic expansion for the Wallis sequence Wn:

Wn ∼ π


exp

(
–


n

+


n
–


n

+


n
–


n

+


n
–


,n

+


,n
+


,n

+


,n
–


,n

+ · · ·
)
, n→ ∞. (.)

Using ex =
∑∞

j=
xj
j! , from (.) we deduce that

Wn ∼ π



(
 –


n

+


n
–


n

+


,n
–


,n

+


,n
–

,
,n

+
,

,,n
+

,
,,n

–
,

,,n

–
,,

,,,n
+ · · ·

)
. (.)

Even though as many coefficients as we please on the right-hand side of (.) can be
obtained by using Mathematica, here we aim at giving a formula for determining these
coefficients. In fact, Theorem  below presents a general asymptotic expansion for W (x)
which includes (.) as its special case.

Theorem Let r 	=  be a given real number and � ≥  be a given integer.Then the function
W (x), as defined in (.), has the following asymptotic expansion:

W (x)∼ π



(
 +

∞∑
j=

cj(�, r)
xj

)x�/r

as x→ ∞ (.)

with the coefficients cj(�, r) (for j ∈ N) given by

cj(�, r) =
∑ rk+k+···+kj

k!k! · · ·kj!b
k
 b

k
 · · ·bkjj , (.)

where bj are given in (.), summed over all non-negative integers kj satisfying the equation

( + �)k + ( + �)k + · · · + (j + �)kj = j.

Proof In view of (.), we can let

(

π
W (x)

)r/x�

=  +
m∑
j=

cj(�, r)
xj

+O
(
x–m–) as x→ ∞, (.)
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where c(�, r), . . . , cm(�, r) are real numbers to be determined. Write (.) as

ln

(

π
W (x)

)
=

m∑
k=

bk
xk

+ Rm(x),

where Rm(x) =O(x–m–). Further, we have

(

π
W (x)

)r/x�

= erRm(x)/x�
e
∑m

k=
rbk
xk+�

= erRm(x)/x�
m∏
k=

[
 +

(
rbk
xk+�

)
+


!

(
rbk
xk+�

)

+ · · ·
]

= erRm(x)/x�
∞∑

k=

∞∑
k=

· · ·
∞∑

km=


k!k! · · · km!

×
(
rb
x+�

)k( rb
x+�

)k
· · ·

(
rbm
xm+�

)km

= erRm(x)/x�
∞∑

k=

∞∑
k=

· · ·
∞∑

km=

rk+k+···+km

k!k! · · · km!b
k
 b

k
 · · ·bkmm

× 
x(+�)k+(+�)k+···+(m+�)km

. (.)

Equating the coefficients by the equal powers of x in (.) and (.), we see that

cj(�, r) =
∑

(+�)k+(+�)k+···+(j+�)kj=j

rk+k+···+kj

k!k! · · ·kj!b
k
 b

k
 · · ·bkjj .

The proof of Theorem  is complete. �

Theorem  gives an explicit formula for determining the coefficients of the asymptotic
expansion (.). Theorem  below provides a recurrence relation for determining the
coefficients of the asymptotic expansion (.).

Theorem Let r 	=  be a given real number and � ≥  be a given integer.Then the function
W (x), as defined in (.), has the following asymptotic expansion:

W (x)∼ π



( ∞∑
j=

cj(�, r)
xj

)x�/r

as x→ ∞ (.)

with the coefficients cj(�, r) (for j ∈ N) given by the recurrence relation:

c(�, r) =  and cj(�, r) =
r
j

j–�∑
k=

bk(k + �)cj–�–k(�, r) for j ∈N, (.)

where bj (for j ∈N) are given in (.).
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Proof Taking the logarithm of (.)

ln

(

π
W (x)

)
∼

∞∑
j=

bjx–j as x→ ∞.

Write (.) as

r
x�

ln

(

π
W (x)

)
∼ ln

( ∞∑
j=

cj(�, r)x–j
)

as x→ ∞.

It follows that

r
∞∑
k=

bkx–k–� ∼ ln

( ∞∑
j=

cj(�, r)x–j
)

as x→ ∞.

Differentiating each side with respect to x yields

r

( ∞∑
j=

cj(�, r)x–j
)( ∞∑

k=

bk(k + �)x–k–�–

)
∼

∞∑
j=

cj(�, r)jx–j–.

Hence,

jcj(�, r) = r
j–�∑
k=

bk(k + �)cj–�–k(�, r) for j ∈N

and (.) follows. The proof of Theorem  is complete. �

4 Inequalities
In this section, we establish inequalities for the Wallis sequenceWn.

Theorem  For all n ∈N,

π


α(n) <Wn <

π


β(n), (.)

where

α(n) =  –



n + 
 +




n+ 
 +




n+ 
 +




n+ 
 +



n+ 



and

β(n) =  –



n + 
 +




n+ 
 +




n+ 
 +




n+ 
 +




n+ 
 +



n+ 



.
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That is,

α(n) =
,n + ,n + ,n + ,n + ,n + ,
,n + ,n + ,n + ,n + ,n + ,

and

β(n) =
,n + ,n + ,,n + ,,n + ,,n + ,n + ,

,n + ,n + ,,n + ,,n + ,,n + ,,n + ,
.

Proof In view of the fact that

Wn =
π


· 
n + 



[
�(n + )
�(n + 

 )

]

,

the inequality (.) is equivalent to



lnα(n) < ln�(n + ) – ln�

(
n +




)
–


ln

(
n +




)
<


lnβ(n).

To obtain the left-hand inequality, define f (x) for x≥  by

f (x) = ln�(x + ) – ln�

(
x +




)
–


ln

(
x +




)
–


lnα(x).

Using Stirling’s formula, we find that

lim
x→∞ f (x) = .

We now show that f (x) is strictly decreasing for x ≥ , and f () > f () > f (), so f (n) > 
for n≥ . By using the second inequality in (.), we have

f ′(x) =ψ(x + ) –ψ

(
x +




)
–


x + 

–



α′(x)
α(x)

<U(x) –


x + 
–



α′(x)
α(x)

=U(x) –


x + 
–


P(x)
P(x)

,

where Pk(x) is a polynomial of degree k with non-negative integer coefficients. In what
follows, Pk(x) has the same understanding.
On simplification, using MAPLE, we find that

f ′(x) < –
N(x)
P(x)

,

where N(x) is a polynomial of degree  with integer coefficients (some positive, some
negative). It can be shown further that

N(x) = (x – )P(x) + ,,,,,,,,

so

N(x) > 

http://www.journalofinequalitiesandapplications.com/content/2014/1/251
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for x ≥  and so

f ′(x) < 

for x ≥ . Direct computation yields

f () = .× –, f () = .× –, f () = .× –.

Consequently, the sequence (f (n))n∈N is strictly decreasing. This leads to

f (n) > lim
n→∞ f (n) = , n ∈N,

which means that the first inequality in (.) is valid for n ∈N.
To obtain the right-hand inequality, define g(x) for x≥  by

g(x) = ln�(x + ) – ln�

(
x +




)
–


ln

(
x +




)
–


lnβ(x).

Using Stirling’s formula, we find that

lim
x→∞ g(x) = .

Differentiating g(x) and applying the first inequality in (.), we obtain

g ′(x) = ψ(x + ) –ψ

(
x +




)
–


x + 

–



β ′(x)
β(x)

> L(x) –


x + 
–



β ′(x)
β(x)

= L(x) –


x + 
–


P(x)
P(x)

.

On simplification, using MAPLE, we find that

g ′(x) >


,
M(x)
P(x)

,

where M(x) is a polynomial of degree  with integer coefficients (some positive, some
negative). It can be shown further that

M(x) = (x – )P(x) + ,,,,,,,,,

so

M(x) > 

for x ≥  and so

g ′(x) > 

http://www.journalofinequalitiesandapplications.com/content/2014/1/251
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for x ≥ . Direct computation yields

g() = –.× –, g() = –.× –, g() = –.× –,

g() = –.× –, g() = –.× –, g() = –.× –,

g() = –.× –, g() = –.× –, g() = –.× –.

Consequently, the sequence (g(n))n∈N is strictly increasing. This leads to

g(n) < lim
n→∞ g(n) = , n ∈N,

which means that the second inequality in (.) is valid for n ∈N. The proof of Theorem 
is complete. �

We propose the following.

Conjecture  Let ak = (k–)(k+)
 , k ∈N. TheWallis sequence Wn has the following contin-

ued fraction representation:

Wn =
π



(
 –




n + 
 +

a
n+ 

 +
a

n+ 
 +

a

n+ 
 +
...

)
.

Theorem  The following inequalities hold:

π



(
 –


n + 



)λ(n)

<Wn <
π



(
 –


n + 



)μ(n)

, (.)

where

λ(n) =  –


n
+


n

–


,n

and

μ(n) =  –


n
+


n

–


,n
–


n

.

The first inequality holds for n ≥ , while the second inequality is valid for all n ≥ .

Proof Inequality (.) can be written as

(
 –


n + 



)λ(n)/

<
√
n + 



�(n + )
�(n + 

 )
<

(
 –


n + 



)μ(n)/

. (.)

The lower bound in (.) is obtained by considering the function F(x) defined by

F(x) = ln�(x + ) – ln�

(
x +




)
–


ln

(
x +




)
–

λ(x)


ln

(
 –


x + 



)
.
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Using Stirling’s formula, we find that

lim
x→∞F(x) = .

Differentiating F(x) and applying the second inequality in (.), we obtain

F ′(x) =ψ(x + ) –ψ

(
x +




)
–V (x) –

x – x + 
x

ln

(
x + 
x + 

)

<U(x) –V (x) –
x – x + 

x
ln

(
x + 
x + 

)
,

with

V (x) =
,x + ,x + ,x – x + x + x – 

(x + )(x + )x(x + )
.

We claim that F ′(x) <  for x ≥ . It suffices to show that

G(x) :=
x(U(x) –V (x))
x – x + 

– ln

(
x + 
x + 

)
<  for x≥ .

Differentiation yields

G′(x) =
R(x)

,x(x + )(x + )(x + )(x – x + )
,

where R(x) is a polynomial of degree  with integer coefficients (some positive, some
negative). It can be shown further that

R(x) = (x – )P(x) + ,,,,,,,,

so

R(x) > 

for x ≥  and so

G′(x) > 

for x ≥ , and we have

G(x) < lim
x→∞G(x) = , x≥ .

This proves the claim.
Hence, F(x) is strictly decreasing for x≥ . Direct computation yields

F() = .× –, F() = .× –, F() = .× –.

http://www.journalofinequalitiesandapplications.com/content/2014/1/251
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Consequently, the sequence (F(n)) is strictly decreasing for n≥ . This leads to

F(n) > lim
n→∞F(n) = , n≥ ,

which means that the first inequality in (.) is valid for n≥ .
The upper bound in (.) is obtained by considering the function H(x) defined by

H(x) = ln�(x + ) – ln�

(
x +




)
–


ln

(
x +




)
–

μ(x)


ln

(
 –


x + 



)
.

Using Stirling’s formula, we find that

lim
x→∞H(x) = .

Differentiating H(x) and applying the first inequality in (.), we obtain

H ′(x) =ψ(x + ) –ψ

(
x +




)
– J(x) –

x – x + x + 
,x

ln

(
x + 
x + 

)

> L(x) – J(x) –
x – x + x + 

,x
ln

(
x + 
x + 

)
,

with

J(x) =
,x + ,x + ,x – x + x + x – x – 

(x + )(x + )x(x + )
.

We claim that the function H ′(x) >  for x ≥ . It suffices to show that

I(x) :=
,x(L(x) – J(x))
x – x + x + 

– ln

(
x + 
x + 

)
>  for x ≥ .

Differentiation yields

I ′(x) = –
S(x)

x(x + )(x + )(x + )(x – x + x + )
,

where S(x) is a polynomial of degree  with integer coefficients (some positive, some
negative). It can be shown further that

S(x) = (x – )P(x) + ,,,,,

so

S(x) > 

for x ≥  and so

I ′(x) < 

http://www.journalofinequalitiesandapplications.com/content/2014/1/251
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for x ≥ , and we have

I(x) > lim
x→∞ I(x) = , x≥ .

This proves the claim.
Hence, H(x) is strictly increasing for x≥ . Direct computation yields

H() = –. . . . , H() = –. . . . .

Consequently, the sequence (H(n)) is strictly increasing for n ≥ . This leads to

H(n) < lim
n→∞H(n) = , n≥ ,

which means that the second inequality in (.) is valid for n≥ . The proof of Theorem 
is complete. �

In fact, it is proved that

Wn =
π



(
 –


n + 



)– 
n

+ 
n

– 
,n

+O(n–)

, n→ ∞. (.)
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